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Abstract

The triangular integrals for 2-, 3- and 4-variable functions are respectively and
precisely defined as the single limits of double, triple, and quadruple sums in detail.
A corollary of the divergence theorem in each dimension is useful to determine the
triangular integral value. The indices of the sequence of the integrand must coincide
with those of the corresponding integral variable to calculate the correct triangular
integral value. In a triangular triple integral, one kind of two sets of increments is
inappropriate for the convergence of numerical values, but the other kind is able to
calculate numerical values by a computer algebra system.

1 Introduction

The primary theme of this article is a double integral for a 2-variable function p = p(x, y)
in a domain D on the 2D plane. A double integral is usually regarded as a rectangular
double integral. The calculation process of the rectangular double integral [1, 2] is con-
ventionally defined as the double limits at infinity of double independent sums, n — oo
fori=1,2,...,nand k > oo forj=1,2,...,k, of rectangularly divided areas by

n k
//Dp(x,y) dxdy = ngr&;klggo jzzlp(xi,yj)Axiij, (1.1)

where Ax; = x; —x;_; and Ay; = y; — y_1. On the other hand, a triangle mesh or triangu-
lar mesh is widely used in the computer graphics. In addition to introducing triangular
elements in the finite element method [3], a combination of a triangular area method and
double dependent series was applied to sweep all of the area [4]. Proenca and Filipe showed
the advantage of a triangular region in comparison with rectangular one for a finite area
in real-time face detection. They only investigated a finite sum of finite triangular areas,
but our theory of the triangular integral [5, 6] treats infinite sum of infinitesimal trian-
gular areas. Moreover, it involves the total differential and the antisymmetric property
[7]. The calculation process of the triangular double integral on the 2D plane, where tri-
angular double integral is expressed as (2.36), has not been defined even in the previous
article [6]. A corollary of the divergence theorem on the 2D plane is useful to determine
the triangular double integral value. The indices of the sequence of the integrand must co-
incide with those of the corresponding integral variable to calculate the correct triangular
integral value. The calculation process of the triangular double integral for a 2-variable
function on the 2D plane is precisely defined as the single limit of double dependent sums
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by (2.30) in Definition 3. Applying Definition 3, it is able to calculate numerical values by
a computer algebra system in Example 1.

The secondary theme of this article is a triple integral for a 3-variable function g =
q(x,y,z) in a domain D in the 3D space. A triple integral is usually regarded as a rect-
angular triple integral. The calculation process of the rectangular triple integral is con-
ventionally defined as the triple limits at infinities of triple independent sums, n — oo for
i=12,...,nand k > oo forj=1,2,...,kand m — oo for [ = 1,2,...,m, of rectangularly
divided volumes by

n k m
x,9,2)dxdydz = lim lim lim X, Vi, 21) Ax; Ay Az, 1.2
//‘./;q( 7 ) Y n—00 P} k—)oo]X:I:maoolgl:q( »Jj l) iR ! ( )

where Ax; = x; —x;_1, Ay; = y; — yj-1, and Az; = z; — z;_1. As shown in the previous article
[6], a triangular triple integral can be expressed as (3.65). A corollary of the divergence
theorem in the 3D space is useful to determine the triangular triple integral value. In this
calculation process of the triangular triple integral, new difficulty has arisen. For the inte-
grand of the divergence theorem in the 3D space, there two alternative ways of decompo-
sition of two kinds of double sequences (X*);x and (X*)i; for u =1,2,3 and j=1,2,...,k
and k =1,2,...,n.One way is used in the previous article [6], the other way is used as (3.39)
and (3.43) in this article. One kind of the two sets of increments {A;(x");0, Ap(x");} and
{Ai(x")0,is Ap(x¥ )py) fory =1,2,3and i=1,2,...,jand j,h = 1,2,...,k used in the previous
article [6] is inappropriate for convergence of integral values since it is unable to calculate
numerical values by a computer algebra system in Example 2. However, the other kind of
two sets of increments

