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Abstract
We consider the regularity for weak solutions of second-order nonlinear parabolic
systems under a natural growth condition whenm > 2, and obtain a general criterion
for a weak solution to be regular in the neighborhood of a given point. In particular,
we get the optimal regularity by the method of A-caloric approximation introduced
by Duzaar and Mingione.
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1 Introduction
Electrorheological fluids are special viscous liquids, that are characterized by their abil-
ity to undergo significant changes in their mechanical properties when an electric field
is applied. This property can be exploited in technological applications, e.g., actuators,
clutches, shock absorbers, and rehabilitation equipment to name a few [].
A model was developed for these liquids within the framework of rational mechanics

[, ]; it takes into account the complex interactions between the electro-magnetic fields
and the moving liquid. If the fluid is assumed to be incompressible, it turns out that the
relevant equations of the model are the system

div(E + P) = , (.)

curlE = , (.)

ρ
∂v
∂t

– divS + ρ[∇v]v +∇φ = ρf + [∇E]P, (.)

div v = , (.)

where E is the electric field, P is the polarization, ρ is the density, v is the velocity, S is the
extra stress, φ is the pressure, and f is the mechanical force. In fact, in a model capable of
explaining many of the observed phenomena, the extra stress has the form

S = α
((
 + |D|) p–

 – 
)
E ⊗ E +

(
α + α|E|)( + |D|) p–

 D

+ α
(
 + |D|) p–

 (DE ⊗ E + E ⊗DE), (.)
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where αij are material constants, and where the material function p depends on the
strength of the electric field |E| and satisfies

 < p∞ ≤ p
(|E|) ≤ p < ∞. (.)

Since thematerial function p, which essentially determines S, depends on themagnitude
of the electric field |E|, we have to deal with an elliptic or parabolic system of partial
differential equations with the so-called non-standard growth conditions, i.e., the elliptic
operator S satisfies

S(D,E) ·D≥ c
(
 + |E|)( + |D|) p∞–

 |D|, (.)
∣∣S(D,E)∣∣ ≤ c

(
 + |D|) p–

 |E|. (.)

Equality (.) of electrorheological fluids with the conditions (.) and (.) encouraged
us to considered the partial regularity of a more simple and standard model as the follow-
ing:

uit –
n∑

α=

DαAα
i (z,u,Du) = Bi(z,u,Du), i = , , . . . ,N , (.)

where � ⊂ Rn is a bounded domain and T > , z = (x, t) with x ∈ �,  < t ≤ T , denote a
point in QT = � × (–T , ). Let u(z) = (u(z),u(z), . . . ,uN (z)) be a vector-valued function
defined inQT . Denote byDu the gradient of u, i.e.,Du = {Dαui}i=,...,N ;α=,...,n.m >  is a real
number.
In order to define the weak solution of (.), one needs to impose some regularity con-

ditions and constructer conditions to Aα
i and Bi. For a vector field Aα

i :QT ×RN ×RnN , we
shall denote the coefficients by Aα

i (z,u,p) = Aα
i (x, t,u,p) if z = (x, t), u ∈ RN and p ∈ RnN .

We assume that the functions (z,u,p) 	→ Aα
i (z,u,p); (z,u,p) 	→ ∂Aα

i
∂pjβ

(z,u,p) are continuous

in QT × RN × RnN and that the following growth and ellipticity conditions are satisfied:

(H) There exists a constant L such that

∣∣Aα
i (z,u,p)

∣∣ ≤ L
(
 + |p|)m

 for all z ∈QT ,u ∈ Rn and p ∈ RnN .

(H) Aα
i (z,u,p) are differentiable functions in p and there exists a constant L such that

∣∣∣∣∂Aα
i

∂piβ
(z,u,p)

∣∣∣∣ ≤ L
(
 + |p|)m–

 for all z ∈ QT ,u ∈ Rn and p ∈ RnN .

(H) Aα
i is uniformly strongly elliptic, that is, for some λ > , we have

(
∂Aα

i

∂piβ
(z,u,p)p̃iα

)
· p̃jβ ≥ λ|p̃|( + |p|)m–

 for all z ∈ QT ,u ∈ Rn and p, p̃ ∈ RnN ,

where λ >  and  ≤ L < ∞. Now we shall specify the regularity assumptions on
Aα
i (z,u,p)with respect to the ‘coefficient’ (z,u) and assume that the function (z,u) 	→

http://www.boundaryvalueproblems.com/content/2013/1/152
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Aα
i (z,u,p)
+|p| is Hölder continuouswith respect to the parabolicmetric

√|x – x| + |t – t|
with Hölder exponent β ∈ (, ) but not necessarily uniformly Hölder continuous;
namely we shall assume that:

(H) There exists a constant L such that

∣∣Aα
i (z,u,p)–A

α
i (z,u,p)

∣∣ ≤ Lθ
(|u|+ |u|, |x–x|+

√|t – t|+ |u–u|
)(
+ |p|)m



for any z = (x, t) and z = (x, t) in QT . u and u in Rn and for all p ∈ RnN , where
θ (y, s) =min{, K̃(y)sβ}, K̃ : [,∞) 	→ (,∞) is a given non-decreasing function. Note
that θ is concave in the argument. This is the standard way to prescribe (non-
uniform) Hölder continuity of the function Aα

i (z,u,p). We find it a bit difficult to
handle, therefore, in many points of the paper, we shall use:

(H′) For β ∈ (, ) and K : [,∞) → [L,∞)monotone nondecreasing such that

∣∣Aα
i (z,u,p) –Aα

i (z,u,p)
∣∣ ≤ K

(|u|)(|x – x| +
√|t – t| + |u – u|

)β(
 + |p|)m

 ,

valid for any z = (x, t) and z = (x, t) in QT , u and u in Rn and p ∈ RnN .
(H) There exist constants a and b such that

∣∣Bi(z,u,p)
∣∣ ≤ a|p|m + b, sup

QT

|u| = V , aV < λ.

Finally, we remark a trial consequence of the continuity of ∂Aα
i

∂pjβ
; this implies the existence

of a function ω : [,∞)× [,∞) 	→ [,∞) with ω(t, ) =  for all t such that t 	→ ω(t, s) is
nondecreasing for fixed s, s 	→ ωm(t, s) is concave and nondecreasing for fixed t, and such
that

(H)
∣∣∣∣∂Aα

i

∂pjβ
(x, t,u,p) –

∂Aα
i

∂pjβ
(x, t,u,p)

∣∣∣∣
≤ L

(
 + |p| + |p|

)m–


× ω
(|u| + |p|, |x – x| + |t – t| + |u – u| + |p – p|

)
for any z = (x, t) and z = (x, t) inQT , any u, u in Rn and p,p ∈ RnN whenever |u|+ |p|+
|u – u| + |p – p| ≤ M.
From (H) and (H) we immediately deduce the following:

∣∣Aα
i (z,u,p) –Aα

i (z,u,q)
∣∣ ≤ L

(
 + |p| + |q|)m–

 |p – q|, (.)(
Aα
i (z,u,p) –Aα

i (z,u,q)
)
(p – q) ≥ λ

(
 + |p| + |q|)m–

 |p – q| (.)

for all z ∈QT , u ∈ RN and p,q ∈ RnN .

