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Abstract
In this paper, we consider some nonlinear pseudo-parabolic
Benjamin-Bona-Mahony-Burgers (BBMB) equations. These equations are of a class of
nonlinear pseudo-parabolic or Sobolev-type equations ut –�ut –α�u = f (x,u,∇u), α
is a fixed positive constant, arising from the mathematical physics. The tanh method
with the aid of symbolic computational system is employed to investigate exact
solutions of BBMB-type equations and the exact solutions are found. The results
obtained can be viewed as verification and improvement of the previously known
data.
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1 Introduction
The partial differential equations of the form

ut – η�ut – α�u = f (x,u,∇u) ()

arise inmany areas of mathematics and physics, where u = u(x, t), x ∈ � ⊂R
n, t ≥ , η and

α are non-negative constants, � denotes the Laplace operator acting on the space vari-
ables x. Equations of type () with only one time derivative appearing in the highest-order
term are called pseudo-parabolic and they are a special case of Sobolev equations. They
are characterized by derivatives of mixed type (i.e., time and space derivatives together)
appearing in the highest-order terms of the equation and were studied by Sobolev [].
Sobolev equations have been used to describe many physical phenomena [–]. Equation
() arises as a mathematical model for the unidirectional propagation of nonlinear, disper-
sive, long waves. In applications, u is typically the amplitude or velocity, x is proportional
to the distance in the direction of propagation, and t is proportional to elapsed time [].
An important special case of () is the Benjamin-Bona-Mahony-Burgers (BBMB) equa-

tion

–uxxt + ut – αuxx + ( + u)ux = . ()
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It has been proposed in [] as a model to study the unidirectional long waves of small
amplitudes in water, which is an alternative to the Korteweg-de Vries equation of the form

uxxx + ut – uxx + uux = . ()

The BBMB equation has been tackled and investigated bymany authors. For more details,
we refer the reader to [–] and the references therein.
In [], a generalized Benjamin-Bona-Mahony-Burgers equation

–uxxt + ut – αuxx + βux +
(
g(u)

)
x =  ()

has been considered and a set of new solitons, kinks, antikinks, compactons, and Wadati
solitons have been derived using by the classical Liemethod, whereα is a positive constant,
β ∈R, and g(u) is a C-smooth nonlinear function. Equation () with the dissipative term
αuxx arises in the phenomena for both the bore propagation and the water waves.
Peregrine [] and Benjamin, Bona, and Mahony [] have proposed equation () with

the parameters g(u) = uux, α = , and β = . Furthermore, Benjamin, Bona, and Mahony
proposed equation () as an alternative regularized long-wave equation with the same
parameters.
Khaled, Momani, and Alawneh obtained explicit and numerical solutions of BBMB

equation () by using the Adomian’s decomposition method [] .
Tari and Ganji implemented variational iteration and homotopy perturbation methods

obtaining approximate explicit solutions for () with g(u) = u
 [] and El-Wakil, Abdou,

and Hendi used another method (the exp-function) to obtain the generalized solitary so-
lutions and periodic solutions of this equation [].
In addition, we consider g(u) = u

 and obtain analytic solutions in a closed form.
The aim of this work is twofold. First, it is to obtain the exact solutions of the Benjamin-

Bona-Mahony-Burgers (BBMB) equation and the generalized Benjamin-Bona-Mahony-
Burgers equation with g(u) = uux, g(u) = u

 , g(u) =
u
 ; and second, it is to show that the

tanh method can be applied to obtain the solutions of pseudo-parabolic equations.

2 Outline of the tanhmethod
Wazwaz has summarized the tanh method [] in the following manner:
(i) First, consider a general form of the nonlinear equation

P(u,ut ,ux,uxx, . . .) = . ()

(ii) To find the traveling wave solution of equation (), the wave variable ξ = x – Vt is
introduced so that

u(x, t) =U(μξ ). ()

http://www.boundaryvalueproblems.com/content/2012/1/144
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Based on this, one may use the following changes:

∂

∂t
= –V

d
dξ

,

∂

∂x
= μ

d
dξ

,

∂

∂x
= μ d

dξ  ,

∂

∂x
= μ d

dξ 

()

and so on for other derivatives. Using () changes PDE () to an ODE

Q
(
U ,U ′,U ′′, . . .