1. {Ap®)op Ai(x?)ix}, derived from (3.39),

2. {ARE )0, Ai(x? )k}, derived from (3.43)
fory =1,2,3andi=1,2,...,jand h=1,2,...,kand k = 1,2,...,n used in this article is able
to calculate numerical values by a computer algebra system in Example 2. We formulate
the divergence theorem in the 3D space and related corollary based on the appropriate two
sets of increments in this article. The calculation process of the triangular triple integral
for a 3-variable function in the 3D space is precisely defined as the single limit of triple
dependent sums by (3.52) in Definition 6.

The tertiary theme of this article is quadruple integral for a 4-variable function w =
w(t,x,y,z) in a domain D in the 4D time-space. Quadruple integral is usually regarded
as the rectangular quadruple integral. The calculation process of the rectangular quadru-
ple integral is conventionally defined as the quadruple limits at infinities of quadruple
independent sums, s — oo for k=1,2,...,sand n — oo for i =1,2,...,n and k — oo for
j=12,...,kand m — oo for [ =1,2,...,m, of rectangularly divided hyper-volumes by

//// w(t,x,y,z)dt dxdy dz
D

n k
= lim ;nlin;o lim lim > wltn xi, i, 21) Atn, Axi Ay; Az, (1.3)

k— 00
i=1 j=1 I=1

where Aty =ty — ty, Ax; = % — i, Ayj =y — yi.1 and Az = z; — z;.1. The triangu-
lar quadruple integral is expressed as (4.110). A corollary of the divergence theorem in


http://www.advancesindifferenceequations.com/content/2014/1/89

Tokunaga Advances in Difference Equations 2014, 2014:89 Page 3 of 53
http://www.advancesindifferenceequations.com/content/2014/1/89

the 4D time-space is useful to determine the triangular quadruple integral value. Incre-
ments in the 4D time-space are replaced for the convergence of the triangular integral
value. One kind of six sets of increments {A,,(x*)o,0,m» A:(%%);0,6 An(x)j 1} {Am(%°)0,m,05
A ()i0,00 An ()i A ) n0,00 Aix) 1600 D) 1jnhs { A () m0,00 D (6 )10,60 An ()i}
{Am(%)0,m0, D)o An(6 )iz} and { A (x°)0,0,m> Ai(x )0, An(6°)njs} for 8 = 0,1,2,3
and m = 1,2,...,/ and i,/ = 1,2,...,j and j,h = 1,2,...,k used in the previous arti-
cle [6] is inappropriate since they are the extension of the inappropriate increments
{A(x)i0, Ap(x” )jn} and {A;(x")o,i Ap(x¥ )ny} for y =1,2,3 and i = 1,2,...,j and j, h =
1,2,...,k to in the 4D time-space. For the integrand of the divergence theorem in the
4D time-space, there are six alternative ways of decomposition of six kinds of triple
sequences (X“)/,k’[, (Xﬂ)j,l,k: (Xﬂ)l,j,kx (Xu)l,k,ﬁ (Xu)k,l,j; and (Xﬂ)k,/,l for M = 0,1,2,3 and
[=1,2,...,jand j=1,2,...,k and k = 1,2,...,n. Extending the appropriate set of the in-
crements { Ay (%" )o s, Ai(xY )ik} and {Ap (Y )0, Ai(x )i} for y =1,2,3and i = 1,2,...,jand
h=12,...,kand k=1,2,...,n in the 3D space to in the 4D time-space, another kind of
six sets of increments