Definition . By a weak solution of (.) under the assumptions (H)-(H), we mean a
vector-valued function u ∈ Lm(–T , ;W ,m(�,RN ))∩ L∞(QT ;RN ) such that

ˆ
QT

(
Aα
i (z,u,Du)Dαϕi – uiϕi

t
)
dz =

ˆ
QT

Bi(z,u,Du) · ϕi dz (.)

for all ϕ ∈ C∞
 (QT ,RN ).

http://www.boundaryvalueproblems.com/content/2013/1/152
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In [] Duzaar and Mingione considered the partial regularity of homogeneous systems
of (.) with m ≡  under the natural growth condition. In this paper, we extend their
results to the case of m > . We have to overcome the difficulty of m > . Motivated by
the works of Duzaar [, ], Chen and Tan [–] and Tan [], we use the technique of
‘A-caloric approximation’ to establish the optimal partial regularity of nonlinear parabolic
systems (.). In fact, the use of the ‘A-caloric approximation lemma’ allows optimal reg-
ularity, without the use of Reverse-Hölder inequalities and (parabolic) Gehring’s lemma.
The method is based on an approximation result that we called the ‘A-caloric approxima-
tion lemma’. This is the parabolic analogue of the classical harmonic approximation lemma
of De Giorgi [, ] and allows to approximate functions with solutions to parabolic sys-
tems with constant coefficients in a similar way as the classical harmonic approximation
lemma does with harmonic functions. And we can obtain the following theorem.

Theorem . Let u ∈ Lm(–T , ;W ,m(�,RN )) ∩ L∞(QT ;RN ) be a weak solution to system
(.) under the assumptions (H)-(H) and the natural growth condition (H) and denote
by Q the set of regularity points of u in QT :

Q =
{
z ∈QT :Du ∈ Cβ ,β/(O,RnN)

,O ⊂QT is a neighborhood of z
}
.

Then Q is an open subset with full measure, and therefore

Du ∈ Cβ ,β/(Q,RnN)
, |QT\Q| = .

At the end of the section, we summarize some notions which we will be used in this pa-
per. For x ∈ Rn, t ∈ R, we denoteB(x,R) = {x ∈ Rn : |x–x| < R},Q((x, t),R) = B(x,R)×
(t – R, t). If v is an integrable function in Q(z,ρ) = Qρ(z) = Bρ(x) × (t – ρ, t),
z = (x, t), we will denote its average by (v)z,ρ =

ffl
Qρ (z)

vdz = 
αnρn+

´
Qρ (z)

vdz, where
αn denotes the volume of the unit ball in Rn. We remark that in the following, when not
crucial, the ‘center’ of the cylinder will be often unspecified, e.g., Qρ(z) = Qρ ; the same
convention will be adopted for balls in Rn therefore denoting B(x,ρ) = Bρ(x). Finally, in
the rest of the paper, the symbol C will denote a positive, finite constant that may vary
from line to line; the relevant dependencies will be specified.

2 The A-caloric approximation technique and preliminaries
In this section we introduce the A-caloric approximation lemma [] and some preliminar-
ies. Recall a strongly elliptic bilinear form Aα

i on RnN with an ellipticity constant λ > , and
upper bound � >  means that λ|p̃| ≤ Aα

i (p̃, p̃), Aα
i (p, p̃) ≤ �|p||p̃|, ∀p, p̃ ∈ RnN , we define

A-caloric approximation function.

Definition . We shall say that a function h ∈ L(–, ;W ,(Bρ ,RN )) is A-caloric on Qρ

if it satisfies
ˆ
Qρ

(
hiϕi

t –Aα
i
(
Dh,Dαϕi))dz =  for all ϕ ∈ C∞


(
Qρ ,RN)

.

Remark . Obviously, when A(p̃, p̃) ≡ |p̃| for every p̃ ∈ RnN , then an A-caloric function
is just a caloric function ht –�h≡ .

http://www.boundaryvalueproblems.com/content/2013/1/152
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Lemma. (A-caloric approximation lemma) There exists a positive function δ(n,N ,λ,�,
ε) ≤  with the following property: Whenever A is a bilinear form on RnN , which is
strongly ellipticity constant λ >  and upper bound �, ε is a positive number, and u ∈
L(–, ;W ,(B,RN )) with

ˆ
Q

(|u| + |Du|)dz ≤ , (.)

is approximatively A-caloric in the sense that

∣∣∣∣
ˆ
Q

(
uϕt –A(Du,Dϕ)

)
dz

∣∣∣∣ ≤ δ sup
Q

|Dϕ| for all ϕ ∈ C∞


(
Q,RN)

, (.)

then there exists an A-caloric function h such that

ˆ
Q

(|h| + |Dh|)dz ≤ , and
ˆ
Q

|u – h| dz ≤ ε. (.)

Actually, we could have directly applied Theorem  of [] with the choice X =
W ,(B,RN ), B = L(B,RN ), R = W–l,(B,RN ), F = (vk)k∈N , p =  to conclude that (vk)k∈N
is relatively compact in L(QT ,RN ) = L(–, ;L(B,RN )).

Lemma . There exists a positive function δ(n,N ,λ,�, ε)≤ with the following property:
Whenever A is a bilinear form on RnN which is strongly ellipticity constant λ >  and upper
bound �, ε is a positive number, and u ∈ L(t – ρ, t;W ,(Bρ(x),RN )) with

ρ–
 
Qρ (z)

|u| dz +
 
Qρ (z)

|Du| dz ≤ , (.)

is approximatively A-caloric in the sense that

∣∣∣∣
 
Qρ (z)

(
uϕt –A(Du,Dϕ)

)
dz

∣∣∣∣ ≤ δ sup
Qρ (z)

|Dϕ| for all ϕ ∈ C∞


(
Qρ(z),RN)

, (.)

then there exists h ∈ L(t – ρ, t;W ,(Bρ(x),RN )) A-caloric on Qρ(z) such that

ρ–
 
Qρ (z)

|h| dz +
 
Qρ (z)

|Dh| dz ≤ , and ρ–
 
Qρ (z)

|u – h| dz ≤ ε. (.)

For u ∈ L(Qρ(z),RN ) we denote by lz,ρ the unique affine function (in space) l(z) = l(x)
minimizing l 	→ ffl

Qρ (z) |u – l| dz, amongst all affine functions a(z) = a(x) which are in-
dependent of t. To get an explicit formula for lz,ρ , we note that such a unique minimum
point exists and takes the form lz,ρ(x) = ξz,ρ + νz,ρ(x– x), where νz,ρ ∈ RnN . A straight-
forward computation yields that

ffl
Qρ (z)

u · a(x)dz = ffl
Qρ (z)

lz,ρ(x) · a(x)dz, for any affine
function a(x) = ξ + ν(x – x) with ξ ∈ RN and ν ∈ RnN . This implies in particular that
ξz,ρ =

ffl
Qρ (z)

udz = (u)z,ρ and νz,ρ =
n+
ρ

ffl
Qρ (z)

u⊗ (x – x)dz.
For convenience we recall from [] the following.

http://www.boundaryvalueproblems.com/content/2013/1/152
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Lemma . Let u ∈ L(Qρ(z),RN ),  < θ < , and lz,ρ respectively lz,θρ the unique affine
functions minimizing l 	→ ffl

Qρ (z) |u – l| dz respectively l 	→ ffl
Qθρ (z)

|u – l| dz. Then there
holds

|νz,θρ – νz,ρ | ≤ n(n + )
(θρ)

 
Qθρ (z)

∣∣u – (u)z,ρ – νz,ρ(x – x)
∣∣ dz.

Moreover, if Du ∈ L(Qρ(z),RnN ), we have

∣∣νz,ρ – (Du)z,ρ
∣∣ ≤ n(n + )

ρ

 
Qρ (z)

∣∣u – (u)z,ρ – (Du)z,ρ(x – x)
∣∣ dz.