)
= . ()

(iii) If all terms of the resulting ODE contain derivatives in ξ , then by integrating this
equation and by considering the constant of integration to be zero, one obtains a simplified
ODE.
(iv) A new independent variable

Y = tanh(μξ ) ()

is introduced that leads to the change of derivatives:

d
dξ

= μ
(
 – Y ) d

dY
,

d

dξ  = –μY
(
 – Y ) d

dY
+μ( – Y ) d

dY  , ()

d

dξ  = μ( – Y )(Y  – 
) d
dY

– μY
(
 – Y ) d

dY  +μ( – Y ) d

dY  ,

where other derivatives can be derived in a similar manner.
(v) The ansatz of the form

U(μξ ) = S(Y ) =
M∑
k=

akY k +
M∑
k=

bkY–k ()

is introduced, where M is a positive integer, in most cases, that will be determined. If
M is not an integer, then a transformation formula is used to overcome this difficulty.
Substituting () and () into ODE () yields an equation in powers of Y .
(vi) To determine the parameter M, the linear terms of highest order in the resulting

equation with the highest-order nonlinear terms are balanced. With M determined, one
collects all the coefficients of powers ofY in the resulting equationwhere these coefficients
have to vanish. This will give a system of algebraic equations involving the ak and bk (k =
, . . . ,M), V , and μ. Having determined these parameters, knowing that M is a positive
integer in most cases, and using (), one obtains an analytic solution in a closed form.
Throughout the work, Mathematica or Maple is used to deal with the tedious algebraic

operations.
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3 The Benjamin-Bona-Mahony-Burgers (BBMB) equation
The Benjamin-Bona-Mahony-Burgers (BBMB) equation is given by

–uxxt + ut – αuxx + ( + u)ux = , ()

where α is a positive constant. Using the wave variable ξ = x–Vt carries () into the ODE

(–V + )U +VU ′′ – αU ′ +


U = . ()

Balancing U with U ′′ in () gives M = . The tanh method admits the use of the finite
expansion

U(ξ ) = S(Y ) =
∑

k=

akY k +
∑

k=

bkY–k , ()

where Y = tanh(μξ ). Substituting () into (), collecting the coefficients of Y , and setting
it equal to zero, we find the system of equations

Y : Vμa + a = ,

Y : Vaμ + αaμ + aa = ,

Y : – Vaμ + αμa + a + a – Va + aa = ,

Y : – Vaμ – αaμ + a – Va + ba + aa = ,

Y : a – Va + ba + ba + a

+ Vμb + Vμa – αμb – αμa = ,

Y : – Vbμ – αbμ + b – Vb + ba + ba = ,

Y : – Vbμ + αμb + b + b – Vb + ba = ,

Y : Vbμ + αbμ + bb = ,

Y : b + Vμb = .

()

Using Maple gives nine sets of solutions

a =
α – μ

μ
, a = –

αμ


, a = –

αμ


,

b = , b = , V =
α

μ
, μ =

– +
√
 + α

α
,

a =
α – μ

μ
, a = –

αμ


, a = –

αμ


,

b = , b = , V =
α

μ
, μ =

 +
√
 – α

α
, α ≤ 


,

a =
α – μ

μ
, a = b = –

αμ


, a = b –

αμ


,

V =
α

μ
, μ =

– +
√
 + α

α
,
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a =
α – μ

μ
, a = b = –

αμ


, a = b = –

αμ


,

V =
α

μ
, μ =

 +
√
 – α

α
, α ≤ 


,

a =
α – μ

μ
, a = b = –

αμ


, a = –

αμ


,

b = –
αμ


, V =

α

μ
, μ =

– +
√
 + α

α
,

()

a =
α – μ

μ
, a = a = , b = –

αμ


, b = –

αμ


,

V =
α

μ
, μ =

 +
√
 – α

α
, α ≤ 


,

a =
α – μ

μ
, a = a = , b = –

αμ


, b = –

αμ


,

V =
α

μ
, μ =

 –
√
 – α

α
, α ≤ 


,

a =
α – μ

μ
, a = b = –

αμ


, a = b = –

αμ


,

V =
α

μ
, μ =

 –
√
 – α

α
, α ≤ 


,

a =
α – μ

μ
, a = –

αμ


, a = –

αμ


,

b = b = , V =
α

μ
, μ =

 –
√
 – α

α
, α ≤ 


.