L AR 005 Ai(x)ik,00 An(®)j g m}, derived from (4.92),
2. {AR)0,0 Ai(x)i0,k A (®)j i}, derived from (4.97),
3. {AREo0m A (x )0,ikr A (%°) ik}, derived from (4.98),
4. AAE) o0, A2 )0k A(*) i}, derived from (4.99),
5. A )n00, A (x )i0,i> A (%% )iemj}, derived from (4.100),
6. {An(x)10,05 Ai(x)ki,00 A (x® )k jm}, derived from (4.101)

for §=0,1,2,3 and m=1,2,...,land i = 1,2,...,jand h,j=1,2,...,k and k= 1,2,...,n
is derived in this article. This kind of six sets of increments is used in Definition 9. We
formulate the divergence theorem in the 4D time-space and related corollary based on the
appropriate 6 sets of increments in this article. The calculation process of the triangular
quadruple integral for a 4-variable function in the 4D time-space is precisely defined as
the single limit of quadruple dependent sums by (4.111) in Definition 9.

This article is basically about the calculation processes of the triangular double, triple
and quadruple integrals for 2-, 3- and 4-variable functions. This article also includes re-
visions of the divergence theorems and the related corollaries based on the appropriate
increments of the double and the triple sequences in the calculation processes of the tri-
angular triple and quadruple integrals for 3- and 4-variable functions.

This article is structured as follows. In Section 2, the divergence theorem of the triangu-
lar integral and a related corollary on the 2D plane are reviewed. The calculation process
of the triangular double integral for a 2-variable function is precisely defined in detail. In
Section 3, the divergence theorem of the triangular integral and a related corollary in the
3D space are revised based on the appropriate increments of the double sequence. The
calculation process of the triangular triple integral for a 3-variable function is precisely
defined in detail. In Section 4, the divergence theorem of the triangular integral and a
related corollary in the 4D time-space are revised based on the appropriate increments
of the triple sequence. The calculation process of the triangular quadruple integral for a
4-variable function is precisely defined in detail.

2 Triangular double integral on the 2D plane
One kind of combined and antisymmetric finite line element vectors on the 2D plane is
reviewed in Section 2.1. The triangular double integral for a 2-variable function is shown
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in Section 2.2. Component representation and an example of it for a 2-variable function
are shown in Section 2.3. In the following, the Cartesian coordinates are denoted x! = x
and x? = y.

2.1 One kind of finite line element vector on the 2D plane
For triangular double integral, the following increments of single sequence of points on
the 2D plane are introduced.

The increments of single sequence of points (x*)x are denoted as follows:

A(xa)k = (xa)k - (xa)k—l 2.1)

fore=1,2and k=1,2,...,n.

The finite line element vector A(l*); for @ =1,2 and k =1,2,...,n is introduced as

A()g = =A), (22)
The antisymmetric symbol on the 2D plane is
+1  fore'? =gy,
e =eup =31 fore? =gy, (2.3)

0  otherwise.

Using the antisymmetric symbol in (2.3), the antisymmetric finite line element vector

(Al )i for w=1,2and k =1,2,...,n is introduced as

(ALk = an A (1), (2.4)
and expressed as

(AL)k = =€ap A (%), (2.5)
where the index is summed over @ = 1, 2.

For example, we consider the case that the boundary of the domain is an ellipse:

x2 y2

T (2.6)

where a > 0 and b > 0. The following is shown in The curl theorem of a triangular inte-

gral [5].
The Cartesian coordinates of the sequence of points (x;, y;) forj = 0,1,2,..., k, and (x4, yx)

for k=0,1,2,...,n on the ellipse (2.6) are respectively expressed as

Xj = acos gj, y; = bsing;, (2.7)

Xi = A CoS @y, Yk = bsingy, (2.8)

Page 4 of 53
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where angular arithmetic sequences ¢; and ¢y are respectively

g =2Lx, (2.9)
n
k

o =27 (2.10)
n

2.2 Triangular double integral for a 2-variable function

Assume that D is a domain and 0D is the boundary of the domain on the 2D plane, ex-
pressed in the Cartesian coordinates (x,y) € R2. Let X' = X = X(x,y) and X2 = Y = Y(x,)
be partially differentiable functions with respect to x! = x and x? = y in D. There is only
1!'=1 kind of single sequence