3 Caccioppoli second inequality
In this section we prove Caccioppoli’s second inequality.

Theorem . (Caccioppoli second inequality) Let u ∈ Lm(–T , ;W ,m(�,RN )) ∩ L∞(QT ;
RN ) be a weak solution to (.) under the assumptions (H)-(H) and the natural growth
condition (H). Then, for any M > , any affine function l(z) = l(x) independent of t and
satisfying |l(z)| + |Dl| ≤ M, and any Qρ(z) ⊂⊂QT with  < ρ < R ≤ , we have

 
Qρ (z)

[(
 + |Dl|)m–

 |Du –Dl| + |Du –Dl|m]
dz

≤ Ccac

{(
 + |Dl|)m–



 
QR(z)


(R – ρ)

|u – l| dz +
 
QR(z)


(R – ρ)m

|u – l|m dz

+
[
K

(|l|)( + |Dl|)m

] 
–β Rβ +

(
b + a|Dl|m)

R
}
.

Proof We take the test function ϕ = ηξ (u – l), where η(x) ∈ C
(BR(x)) is a cut-off func-

tion in space such that ≤ η ≤ , η ≡  in Bρ(x), |Dη| ≤ 
(R–ρ) . While ξ ∈ C(R) is a cut-off

function in time such that, with  < σ < ρ being arbitrary,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ ≡ , on (t – ρ, t – σ ),

ξ ≡ , on (–∞, t – R)∪ (t,∞),

≤ ξ ≤ , on R,

ξt ≤ , on (t – ρ,∞),

|ξt| ≤ 
|R–ρ| , on (t – R, t – ρ).

Thus, we obtain

ˆ
QR(z)

Aα
i (z,u,Du)D(u – l)iξ η dz

= –
ˆ
QR(z)

Aα
i (z,u,Du)ξ

η∇η ⊗ (u – l)i dz

+
ˆ
QR(z)

ui∂tϕi dz +
ˆ
QR(z)

Bi(z,u,Du)ϕi dz.

http://www.boundaryvalueproblems.com/content/2013/1/152
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We further have

–
ˆ
QR(z)

Aα
i (z,u,Dl)Dα(u – l)iξ η dz

= 
ˆ
QR(z)

Aα
i (z,u,Dl)ξ

η∇η ⊗ (u – l)i dz –
ˆ
QR(z)

Aα
i (z,u,Dl)Dαϕi dz

and

 =
ˆ
QR(z)

Aα
i
(
z, l(z),Dl

)
Dαϕi dz.

Adding these equations and using lt ≡ , we deduce

ˆ
QR(z)

[
Aα
i (z,u,Du) –Aα

i (z,u,Dl)
]
D(u – l)ξ η dz

= –
ˆ
QR(z)

[
Aα
i (z,u,Du) –Aα

i (z,u,Dl)
]
ξ η∇η ⊗ (u – l)dz

–
ˆ
QR(z)

[
Aα
i (z,u,Dl) –Aα

i (z, l,Dl)
]
Dαϕi dz

–
ˆ
QR(z)

[
Aα
i (z, l,Dl) –Aα

i
(
z, l(z),Dl

)]
Dαϕi dz

+
ˆ
QR(z)

(u – l)i∂tϕi dz +
ˆ
QR(z)

Bi(z,u,Du)ϕi dz

≤ I + II + III + IV +V . (.)

By (.) and Young’s inequality, we have

I ≤ ε

ˆ
QR(z)

(
 + |Dl|)m–

 |Du –Dl|ξ η dz + ε–(m–)Cm
ˆ
QR(z)

ξm|∇η|m|u – l|m dz

+
C

ε

ˆ
QR(z)

(
 + |Dl|)m–

 ξ |∇η||u – l| dz

+ ε

ˆ
QR(z)

|Du –Dl|mξ
m

m– η
m

m– dz. (.)

By the condition (H′) and Young’s inequality, we can get

II ≤ ε

ˆ
QR(z)

ξ η|Du –Dl| dz +
(

ε
+ 

)


|R – ρ|
ˆ
QR(z)

ξ η|u – l| dz

+
(

ε
+ 


–β

)[
K

(|l|)( + |Dl|)m

] 
–β αnRn++ β

–β . (.)

Similarly, we can estimate III as follows:

III ≤ ε

ˆ
QR(z)

ξ η|Du –Dl| dz +
ˆ
QR(z)

ξ |∇η||u – l| dz

+
(

ε
+ 

)[
K

(|l|)( + |Dl|)m
 +β]

αnRn++β . (.)

http://www.boundaryvalueproblems.com/content/2013/1/152
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Using the fact that ξ ≡  on (–∞, t – R)∪ (t,∞), taking into account that ξξt ≤  for
t > t – ρ and |ξt| ≤ 

|R–ρ| , we infer

IV =
ˆ
QR(z)

(u – l)i∂tϕi dz =
ˆ
QR(z)

|u – l|η∂t
(
ξ )dz + 



ˆ
QR(z)

ξ η∂t|u – l| dz

=



ˆ
QR(z)

|u – l|η∂t
(
ξ )dz = ˆ

QR(z)
|u – l|ηξξt dz

≤ 
|R – ρ|

ˆ
QR(z)

|u – l| dz, (.)

and for μ positive to be fixed later, we have

V =
ˆ
QR(z)

a|Du|mξ η|u – l|dz +
ˆ
QR(z)

( |u – l|
R – ρ

ξη

)(
ξηb(R – ρ)

)
dz

≤
ˆ
QR(z)

a
[
( +μ)|Du –Dl|m +

(
 +


μ

)
|Dl|m

]
ξ η|u – l|dz

+

ε

ˆ
QR(z)

( |u – l|
R – ρ

ξη

)

dz +
ε



ˆ
QR(z)

ξ ηbR dz

≤ aV ( +μ)
ˆ
QR(z)

ξ η|Du –Dl|m dz +

ε

ˆ
QR(z)

( |u – l|
R – ρ

ξη

)

dz

+
ε



[
a

(
 +


μ

)

|Dl|m + b
]
αnRn+. (.)

By (.) we have

ˆ
QR(z)

[
Aα
i (z,u,Du) –Aα

i (z,u,Dl)
]
Dα(u – l)iξ η dz

≥ λ

ˆ
QR(z)

(
 + |Du| + |Dl|)m–

 |Du –Dl|ξ η dz

≥ λ

ˆ
QR(z)

[(
 + |Dl|)m–

 |Du –Dl|ξ η + |Du –Dl|mξ η]dz. (.)

Combining (.)-(.) in (.) and noting that R
β
–β ≤ Rβ (R ≤ ), that 


–β > , that

[K(|l|)( + |Dl|)m +β ] ≤ [K(|l|)( + |Dl|)m ] 
–β (for K ≥ ), choosing ε sufficiently small and

taking into account that aV ≤ λ, that ξ ≡  for t ∈ [t – ρ, t – σ ], that η ≡  on Bρ(x),
we infer that

ˆ t–σ

t–ρ

ˆ
Bρ (x)

[(
 + |Dl|)m–

 |Du –Dl| + |Du –Dl|m]
dxdt

≤ C

[(
 + |Dl|)m–



ˆ
QR(z)


|R – ρ| |u – l| dz +

ˆ
QR(z)


|R – ρ|m |u – l|m dz

]

+C
[
K

(|l|)( + |Dl|)m

] 
–β αnRn++β +C

[
a

(
 +


μ

)

|Dl|m + b
]
αnRn+.

Then the desired result follows by taking the limit σ → . �

http://www.boundaryvalueproblems.com/content/2013/1/152
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4 The proof of themain theorem
The next lemma is a prerequisite for applying the A-caloric approximation technique.