These sets give the following solutions respectively:

u(x, t) =
α – μ

μ
–
αμ


tanhμ(x –Vt) –

αμ


tanh μ(x –Vt),

u(x, t) =
α – μ

μ
–
αμ


tanhμ(x –Vt) –

αμ


tanh μ(x –Vt),

u(x, t) =
α – μ

μ
–
αμ


tanhμ(x –Vt) –

αμ


tanh μ(x –Vt)

–
αμ


cothμ(x –Vt) –

αμ


coth μ(x –Vt),

u(x, t) =
α – μ

μ
–
αμ


tanhμ(x –Vt) –

αμ


tanh μ(x –Vt)

–
αμ


cothμ(x –Vt) –

αμ


coth μ(x –Vt),

u(x, t) =
α – μ

μ
–
αμ


tanhμ(x –Vt) –

αμ


tanh μ(x –Vt) ()

–
αμ


cothμ(x –Vt) –

αμ


coth μ(x –Vt),

u(x, t) =
α – μ

μ
–
αμ


cothμ(x –Vt) –

αμ


coth μ(x –Vt),

http://www.boundaryvalueproblems.com/content/2012/1/144
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u(x, t) =
α – μ

μ
–
αμ


cothμ(x –Vt) –

αμ


coth μ(x –Vt),

u(x, t) =
α – μ

μ
–
αμ


tanhμ(x –Vt) –

αμ


tanh μ(x –Vt)

–
αμ


cothμ(x –Vt) –

αμ


coth μ(x –Vt),

u(x, t) =
α – μ

μ
–
αμ


tanhμ(x –Vt) –

αμ


tanh μ(x –Vt).

If we accept α = , then we obtain solutions

u(x, t) = –


–


tanh




(
x –



t
)
–


tanh




(
x –



t
)
,

u(x, t) = –



–


tanh




(
x –



t
)
–




tanh



(
x –



t
)
,

u(x, t) =



–


tanh




(
x –



t
)
–




tanh



(
x –



t
)
,

u(x, t) = –


–


coth




(
x –



t
)
–


coth




(
x –



t
)
,

u(x, t) = –



–


coth




(
x –



t
)
–




coth



(
x –



t
)
,

u(x, t) =



–


coth




(
x –



t
)
–




coth



(
x –



t
)
,

u(x, t) = –



–



tanh



(
x –



t
)
–




tanh



(
x –



t
)

–



coth



(
x –



t
)
–




coth



(
x –



t
)
,

u(x, t) =


–




tanh



(
x –



t
)
–




tanh



(
x –



t
)

–



coth



(
x –



t
)
–




coth



(
x –



t
)
,

u(x, t) = –



–


tanh




(
x –



t
)
–




tanh



(
x –



t
)

–


coth




(
x –



t
)
–




coth



(
x –



t
)
.

()

4 The generalized Benjamin-Bona-Mahony-Burgers equation
We consider the generalized Benjamin-Bona-Mahony-Burgers equation

–uxxt + ut – αuxx + βux +
(
g(u)

)
x = , ()

where α is a positive constant and β ∈R.
Case . g(u) = uux.
Using the wave variable ξ = x –Vt carries () into the ODE

–VU +VU ′′ – αU ′ + βU +UU ′ = . ()

http://www.boundaryvalueproblems.com/content/2012/1/144
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Balancing U ′ with UU ′ in () givesM = . Using the finite expansion

U(ξ ) = S(Y ) =
∑

k=

akY k +
∑

k=

bkY–k , ()

we find the system of equations

Y : μa – Vμa = ,

Y : μaα –μaa = ,

Y : aβ +μa –Va – Vμa = ,

Y : aβ –Va –μaα –μbα +μaa +μab = , ()

Y : bβ +μb –Vb – Vμb = ,

Y : μbα –μab = ,

Y : Vμb –μb = .

Maple gives three sets of solutions

a = α, a = , b = μβ , V = β , μ = k,

a = α, a = μβ , b = , V = β , μ = k, ()

a = α, a = μβ , b = μβ , V = β , μ = k,

where k is left as a free parameter. These give the following solutions:

u(x, t) = α + kβ cothk(x – βt),

u(x, t) = α + kβ tanhk(x – βt), ()

u(x, t) = α + kβ tanhk(x – βt) + kβ cothk(x – βt).

Case . g(u) = u
 .