(X*), = (Xi, Ya) (2.11)

for w =1,2 and k =0,1,2,...,n. There are 2! = 2 sets of possible partial increments for a
2-variable function.
The total increments of (X*); for 4 =1,2 and j = 1,2,...,k are denoted

Y = (X*) — (XH
AGE), = (), - (04),,
= X" (x5, 57) — X" (%21, yj-1)- (2.12)
The increments of (x*); for 8 =1,2 andj=1,2,...,k are denoted
A@P) = (), - (+F) ;. (2.13)
The sets of possible partial increments of (X*); for 4 =1,2 and j = 1,2,...,k are denoted

AXH[Ax] = X" (x5, 97) — XM (%521, 9, (2.14)

AXH [A}’j] = X" (xj—l,yj) - X" (xj—l;yj—1)~ (2.15)

Lemmal Let X" = X*(xP) be partially differentiable functions with respect to x? for B, i =
1,2. The following holds:

K AXH[A@RP)
(X*) = (X*)y+ > [xﬂ;j ]A(xﬁ)j (2.16)
j=1

foru=1,2andk=1,2,...,n, where the index is summed over 8 =1,2.
Proof The proof of this lemma was shown in the previous article [6]. d

Our triangular single and double integrals and the divergence theorem on the 2D plane
are shown as follows.

Definition 1 The triangular line single integral on 2D plane [;, X" dl, is defined as

/ X*dl, llmz ) (AL (217)

Page 5 of 53
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where 3D is the boundary of a domain, di,, is the antisymmetric infinitesimal line element
vector and the index is summed over u =1,2.

Definition 2 The triangular double integral for integrands of which are partial differen-

tials on the 2D plane [/, ‘;X,Z dx'? dl,, is defined as

AXH[A
5 = 33 A ) 1 015
1 j=1

where D is a domain and the indices are summed over 8, u = 1,2.
The following proposition is necessary for the condition (2.25) in Theorem 1.

Proposition 1 Denote constants as C* = C* and C* = C7, then

n
cH / dl, = C* lim Y (Al (2.19)
aD n— o0 )

holds, where the index is summed over i =1,2.

Proof In the case of X! =1 and X? = 0, Definition 1 is reduced to

dl, = lim Y (AL (2.20)
-/8D * neookzl: k

In the case of X! = 0 and X2 =1, Definition 1 is reduced to

/ dly = lim ) "(AL). (2.21)
aD n—o0 P

A linear combination of (2.20) and (2.21) is

c* f dl,+C / dly = C* lim Y (AL)c+C lim Y (Al (2.22)
3D aD n—0o00 P n—00 ]

We show that (2.24) holds for a closed curve in the following.
The sum of (Al,) in (2.5) over k=1,2,...,nfor u =1,2 is

D ALk = oy Y Al
k=1 k=1
= —eun[(), - (), ], .23)

where the index is summed over « = 1,2. In the case of a closed curve, i.e., xg = x, and
Yo = Y, it satisfies

n

> (AL =0. (2.24)

k=1
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The following is the refined version of the theorem shown in The divergence theorem of a
triangular integral [6].

Theorem 1 (The divergence theorem of the triangular integral on the 2D plane) Assume
that 9D is a piecewise smooth curve of the equation and D is the region inside and on 9D on
the 2D plane, expressed in the Cartesian coordinates (x,y) € R%. Let X* for = 1,2 be a set
of partially differentiable functions with respect to x* for v =1,2 in D, where X* = X"*(x").
In the case of a closed integral path which satisfies

c* f dl, =0, (2.25)
aD
the divergence theorem of the triangular integral on the 2D plane holds:

axH
f X*dl, / / dx"*dl,, (2.26)
D

where the indices are summed over B, =1,2.