Lemma. Let u ∈ Lm(–T , ;W ,m(�,RN ))∩L∞(QT ;RN ) be aweak solution to (.)under
the assumptions (H)-(H). Then for any M > , we have

∣∣∣∣
 
Qρ (z)

(
(u – l)iϕi

t –
∂Aα

i

∂pjβ

(
z, l(z),Dl

)(
Dui –Dli

)
Dαϕi

)
dz

∣∣∣∣
≤ CEu

(
ω(M + ,�)�


 +� +� +H(M)ρβ

)
sup
Qρ (z)

|Dϕ|,

for any Qρ(z) ⊂⊂ QT and ϕ ∈ C∞
 (Qρ(z),RN ) with ρ ≤  and any affine function l(z) =

l(x) independent of time, satisfying |l(z)|+ |Dl| ≤ M.Here CEu = CEu(M,L,m) and we write

� = �(z,ρ,Dl) =
(
 + |Dl|)m–



 
Qρ (z)

|Du –Dl| dz +
 
Qρ (z)

|Du –Dl|m dz,

�(z,R, l) =
(
 + |Dl|)m–



 
QR(z)


|R – ρ| |u – l| dz +

 
QR(z)


|R – ρ|m |u – l|m dz,

� = �(z,ρ),

H(s) =
[
K̃(s)( + s)

m

] 
–β , for K̃(s) =max

{
K(s),a,b

}
.

Proof Without loss of generality, we can assume that supQρ (z) |Dϕ| ≤ . From (.) and
the fact that

ffl
Qρ (z)A

α
i (z, l(z),Dl)Dαϕi dz =  and

ffl
Qρ (z) lϕt dz = , we deduce

 
Qρ (z)

(
(u – l)iϕi

t –
∂Aα

i

∂pjβ

(
z, l(z),Dl

)(
Dui –Dli

)
Dαϕi

)
dz

=
 
Qρ (z)

[
Aα
i
(
z, l(z),Du

)
–

∂Aα
i

∂pjβ

(
z, l(z),Dl

)(
Dui –Dli

)]
Dαϕi dz

+
 
Qρ (z)

[
Aα
i (z,u,Du) –Aα

i (z, l,Du)
]
Dαϕi dz

+
 
Qρ (z)

[
Aα
i (z, l,Du) –Aα

i
(
z, l(z),Du

)]
Dαϕi dz

–
 
Qρ (z)

Bi(z,u,Du)ϕi dz

= I + II + III + IV .

In turn, we split the first integral as follows:

I =


|Qρ(z)|
ˆ
s
(· · · )dz + 

|Qρ(z)|
ˆ
s
(· · · )dz = I + I,

and s =Qρ(z)∩ {z : |Du –Dl| ≤ }, s =Qρ(z)∩ {z : |Du –Dl| > }.
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We proceed estimating the two resulting pieces. As for I, using (H), the fact that s 	→
ωm(t, s) is concave and Jensen’s inequality (note that m–

m > 
 ), we get

I =


|Qρ(z)|
ˆ
s

ˆ 



[
∂Aα

i

∂pjβ

(
z, l(z),Dl + τ (Du –Dl)

)

–
∂Aα

i

∂pjβ

(
z, l(z),Dl

)]
dτ (Du –Dl)Dαϕi dz

≤ L
 
Qρ (z)

(
 + |Dl| + |Du –Dl|)m–

 ω
(
M + , |Du –Dl|)|Du –Dl|dz

≤ L
(
 + |Dl|)m–



( 
Qρ (z)

ωm(
M + , |Du –Dl|)dz) 

m

·
[ 

Qρ (z)

((
 + |Du –Dl|)m–

 |Du –Dl|) m
m– dz

]m–
m

≤ L
(
 + |Dl|)m–

 ω

(
M + ,

 
Qρ (z)

|Du –Dl| dz
)

·
{[( 

Qρ (z)
|Du –Dl| dz

) m
(m–)

]m–
m

+
( 

Qρ (z)
|Du –Dl|m dz

)m–
m

}

≤ L
(
 + |Dl|)m–

 ω

(
M + ,

 
Qρ (z)

|Du –Dl| dz
)

·
[ 

Qρ (z)
|Du –Dl| dz +

 
Qρ (z)

|Du –Dl|m dz
] 


.

To estimate I, we preliminarily observe that, using Hölder inequality,

|s| ≤
ˆ
s

|Du –Dl|dz ≤
(ˆ

s
dz

) 

(ˆ

s
|Du –Dl| dz

) 


≤ √|s|
(ˆ

Qρ

|Du –Dl| dz
) 


,

and therefore

√|s|√|Qρ(z)|
≤

( 
Qρ

|Du –Dl| dz
) 


.

Similarly, we also have

√|s|√|Qρ(z)|
≤

( 
Qρ

|Du –Dl|m dz
) 


.
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Using (H), (H) and the previous inequality, we then conclude the estimate of I as
follows:

|I| ≤ L
|Qρ(z)|

ˆ
s

∣∣( + |Du|)m
 +

(
 + |Dl|)m–

 |Du –Dl|∣∣dz
≤ L

|Qρ(z)|
ˆ
s

∣∣( + |Dl|)m

(
 + |Du –Dl|)m


∣∣dz

+
L

|Qρ(z)|
(ˆ

s

(
 + |Dl|)m–

 dz
) 


(ˆ

s

(
 + |Dl|)m–

 |Du –Dl| dz
) 



≤ L(M + )
m


√|s|√|Qρ(z)|
( 

Qρ (z)
|Du –Dl|m dz

) 

+

L|s|
|Qρ(z)| ( +M)

m


+
L
√|s|√|Qρ(z)|

(
 + |Dl|)m–



( 
Qρ (z)

(
 + |Dl|)m–

 |Du –Dl| dz
) 



≤ L( +M)
m


×
[(
 + |Dl|)m–



 
Qρ (z)

|Du –Dl| dz +
 
Qρ (z)

|Du –Dl|m dz
]
.

Combining the estimates found for I and I, we have

|I| ≤ L
(
 +M)m–

 ω(M + ,�)
√

� + L( +M)
m
 �.

For the remaining pieces, using (H′), we deduce

|II| ≤ K
(∣∣l(z)∣∣) 

Qρ (z)
|u – l|β(

 + |Dl| + |Du –Dl|)m
 dz

≤ 
m


[ 
Qρ (z)


ρ |u – l| dz +

 
Qρ (z)

|Du –Dl|m dz

+
[
K

(|l|)( + |Dl|)m

] 
–β ρ

β
–β

]
.

Here we have used that K ≥  and the assumption that ρ ≤ . Using again (H′) and
Young’s inequality, we estimate

|III| ≤ K
(|l|) 

Qρ (z)
ρβ

(
 + |Dl|)β(

 + |Dl| + |Du –Dl|)m
 dz

≤ 
m


(
H(M)Rβ +

 
Qρ (z)

|Du –Dl|m dz
)
,

and

|IV | ≤
 
Qρ (z)

bRdz + m–
 
Qρ (z)

aR|Dl|m dz + m–a
 
Qρ (z)

R|Du –Dl|m dz.
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Noting the definition of H and combining the estimates just found for I , II , III and IV ,
we obtain

∣∣∣∣
 
Qρ (z)

(
(u – l)iϕi

t –
∂Aα

i

∂pjβ

(
z, l(z),Dl

)(
Dui –Dli

)
Dαϕi

)
dz

∣∣∣∣
≤ C(L,M,m)

[
ω(M + ,�)�


 +� +� +H(M)ρβ

]
.

A simple scaling argument yields the result for general ϕ. �

The next lemma is a standard estimate for weak solutions to linear parabolic systems
with constant coefficients [], Lemma ..