Using the wave variable ξ = x–Vt, then by integrating this equation and considering the
constant of integration to be zero, we obtain

(V – β)U –VU ′′ + αU ′ +


U = . ()

Balancing the second termwith the last term in () givesM = .Using the finite expansion

U(ξ ) = S(Y ) =
∑

k=

akY k +
∑

k=

bkY–k , ()

http://www.boundaryvalueproblems.com/content/2012/1/144
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we find the system of equations

Y : a – Vμa = ,

Y : Vaμ + αaμ – aa = ,

Y : Vaμ – αμa + a + Va – βa + aa = ,

Y : Vaμ + αaμ + Va – βa + ba + aa = ,

Y : Va – βa + ba + ba + a

– Vμb – Vμa + αμb + αμa = ,

Y : Vbμ + αbμ + Vb – βb + ba + ba = ,

Y : Vbμ – αμb + b + Vb – βb + ba = ,

Y : Vbμ + αbμ – bb = ,

Y : b – Vμb = .

()

Using Maple, we obtain nine sets of solutions

a =
μβ – α

μ
, a =

αμ


, a =

αμ


, b = b = ,

V =
α

μ
, μ =

β +
√
β – α

α
,

α

β ≤ 


,

a =
μβ – α

μ
, a =

αμ


, a =

αμ


, b = b = ,

V =
α

μ
, μ =

β –
√
β – α

α
,

α

β ≤ 


,

a =
μβ – α

μ
, a =

αμ


, a =

αμ


, b = b = ,

V =
α

μ
, μ =

–β +
√
β + α

α
,

a =
μβ – α

μ
, a = b =

αμ


, a = b =

αμ


,

V =
α

μ
, μ =

–β +
√
β + α

α
,

a =
μβ – α

μ
, a = b =

αμ


, a = b =

αμ


,

V =
α

μ
, μ =

β +
√
β – α

α
,

α

β ≤ 


,
()

a =
μβ – α

μ
, a = b =

αμ


, a = b =

αμ


,

V =
α

μ
, μ =

β –
√
β – α

α
,

α

β ≤ 


,

a =
μβ – α

μ
, a = a = , b =

αμ


, b =

αμ


,

http://www.boundaryvalueproblems.com/content/2012/1/144
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V =
α

μ
, μ =

–β +
√
β + α

α
,

a =
μβ – α

μ
, a = a = , b =

αμ


, b =

αμ


,

V =
α

μ
, μ =

β +
√
β – α

α
,

α

β ≤ 


,

a =
μβ – α

μ
, a = a = , b =

αμ


, b =

αμ


,

V =
α

μ
, μ =

β –
√
β – α

α
,

α

β ≤ 


.

These sets give the solutions

u(x, t) =
μβ – α

μ
+
aμ


tanhμ(x –Vt) +
aμ


tanh μ(x –Vt),

u(x, t) =
μβ – α

μ
+
aμ


tanhμ(x –Vt) +
aμ


tanh μ(x –Vt),

u(x, t) =
μβ – α

μ
+
aμ


tanhμ(x –Vt) +
aμ


tanh μ(x –Vt),

u(x, t) =
μβ – α

μ
+
aμ


tanhμ(x –Vt) +
aμ


tanh μ(x –Vt)

+
aμ


cothμ(x –Vt) +
aμ


coth μ(x –Vt),

u(x, t) =
μβ – α

μ
+
aμ


tanhμ(x –Vt) +
aμ


tanh μ(x –Vt)

+
aμ


cothμ(x –Vt) +
aμ


coth μ(x –Vt),

u(x, t) =
μβ – α

μ
+
aμ


tanhμ(x –Vt) +
aμ


tanh μ(x –Vt)

+
aμ


cothμ(x –Vt) +
aμ


coth μ(x –Vt),

u(x, t) =
μβ – α

μ
+
aμ


cothμ(x –Vt) +
aμ


coth μ(x –Vt),

u(x, t) =
μβ – α

μ
+
aμ


cothμ(x –Vt) +
aμ


coth μ(x –Vt),

u(x, t) =
μβ – α

μ
+
aμ


cothμ(x –Vt) +
aμ


coth μ(x –Vt).

()

Case . g(u) = u
 .