Proof Combining (2.16) with (2.4) for the sum of k =1,2,...,n, we obtain

n

AXM[AGF)]
Z (X") (AL = ZZ AP, A(xﬁ)j(Al,L)k + (X1 Y (AL (2.27)
k=1 j=1 k=1
where the indices are summed over 8, u =1,2. Using Proposition 1, (2.25) is rewritten as
n
(X*)y lim Y “(AL,)i =0, (2.28)
k=1

where the index is summed over p = 1,2. The limit at infinity n — oo of (2.27) is expressed
as (2.26) by Definitions 1 and 2 under the condition of a closed curve (2.28). |

The triangular double integral for a 2-variable function p = p(x, y) on the 2D plane by the
infinitesimal area element d?o of the triangular double integral on the 2D plane is given

/ / pd’o = L / / p dx'"’ dlg, (2.29)
D 2JJp

where D is a domain and the index is summed over 8 =1,2.

The calculation process of the triangular double integral on the 2D plane is precisely
defined as follows.

Let p = p(x, y) be a piecewise smooth function on the 2D plane, expressed in the Carte-
sian coordinates (x,y) € R2.

Definition 3 The triangular double integral for a 2-variable function p = p(x,y) on the 2D
plane 1 [[,, pdx'f dly is defined as

//pdx/ﬂdlﬂ = g@oizp ) (@)) A () Al (2.30)

k=1 j=1
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for o # B and « = 1,2 as the indices of variables of function p = p(x, y), where D is a domain
and the index is summed over 8 =1,2.

The following is a corollary of the divergence theorem on the 2D plane.

Corollary 1 (A corollary of Theorem 1) Assume that dD is a piecewise smooth curve of the
equation and D is the region inside and on dD on the 2D plane, expressed in the Cartesian
coordinates (x,y) € R%. Let X" for u = 1,2 be a set of partially differentiable functions with
respect to x* for v =1,2 in D, where X* = X"*(x"). In the case of

f X"dl, = / / pd’o, (2.31)
D D

where p = p(x,y) is a 2-variable function and the index is summed over u = 1,2, the follow-
ing holds:

DG
S =p. (2.32)

Proof Substituting (2.26) and (2.29) into (2.31), we obtain

x| 1 /
f/D i, = Efpodxﬂdl,g, (2.33)

where the indices are summed over 8, 1 = 1,2. Substituting (2.18) and (2.30) into (2.33), it
is expressed as

AXH[AP))] y
tim 33 A ) (o),
k=1 j=1 J
1 n k
=5 Jim, p((x*)0 (")) A () ap A(L%) (2.34)
k=1 j=1

where the indices are summed over «, 8, = 1,2. In order for (2.34) to hold for any value
of integral variables, the following 1 x 1! = 1 kind of formula foro, 8 =1,2andj=1,2,...,k
and k=1,2,...,n is required:

AXHIARP)] 1

: - m _ AR
A(itlfr),io AxP); ga“_p((xa)k’(x )/)280‘ﬂ’ (2.35)

where the index is summed over u =1, 2.

On the 2D plane, g,,&% = 6“ holds for B, = 1,2, where the index is summed over
o = 1,2. We therefore obtain 1 zsmqs =1, where the indices are summed over o, 8 = 1,2.
Multiplying by £*# both sides of (2.35), it is reduced to the differential equation (2.32). O

2.3 Component representation and an example of it for a 2-variable function
In component representation, (2.29) is expressed as

1 1
//deU:—//pdx/dlx+—//pdy/dly
D 2JJp 2JJp
1 1
:—//pdx/dy——//pdxdy/. (2.36)
2 /), 2/,
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Using (2.30) in Definition 3, each component of (2.36) is

n k
1 1 1
3 //Dpdx/ dl, = +§ //Dp(x/’y) dx dy = +§ nll)rgoZZp(xj,yk)ijAyk, (2.37)

k=1 j=1

n k
1 ’ 1 / / 1.
5 //;pdy dl, = -3 //I;p(x,y)dxdy = —inlin;oZZp(xk,yj)Axkij, (2.38)

k=1 j=1

In Corollary 1, (2.31) is expressed as

f;D(Xdy—de): / fD pd*o (2.39)

and (2.32) is expressed as

0X Y

— +—=p. 2.40
ox "oy P (2.40)