Lemma. Let h ∈ L(t–ρ, t;W ,(Bρ(x),RN )) be aweak solution inQρ(z) = Bρ(x)×
(t – ρ, t) of the following linear parabolic system with constant coefficients:

 
Qρ (z)

(
hiϕi

t –Aα
i
(
Dh,Dαϕi))dz = , ∀ϕ ∈ C∞


(
Qρ(z),RN)

,

where the coefficients Aα
i satisfy Aα

i (p,p) ≥ λ|p|,Aα
i (p, p̃) ≤ L|p||p̃| for any p, p̃ ∈ RnN .Then

h is smooth in Qρ(z) and there exists a constant Cpa = Cpa(n,N ,L/λ)≥  such that

ψ̃(z, θρ)≤ Cpaθ
ψ̃(z,ρ), ∀ < θ < .

Here we write

ψ̃(z,σ ) =

σ 

 
Qρ (z)

∣∣h – (h)z,σ – (Dh)z,σ (x – x)
∣∣ dz.

In the following we consider a weak solution u of the nonlinear parabolic system (.)
on a fixed sub-cylinder Qρ(z) ⊂QT and ρ ≤ .

Lemma . Given M >  and  < β < α < , there exist θ ∈ (,  ) and δ ∈ (, ] depending
only on n, N , λ, L, β , α and m such that if

ω
(
M + , �̃(z,ρ, lz,ρ)

)
+

√
�̃(z,ρ, lz,ρ)≤

δ


,

on Qρ(z) ⊂QT for some  < ρ ≤  and such if

∣∣lz,ρ(z)∣∣ + |Dlz,ρ | ≤ M,

then

�̃(z, θρ, lz,θρ) ≤ θα�̃(z,ρ, lz,ρ) +Cρ
βH(M)

for

�̃(z,ρ, lz,ρ) = �(z,ρ, lz,ρ) +H(M)ρβ .
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Proof GivenM > . And we shall always consider ρ ≤ . We first want to apply Lemma .
onQρ/(z) to u– l, where l(z) = l(x) is an affine function independent of t satisfying |l(z)|+
|Dl| ≤ M. We observe that � has the following property:

�(z,ρ/, l)≤ n+m+
[(
 + |Dl|)m–



 
Qρ (z)

∣∣∣∣u – l
ρ

∣∣∣∣ dz +
 
Qρ (z)

∣∣∣∣u – l
ρ

∣∣∣∣m dz
]

= n+m+�(z,ρ, l). (.)

From Caccioppoli’s second inequality, we infer

�(z,ρ/, l)≤ Ccac
[
m�(z,ρ, l) + H(M)ρβ]

= C̃cac�̃(z,ρ, l). (.)

From Lemma . we therefore get, for any ϕ ∈ C∞
 (Qρ/(z),RN ), that

∣∣∣∣
 
Qρ/(x)

[
(u – l)iϕi

t –
∂Aα

i

∂pjβ

(
z, l(z),Dl

)
D(u – l)iDαϕi

]
dz

∣∣∣∣
≤ C̃Eu

[
ω(M + , �̃)

√
�̃ + �̃ + ρβH(M)

] · sup
Qρ/(z)

|Dϕ|, (.)

where C̃Eu = C̃Eu(L,M,m).
For given ε >  to be specified later, we let δ = δ(n,N ,λ,L, ε) ∈ (, ] to be constant from

Lemma .. Define γ = C̃Eu
√

�(z,ρ) + δ–H(M)ρβ and w = γ –(u – l).
Then from (.) we deduce that, for all ϕ ∈ C∞

 (Qρ/(z),RN ), the following holds:

 
Qρ/(x)

[
wiϕi

t –
∂Aα

i

∂pjβ

(
z, l(z),Dl

)
DwDαϕi

]
dz

≤
[
ω

(
M + , �̃(z,ρ, lz,ρ)

)
+

√
�̃(z,ρ, lz,ρ) +

δ



]
sup

Qρ/(z)
|Dϕ|. (.)

Moreover, we estimate, using Caccioppoli’s second inequality, (.) and (.),

(ρ/)–
 
Qρ/(x)

|w| dz +
 
Qρ/(x)

|Dw| dz ≤ n+m+ + C̃cac

C̃
Eu

≤ , (.)

provided we have chosen C̃Eu �  large enough.
Assuming the smallness condition,

ω
(
M + , �̃(z,ρ, lz,ρ)

)
+

√
�̃(z,ρ, lz,ρ)≤

δ


, (.)

satisfied. Then (.) and (.) allow us to apply Lemma ., i.e., they yield the existence of
h ∈ L(t – ρ, t;W ,(Bρ(x),RN )) solving the ∂Aα

i
∂pjβ

-heat equation on Qρ/(z) and satisfy-

ing

(ρ/)–
 
Qρ/(x)

|h| dz +
 
Qρ/(x)

|Dh| dz ≤ , (.)

http://www.boundaryvalueproblems.com/content/2013/1/152
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and

(ρ/)–
 
Qρ/(x)

|w – h| dz ≤ ε. (.)

From Lemma . we recall that h satisfies, for any  < θ < , the a priori estimate (note
that Cpa = Cpa(n,N ,λ,L)≥ )

(θρ/)–
 
Qθρ/(x)

∣∣h – (h)z,θρ/ – (Dh)z,θρ/(x – x)
∣∣ dz

≤ Cpaθ
(ρ/)–

 
Qρ/(x)

∣∣h – (h)z,ρ/ – (Dh)z,ρ/(x – x)
∣∣ dz

≤ Cpaθ

[
(ρ/)–

( 
Qρ/(x)

|h| + ∣∣(h)z,ρ/∣∣
)
+

∣∣(Dh)z,ρ/∣∣
]

≤ Cpaθ

[
(ρ/)–

 
Qρ/(x)

|h| dz +
 
Qρ/(x)

|Dh| dz
]

≤ Cpaθ
.

Here we have used that |(h)z,ρ/| ≤ ffl
Qρ/(x)

|h| dz, and |(Dh)z,ρ/| ≤ ffl
Qρ/(x)

|Dh| dz
and (.). Combining the previous estimate with (.), we deduce

(θρ/)–
 
Qθρ/(x)

∣∣w – (h)z,θρ/ – (Dh)z,θρ/(x – x)
∣∣ dz

≤ (θρ/)–

×
[ 

Qθρ/(x)
|w – h| dz +

 
Qθρ/(x)

∣∣h – (h)z,θρ/ – (Dh)z,θρ/(x – x)
∣∣ dz]

≤ Cpa
(
θ–n–ε + θ). (.)

Recalling back (u – l) via w = u–l
γ
, we arrive at

(θρ)–
 
Qθρ/(x)

∣∣u – l – γ
(
(h)z,θρ/ + (Dh)z,θρ/(x – x)

)∣∣ dz
≤ Cpa

(
θ–n–ε + θ)γ . (.)

Next we use the minimizing property of lz,θρ/

(θρ/)–
 
Qθρ/(z)

|u – lz,θρ/| dz ≤ Cpa
(
θ–n–ε + θ)γ . (.)

At the same time, from (.), we can see that: For  ≤ m ≤ n +  (n ≥ ), we have  <
m <m∗, where

m∗ =

⎧⎨
⎩

m(n+)
n–m+ if n +  >m,

m∗ >m ifm = n + 

with 
m∗ < 

m < 
 . Therefore we can find s ∈ [, ] such that 

m = –s
 + s

m∗ .
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Using Sobolev’s, Caccioppoli’s and Young’s inequalities together with (.), we have

(θρ/)–m
 
Qθρ/(z)

∣∣u – l – γ
(
(h)z,θρ/ + (Dh)z,θρ/(x – x)

)∣∣m dz

≤ (θρ/)–ms
[
(θρ/)–

 
Qθρ/(z)

∣∣u – l – γ
(
(h)z,θρ/ + (Dh)z,θρ/(x – x)

)∣∣ dz] (–s)m


·
[ 

Qθρ/(z)

∣∣u – l – γ
(
(h)z,θρ/ + (Dh)z,θρ/(x – x)

)∣∣m∗
dz

] ms
m∗

≤ [
Cpa

(
θ–n–ε + θ)γ ] (–s)m



[ 
Qθρ/(z)

∣∣Du –Dl – γ (Dh)z,θρ/
∣∣m dz

]s

. (.)