Using the wave variable ξ = x–Vt, then by integrating this equation once and consider-
ing the constant of integration to be zero, we obtain

–VU + VU ′′ – αU ′ + βU +U = . ()

http://www.boundaryvalueproblems.com/content/2012/1/144
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Balancing U ′′ with U in () givesM = . Using the finite expansion

U(ξ ) = S(Y ) =
∑

k=

akY k +
∑

k=

bkY–k , ()

we find the system of equations

Y : a + Vaμ = ,

Y : aa + αμa = ,

Y : aβ + aa + ab – Va – Vaμ = ,

Y : aβ – Va + a – aαμ – bαμ + aab = , ()

Y : bβ + ab + ab – Vb – Vbμ = ,

Y : ab + αμb = ,

Y : b + Vbμ = .

Solving the resulting system, we find the following sets of solutions with α

β ≤ 
 :

a =
√

αμ, a = , b = –
√

αμ,

V =
α(β +μα)

α – μβ
, μ = –

β +
√
β – α

α
, μ > ,

a = –
√

αμ, a = , b =
√

αμ,

V =
α(β +μα)

α – μβ
, μ = –

β +
√
β – α

α
, μ > ,

a = –
√
–αμ, a = , b =

√
–αμ,

V = –
α(–β +μα)
(α + μβ)

, μ =
β +

√
β – α

α
, μ < ,

a =
√
–αμ, a = , b = –

√
–αμ,

V = –
α(–β +μα)
(α + μβ)

, μ =
β +

√
β – α

α
, μ < ,

a = –
√
–αμ, a =

√
–αμ, b = ,

V = –
α(–β +μα)
(α + μβ)

, μ =
β +

√
β – α

α
, μ < ,

a =
√
–αμ, a = –

√
–αμ, b = ,

V = –
α(–β +μα)
(α + μβ)

, μ =
β +

√
β – α

α
, μ < ,

()

a =
√

αμ, a = –
√

αμ, b = ,

V =
α(β +μα)
(α – μβ)

, μ = –
β +

√
β – α

α
, μ > ,

a = –
√

αμ, a =
√

αμ, b = ,

http://www.boundaryvalueproblems.com/content/2012/1/144
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V =
α(β +μα)
(α – μβ)

, μ = –
β +

√
β – α

α
, μ > ,

a =
√
–αμ, a = b = –



√
–αμ,

V = –
αμ

(α – μβ)
, μ =

β +
√
β – α

α
, μ < ,

a = –
√
–αμ, a = b =



√
–αμ,

V = –
αμ

(α – μβ)
, μ =

β +
√
β – α

α
, μ < ,

a =
√
αμ, a = b = –



√
αμ,

V =
αμ

(α + μβ)
, μ = –

β +
√
β – α

α
, μ > ,

a = –
√
αμ, a = b =



√
αμ,

V =
αμ

(α + μβ)
, μ = –

β +
√
β – α

α
, μ > .

These in turn give the solutions

u(x, t) =
√

αμ –
√

αμ cothμ(x –Vt),

u(x, t) = –
√

αμ +
√

αμ cothμ(x –Vt),

u(x, t) = –
√
–αμ +

√
–αμ cothμ(x –Vt),

u(x, t) =
√
–αμ –

√
–αμ cothμ(x –Vt),

u(x, t) = –
√
–αμ +

√
–αμ tanhμ(x –Vt),

u(x, t) =
√
–αμ –

√
–αμ tanhμ(x –Vt),

u(x, t) =
√
–αμ –

√
–αμ tanhμ(x –Vt),

u(x, t) = –
√
–αμ +

√
–αμ tanhμ(x –Vt),

u(x, t) =
√
–αμ –



√
–αμ tanhμ(x –Vt) –



√
–αμ cothμ(x –Vt),

u(x, t) = –
√
–αμ +



√
–αμ tanhμ(x –Vt) +



√
–αμ cothμ(x –Vt),

u(x, t) =
√
αμ –



√
αμ tanhμ(x –Vt) –



√
αμ cothμ(x –Vt),

u(x, t) = –
√
αμ +



√
αμ tanhμ(x –Vt) +



√
αμ cothμ(x –Vt).

()

5 Conclusion
In summary, we implemented the tanhmethod to solve some nonlinear pseudo-parabolic
Benjamin-Bona-Mahony-Burgers equations and obtained new solutions which could not
be attained in the past. Besides, we have seen that the tanh method is easy to apply and
reliable to solve the pseudo-parabolic and the Sobolev-type equations.
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