We show an example of Corollary 1 in the following.
Example 1 In the case of

X(x,9) = xy?, Y(x,y) = &%y (2.41)
Substituting (2.41) into (2.40), we obtain

p(x,y) = & + 9% (2.42)

The boundary of the domain is an ellipse (2.6).
1. The value of the left-hand side of (2.39) is

%(de/—de)=7§2 ) (nydy—xzydx)
aD 4L

a2 p

n n
= lim Y wyiAye— lim Y adyeAxg
n— 00 n—00
k=1 k=1
1 2 2
= Zymb(a +b°). (2.43)

See (A.1) and (A.2) in Appendix 1 for calculations in detail.
2. The value of the right-hand side of (2.39) is

1 N2 ; 1 N2 ,
//Dpd20:§//x§+y2<1[(x) +y2]dxd —5//ﬁ+£<l[x2+(y) ]dxdy

a2 2= a2 2=
1 n k 1 n k
IRT 2, .2 , T 2, .2 )
=5 lim ‘ (7 + 57) Ax; Ay 5 Tim Z(xk +7) Axi Ay
k=1 j=1 k=1 j=1
1 2, 2
= Znab(a +b ) (2.44)

See (A.3), (A.4), (A.5), and (A.6) in Appendix 1 for calculations in detail.

Page 9 of 53
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We thus see the coincidence of the value of (2.43) and that of (2.44).

Equation (2.39) is verified also in the case of X(x,y) = x3y* and Y (x,y) = x*y3.

We consider the following approximation formula of (2.39) for 1 < n < oo,

n

Z[X (o0 1) Ayx = Y (e, Y1) Ao |
k=1

n k

DD [P0 A% Ak - plk, ) Axx Ay . (2.45)
k=1 j=1

1
2

In the case of n — o0, (2.45) coincides with (2.39). It is verified by (2.43) and (2.44) in
Example 1. An approximation formula, see (2.39), for Example 1 is

n n k
1
Z(xkyiAyk —x,%ykAxk) ~ 3 Z Z[(x]z +yi)ijAyk - (xi +yf)Axkij]. (2.46)

k=1 k=1 j=1

The left- and the right-hand sides of (2.46), respectively expressed as L and R, are shown
in Table 1 and plotted in Figure 1, where a = b = 1.

Table 1 Approximate values of Example 1

n L R R-L

2 0 0 0

4 1 2 1

8 141421356... 1.82842712... 041421356...
16 1.53073372... 1.64725389... 0.11652016...
32 1.56072257...  159071142... 0.02998884...
64 1.56827424... 1.57582591...  0.00755166...
128 1.57016557... 1.57205691... 0.00189133...
256 1.57063862... 1.57111167...  0.00047304...
512 1.57075690... 1.57087517... 0.00011827...
1,024 157078647 ... 1.57081603...  0.00002956...
2,048  1.57079386... 1.57080125...  0.00000739...
4,096 1.57079571... 1.57079755...  0.00000184...

8,192  1.57079617... 1.57079663...  0.00000046...

0 1.57079632... 157079632... O

value
2 e Y
Al x
- R _lezll:;:liiLZ;CQI*aasﬁéiskaAs!k :::::: -
x N 2
L
1
n
0 10 20 30 40
Figure 1 Approximate values of Example 1.
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3 Triangular triple integral in the 3D space

Two kinds of combined and antisymmetric finite area element vectors in the 3D space are
reviewed in Section 3.1. The triple integral for a 3-variable function is shown in Section 3.2.
Component representation and an example of it for a 3-variable function are shown in
Section 3.3. In the following, the Cartesian coordinates are denoted X =x, K2 = y, and

x3 =z

3.1 Two kinds of finite area element vectors in the 3D space
For a triangular triple integral, the following increments of the double sequence of points
in the 3D space are introduced.