Using Lemma ., Caccioppoli’s inequality, (.), (.), (.) and Young’s inequality, we
obtain

(ˆ
Qθρ/(z)

∣∣Du –Dl – γ (Dh)z,θρ/
∣∣m dz

) 
m

= |Qθρ/| 
m

[( 
Qθρ/(z)

∣∣Du –Dl – (Dh)z,ρ
∣∣m dz

) 
m

+
( 

Qθρ/(z)

∣∣(Dh)z,ρ – γ (Dh)z,θρ/
∣∣m dz

) 
m

]

≤ |Qθρ/| 
m

[(
Ccac

(
� +H(M)(θρ)β

)) 
m

+
(
n(n + )
(θρ)

 
Qθρ/(z)

∣∣u – l – γ (Du)z,ρ(x – x)
∣∣ dz) 


]

≤ |Qθρ/| 
m

[(
Ccac

(
� +H(M)(θρ)β

)) 
m +


√
n(n + )
θρ

�

]

≤ |Qθρ/| 
m θ–[C̃ 

m
cac + 

√
n(n + )

]
γ


m . (.)

From (.) and (.), we conclude

(θρ/)–m
 
Qθρ/(z)

∣∣u – l – γ
(
(h)z,θρ/ + (Dh)z,θρ/(x – x)

)∣∣m dz

≤ C

[
( – s)m


(
θ–n–ε + θ)γ  +

sm
m∗ θ– (n+m)m∗

m γ
m∗
m

]

≤ Cθ
γ , (.)

provided γ (m∗–m)/m ≤ θ+(n+m)m∗/m and we fixed ε = θn+. That it is to say,

(θρ/)–m
 
Qθρ/(z)

|u – lz,θρ/|m dz ≤ Cθ
γ . (.)
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Combining (.) and (.) yields the desired estimate

�(z, θρ/, lz,θρ/) ≤ Cθ
(�(z,ρ, l) + δ–H(M)ρβ)

(.)

for C = C + Cpa. Given β < α < , we choose  < θ <  such that αCθ
 ≤ θα

with θ = θ (n,m,N ,λ,L,α,β). This also fixes the constants ε = ε(n,m,N ,λ,L,α,β) and
δ = δ(n,m,N ,λ,L,α,β) ∈ (, ]. Thus we have shown Lemma .. �

In the following, we want to iterate Lemma .. That is,

Lemma . For M >  and Qρ(z) ⊂⊂QT , suppose that the conditions

(i) |lz,ρ | +
∣∣(Dl)z,ρ∣∣ ≤ M;

(ii) ρ ≤ ρ(M);

(iii) �̃(ρ)≤ �̃(M)

are satisfied. Then, for every j ∈ N , we have

�̃
(
z, θ jρ, lz,θρ

) ≤ θαj�̃(z,ρ, lz,ρ) +C(M)
(
θ jρ

)βH(M)

and

|lz,θ jρ | +
∣∣(Dl)z,θ jρ∣∣ ≤ M.

Moreover, the limit

�z = lim
j→∞(Du)z,θ jρ/

exists, and the estimate

(
 + |Dl|)m–



 
Qr(z)

|Du – �z | dz +
 
Qr(z)

|Du – �z |m dz

≤ C
[(

r
ρ/

)α

�(z,ρ, lz,ρ) + rβH(M)
]

is valid for a constant C = C(n,N ,λ,α,L,β ,M,m).

Proof For fixed z we shall denote lz,ρ ≡ lρ . For given M >  (and β < α < ), we deter-
mine δ = δ(M), θ = θ (M) and C = C(M) according to Lemma .. Then we can find
�̃(M) >  sufficiently small such that

ω
(
M + , �̃(M)

)
+

√
�̃(M) ≤ δ


(.)

and

�̃(M) ≤ Mθn+( – θα)

(n + )
. (.)
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Given this, we can also find ρ(M) ∈ (, ] so small that, writing

C(M) =
C(M)
θβ – θα ,

we have

C(M)ρ(M)βH(M) ≤ min

{
δ


, �̃(M),

Mθn+( – θβ )

(n + )

}
. (.)

Now, suppose that the conditions (i), (ii) and (iii) are satisfied onQρ(z) ⊂QT . Then, for
j = , , , . . . , we shall show

(I)j �̃(z, θ jρ, lz,θρ) ≤ θαj�̃(z,ρ, lz,ρ) +C(M)(θ jρ)βH(M),

(II)j
∣∣lz,θ jρ(z)∣∣ + ∣∣(Dl)z,θ jρ∣∣ ≤ M.

Note first that (I)j combined with (ii), (iii) and (.) yields

(I)j �̃
(
θ jρ

) ≤ �̃(M).

Moreover, we have ρ ≤ ρ(M) ≤  and |lz,ρ | + |(Dl)z,ρ | ≤ M. There we can apply
Lemma . to conclude that (I) holds. Furthermore, using Lemma ., (iii) and (.),
we deduce

|lz,θρ | +
∣∣(Dl)z,θρ∣∣ ≤ M +

∣∣∣∣
 
Qθρ (z)

(u – uρ)dz
∣∣∣∣ +

[
n(n + )
(θρ)

 
Qθρ (z)

|u – lρ | dz
] 



≤ M +
[ 

Qθρ (z)
|u – lρ | dz

] 

+

[
n(n + )
(θρ)

 
Qθρ (z)

|u – lρ | dz
] 



≤ M +
 +

√
n(n + )√
θn+

�̃

 (z,ρ)

≤ M,

i.e., (II) holds. We now assume that (I)ι and (II)ι for ι = , , . . . , j –  hold. We can apply
Lemma . to calculate

�̃
(
θ jρ

) ≤ θαj�̃(ρ) +C(M)
(
θ jρ

)β
θ–β

j–∑
ι=

θ(α–β)ι

≤ θαj�̃(ρ) +
C(M)
θβ – θα

(
θ jρ

)β
= θαj�̃(ρ) +C(M)

(
θ jρ

)β ,
showing (I)j. To show (II)j we estimate

|lz,θ jρ | +
∣∣(Dl)z,θ jρ∣∣

≤ M +
j∑

ι=

[ 
Qθιρ (z)

|u – lθι–ρ | dz
] 


+

j∑
ι=

[
n(n + )
(θ ιρ)

 
Qθιρ (z)

|u – lθι–ρ | dz
] 
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≤ M +
 +

√
n(n + )√
θn+

j∑
ι=

�


(
z, θ ι–ρ

)

≤ M +
√
n(n + )√

θn+

j–∑
ι=

√
θαι�̃(ρ) +C(M)

(
θ ιρ

)β

≤ M +
n + √
θn+

(√
�̃(ρ)

 – θα
+

√
C(M)ρβ

 – θβ

)

≤ M.

Herewe have used in turn Lemma., the definition of�(θ ι–ρ) and (I)ι for ι = , , . . . , j–.
Since |Dlθ jρ | ≤ M. We are in a position to apply Theorem .. We obtain

�
(
θ jρ/, (Du)θ jρ/

) ≤ �
(
θ jρ, (Du)θ jρ

)
≤ Ccac(M)�̃

(
θ jρ

)
≤ Ccac(M)

(
θαj�̃(ρ) +C(M)

(
θ jρ

)β)
. (.)

We now consider  < r ≤ ρ/. We fix k ∈ N ∪ {} with θ k+ρ/ < r ≤ θ kρ/. Then the
previous estimate implies

�
(
r, (Du)r

)
≤ θ–n–

[(
 + |Dl|)m–



 
Q

θkρ/(z)

∣∣Du – (Du)θkρ/
∣∣ dz

+
 
Q

θkρ/(z)

∣∣Du – (Du)θkρ/
∣∣m dz

]

≤ θ–n–Ccac(M)
[
θαk�̃(ρ) +C(M)

(
θ kρ

)β]
≤ θ–n–Ccac(M)

[
θ–α

(
r

ρ/

)α

�̃(ρ) +C(M)βθ–βrβ
]

≤ θ–n––αCcac(M)
[(

r
ρ/

)α

�̃(ρ) +
(
C(M) + 

)
rβ

]

≤ Cdec(M)
[(

r
ρ/

)α

�̃(ρ) + rβ
]
.

Next, we show that ((Du)θ jρ/)j∈N is a Cauchy sequence in RnN . For K > j we deduce

∣∣(Du)θ jρ/ – (Du)θkρ/
∣∣ ≤

k∑
ι=j+

∣∣(Du)θιρ/ – (Du)θι–ρ/
∣∣

≤ √
θ–n–

k–∑
ι=j

[ 
θιρ/(z)

∣∣Du – (Du)θιρ/
∣∣ dz] 



=
√

θ–n–
k–∑
ι=j

√
�

(
θ ιρ/

)
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≤
√

θ–n–Ccac(M)
k–∑
ι=j

√
θαι�̃(ρ) +C(M)

(
θ ιρ

)β

≤
√

θ–n–Ccac(M)
k–∑
ι=j

(√
�̃(ρ)

 – θα
θαj +

√
C(M)ρβ

 – θβ

)
.

This proves the claim. Therefore the limit �z = limj→∞(Du)θ jρ/ ∈ RnN exists and from
the previous estimate, we infer (taking the limit k → ∞)

∣∣(Du)θ jρ/ – �z
∣∣ ≤ C(M)

√
θαj�̃(ρ) +

(
θ jρ

)β .
Combining this with (.), we arrive at

(
 + |�z |

)m–


 
θ jρ/

|Du – �z | dz +
 

θ jρ/
|Du – �z |m dz

≤ m–�
(
θ jρ/

)
+ 

∣∣(Du)θ jρ/ – �z
∣∣ + m–∣∣(Du)θ jρ/ – �z

∣∣m
≤ C(M)

(
θαj�̃(ρ) + ρβ)

.

For  < r ≤ ρ/, we find k ∈N∪{}with θ k+ρ/ < r < θ kρ/. Then the previous estimate
implies

(
 + |�z |

)m–


 
Qr (z)

|Du – �z | dz +
 
Qr(z)

|Du – �z |m dz

≤ θ–n–
[(
 + |�z |

)m–


 
θkρ/

|Du – �z | dz +
 

θkρ/
|Du – �z |m dz

]

≤ θ–n–C(M)
[
θαk�̃(ρ) +

(
θ kρ

)β]
≤ C(M)

[(
r

ρ/

)α

�(ρ) + rβ
]
.

This proves the assertion of the lemma. �

An immediate consequence of the previous lemma and of isomorphism theorem of
Campanato-Da Prato [] is the following result.

Theorem . (Description of regularity points) Let u ∈ Lm(–T , ;W ,m(�,RN ))∩L∞(QT ;
RN ) be a weak solution to the system (.) under the assumptions (H)-(H) and (H′),
(H), and denote by � the singular set of u. Then � ⊂ � ∪ �, where

� =
{
z ∈QT : lim inf

ρ→
ρ–m

 
Qρ (z)

∣∣u – (u)z,ρ – (Du)z,ρ(x – x)
∣∣m dz > 

}

∪
{
z ∈ QT : lim inf

ρ→

 
Qρ (z)

∣∣Du – (Du)z,ρ
∣∣m dz > 

}
,

and

� =
{
z ∈QT : lim sup

ρ→

(∣∣(u)z,ρ∣∣ + ∣∣(Du)z,ρ∣∣) = ∞
}
.
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At last, we have the following.

Theorem . (Almost everywhere regularity) Let u ∈ Lm(–T , ;W ,m(�,RN )) ∩ L∞(QT ;
RN ) be a weak solution to the system (.) under the assumptions (H)-(H) and (H), (H),
and denote by � the singular set of u. Then � ⊂ � ∪ �, where � is as in Theorem .
and

� =
{
z ∈QT : lim inf

ρ→

 
Qρ (z)

∣∣Du – (Du)z,ρ
∣∣m dz > 

}

∪
{
z ∈QT : lim inf

ρ→

 
Qρ (z)

∣∣u – (u)z,ρ
∣∣m dz > 

}
.

Proof We start taking a point z(x, t) ∈ QT such that

lim inf
ρ→

 
Qρ (z)

∣∣Du – (Du)z,ρ
∣∣m dz = ,

lim inf
ρ→

 
Qρ (z)

∣∣u – (u)z,ρ
∣∣m dz = ,

(.)

and

sup
ρ>

∣∣(u)z,ρ∣∣ + sup
ρ>

∣∣(Du)z,ρ∣∣ ≤ M < ∞. (.)

The proof is complete if we show that such points are regularity points.
Step : a comparison estimate. Consider the unique weak solution v ∈ Lm(t – ρ, t;

W ,m(Bρ(x),RN )) of the initial boundary value problem

⎧⎨
⎩
´
Qρ (z)(v

iϕi
t –Aα

i (z, (u)z,ρ ,Dv)Dαϕi)dz = , ∀ϕ ∈ C∞
 (Qρ(z),RN ),

v = u, on Bρ(x) × {t – ρ} ∩ ∂Bρ(x)× (t – ρ, t).

Then the difference u – v satisfies
ˆ
Qρ (z)

[
(u – v)iϕi

t –
(
Aα
i (z,u,Du) –Aα

i
(
z, (u)z,ρ ,Dv

))
Dαϕi]dz

+
ˆ
Qρ (z)

Bi(z,u,Du)ϕi dz = 

for every ϕ ∈ C∞
 (Qρ(z),RN ). We now choose ϕ = χ (t)(u – v)i with χ ≡  for (–∞, s),

χ ≡  on (s + ε,∞), and χ (t) = (s + ε – t)/ε for s≤ t ≤ s + ε, where [s, s + ε] ∈ (t – ρ, t).
Then




ˆ
Qρ (z)

∂t
(|u – v|χ)

dz +



ˆ
Qρ (z)

|u – v|∂tχ dz

–
ˆ
Qρ (z)

(
Aα
i (z,u,Du) –Aα

i
(
z, (u)z,ρ ,Dv

))(
Dui –Dvi

)
χ dz

+
ˆ
Qρ (z)

Bi(z,u,Du)χ (t)(u – v)i dz = .
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Letting ε → , we easily obtain that for a.e. s ∈ (t – ρ, t)



∥∥u(·, s) – v(·, s)∥∥

L(Bρ (x))

+
ˆ
Bρ (x)×(t–ρ,t)

(
Aα
i
(
z, (u)z,ρ ,Du

)
–Aα

i
(
z, (u)z,ρ ,Dv

))
D(u – v)iχ dz

=
ˆ
Bρ (x)×(t–ρ,s)

(
Aα
i
(
z, (u)z,ρ ,Du

)
–Aα

i (z,u,Du)
)
D(u – v)i dz

+
ˆ
Bρ (x)×(t–ρ,s)

Bi(z,u,Du)(u – v)i dz

= .

The second term of the left-hand side of the previous equation can be estimated by the
use of monotonicity, i.e., (H). We therefore obtain



∥∥u(·, s) – v(·, s)∥∥

L(Bρ (x))
+ λ

(
 + |Dv| + |Du|)m–



ˆ
Bρ (x)×(t–ρ,s)

|Du –Dv| dz

≤
ˆ
Bρ (x)×(t–ρ,s)

(
Aα
i
(
z, (u)z,ρ ,Du

)
–Aα

i (z,u,Du)
)
D(u – v)i dz

+
ˆ
Bρ (x)×(t–ρ,s)

Bi(z,u,Du)(u – v)i dz

= I + II. (.)

To estimate the right-hand side, we use (H) which easily yields

∣∣Aα
i
(
z, (u)z,ρ ,Du

)
–Aα

i (z,u,Du)
∣∣

≤ Lθ
(

∣∣(u)z,ρ∣∣ + ∣∣u – (u)z,ρ

∣∣, ρ +
∣∣u – (u)z,ρ

∣∣)( + |Du|)m
 .

Using the previous estimate, Young’s inequality and the fact that θ ≤ , we have

|I| ≤ λ


(
 + |Dv| + |Du|)m–



ˆ
Bρ (x)×(t–ρ,s)

|Du –Dv| dz

+
L

λ

ˆ
Qρ (z)

θ
(

∣∣(u)z,ρ∣∣ + ∣∣u – (u)z,ρ

∣∣, ρ +
∣∣u – (u)z,ρ

∣∣)( + |Du|m)
dz.

Having combined the previous estimate with (.), we arrive at



∥∥u(·, s) – v(·, s)∥∥

L(Bρ (x))
+

λ


(
 + |Dv| + |Du|)m–



ˆ
Bρ (x)×(t–ρ,s)

|Du –Dv| dz

≤ L

λ

ˆ
Qρ (z)

θ
(

∣∣(u)z,ρ∣∣ + ∣∣u – (u)z,ρ

∣∣, ρ +
∣∣(u)z,ρ∣∣)( + |Du|m)

dz + II

=
L

λ
III + II. (.)

We shall provide on estimate for III . We denote εσ =
ffl
Qz (σ )

|u – (u)z,σ |dz, σ > .
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If we let Aσ
t ≡ At = {z ∈Qρ(z) : |u – (u)z,ρ | ≥ t}, then

|At| ≤ 
t

ˆ
Qρ (z)

∣∣u – (u)z,ρ
∣∣dz ≤ |Qρ |

t
ερ . (.)

We now split III

III =
ˆ
At

(· · · )dz +
ˆ
Qρ (z)\At

(· · · )dz = IV +V

and estimate IV and V . We have, using that θ ≤ , (.) and (.)

IV ≤ m–
ˆ
Qρ (z)

∣∣Du – (Du)z,ρ
∣∣m dz +

(
 + m–∣∣(Du)z,ρ∣∣m)|At|

≤ m–
ˆ
Qρ (z)

∣∣Du – (Du)z,ρ
∣∣m dz + m–( + M) |Qρ |

t
ερ .

From the definition of θ , we have

V ≤ K(M + t)(ρ + t)β
ˆ
Qρ (z)

(
 + |Du|m)

dz.

Noting that supQT u = V , we have

II ≤ m–aV
ˆ
Qρ (z)

∣∣Du – (Du)z,ρ
∣∣m dz +

ˆ
Qρ (z)

|u – v|
ρ dz

+
(
m–aMm + b

)
αnρ

n+ρ.

We now choose the parameter t carefully, i.e., t = √
ερ and let ε suitably small. Then

connecting the previous estimates for II , III , IV andV to (.), we easily have the estimate
we were interested in, that is,

(
 + |Dv|)m–



 
Qρ (z)

|Du –Dv| dz +
 
Qρ (z)

|Du –Dv|m dz

+ sup
t–ρ≤t≤t

ρ–
 
Bρ (x)

∣∣u(x, t) – v(x, t)
∣∣ dz

≤ C
[
K(M +√

ερ)(ρ +√
ερ)β + 

] 
Qρ (z)

∣∣Du – (Du)z,ρ
∣∣m dz

+C
[
K(M +√

ερ)(ρ +√
ερ)β +√

ερ
](
 +Mm)

+Cρ(aMm + b
)

= S(ρ). (.)

In particular, we see that

ρ–
 
Qρ (z)

∣∣u(z) – v(z)
∣∣ dz ≤ sup

t–ρ≤t≤t
ρ–

 
Bρ (x)

∣∣u(x, t) – v(x, t)
∣∣ dx

≤ S(ρ). (.)
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We observe that, as a consequence of (.) and (.), we have that

lim inf
ρ 	→

S(ρ) = . (.)

Step : A Poincare-type inequality. Let us define

ṽ = v – (Du)z,ρ(x – x).

Therefore ṽ solves
ˆ
Qρ (z)

(
ṽiϕi

t – Ãα
i (Dṽ)Dαϕi)dz = , ∀ϕ ∈ C∞


(
Qρ(z),RN)

,

where Ãα
i (p) = Aα

i (z, (u)z,ρ , (Dv)z,ρ + p) for every p ∈ RnN . From [], Theorem ., we
conclude that ṽ ∈W ,(t – ρ, t;W ,(Bρ(x),RN )) and that

ρ
 
Qρ (z)

|∂tv| dz = ρ
 
Qρ (z)

|∂t ṽ| dz ≤ C(λ,L)
 
Qρ (z)

|Dṽ| dz

= C(λ,L)
 
Qρ (z)

∣∣Dv – (Dv)z,ρ
∣∣ dz

≤ C(λ,L)
[ 

Qρ (z)
|Du –Dv| dz +

 
Qρ (z)

∣∣Du – (Dv)z,ρ
∣∣ dz].

In view of the previous estimate, using the Poincare inequality for v and (.), we find

ρ–m
 
Qρ (z)

∣∣v – (v)z,ρ – (Dv)z,ρ(x – x)
∣∣m dz

≤ C
[ 

Qρ (z)

∣∣Dv – (Dv)z,ρ
∣∣m dz + ρm

 
Qρ (z)

|∂tv|m dz
]

≤ C
[ 

Qρ (z)
|Du –Dv|m dz +

 
Qρ (z)

∣∣Du – (Du)z,ρ
∣∣m dz

]

≤ C
[
S(ρ) +

 
Qρ (z)

∣∣Du – (Du)z,ρ
∣∣m dz

]
,

where C = C(n,λ,L).
Finally, by comparison, we get the Poincare inequality for u via (.) and the previous

estimate

ρ–m
 
Qρ (z)

∣∣u – (u)z,ρ – (Du)z,ρ(x – x)
∣∣m dz

≤ C
[
ρ–m

 
Qρ (z)

|u – v|m dz +
 
Qρ (z)

|Du –Dv|m dz

+ ρ–m
 
Qρ (z)

∣∣v – (v)z,ρ – (Du)z,ρ(x – x)
∣∣m dz

]

≤ C
[
S(ρ) +

 
Qρ (z)

∣∣Du – (Du)z,ρ
∣∣m dz

]
(.)

for a constant C = C(n,λ,L).
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Step : Conclusion. From the previous estimate and (.), the assertion readily follows.
Indeed if z ∈ QT satisfies (.) and (.), then we have

lim inf
ρ→

ρ–m
 
Qρ (z)

∣∣u – (u)z,ρ – (Du)z,ρ(x – x)
∣∣m dz = ,

therefore z is a regular point in view of Theorem .. �
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