1. The increments of the double sequence of points at (j, k) are denoted as follows:

Aj(a) o= (07) = () 3.1)
Ar(”), =)= ) e (3.2)
Ar(x%) = () = () oo (3.3)
A = (7) 0 = 0F) e (3.4)

fore,=1,2,3andj=1,2,...,kand k=1,2,...,n
The first combined finite area element vector (Aza"‘ﬂ)jyk fora,$=1,2,3andj=1,2,...,k
and k=1,2,...,n is introduced as

(Azaaﬂ)/,k = A/(x“)j‘kAk(xﬁ)j_Lk - Ak(xa)j,kAf(xﬁ)j,k—r (3.5)

2. The increments of the double sequence of points at (k, ) are denoted as follows:

Ai(x) = () = () (3.6)
8= 0F) = () (3.7)
Aj() = () = () (3.8)
M) = 0F) = ) (3.9)

fore,=1,2,3andj=1,2,...,kand k=1,2,...,n
The second combined finite area element vector (Azo"‘ﬂ)k,, for o, =1,2,3 and j =
kand k=1,2,...,nis introduced as

(A2Gaﬂ)k,/ = Ak(xa) k-1 A (xa)k,jAk(xﬁ)k,j—l' (3.10)

The antisymmetric symbol in the 3D space is

+1 for even permutation of {1,2, 3},
e =645, = { -1 for odd permutation of {1,2,3}, (3.11)

0  otherwise.

Using the antisymmetric symbol in (3.11), the first antisymmetric finite area element
vector (Azaﬂ)}v,k and the second antisymmetric finite area element vector (Azaﬂ)k,j for
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nw=123and;j=1,2,...,kand k=1,2,...,n are respectively introduced as

1

(Azoﬂ)i’k = Egaﬂﬂ(Azao‘ﬂ)M, (3.12)
1

(A%0,),, = ggaﬂM(Azgaﬁ)kJ, (3.13)

where the indices are summed over «, 8 = 1,2, 3.
1. The first antisymmetric finite area element vector (AZO'#)/‘,k for w =1,2,3 and j =
1,2,...,kand k=1,2,...,n is expressed as

1
(Azau)j,k = o fapu [Aj(xa)/,kAk(xﬂ)jfl,k - Ak (xa)j,kAf (xﬂ);,ld]’ (3.14)

where the indices are summed over «, 8 = 1,2, 3. In detail, (3.14) for u = 1,2, 3 are respec-

tively written as

9 1
(A ax)j,k = E(Ajyj,kAkZi—Lk - Akyj,kAij,k—l)
1
- E(Ajzj,kAkyj—l,k - Nz Ajyjk-1)s (3.15)
9 1
(A%0y) ik = E(A;‘Zj,kAkx/—l,k — Arzjk Ajxj 1)
1
- E(ijj,kAij—l,k — A Ajzji-1)s (3.16)
3 1
(A%02) = S Ak Aryj1k = Aicxik Ajyjea)
1
- E(Ajyj,k ArXj1k — Aryik Ajx 1) (3.17)

2. The second antisymmetric finite area element vector (A%, )k jforn=1,23andj=
1,2,...,kand k=1,2,...,n is expressed as

1
(Azau)k,j = Eguﬂﬂ[Ak(xa)k,jA/(xﬂ)k—l,j -4 (xa)k,jAk(xﬁ)k,j—l]’ (3.18)

where the indices are summed over «, 8 = 1,2, 3. In detail, the equations in (3.18) for u =
1,2,3 are respectively written as

) 1
(A%0y),, = o (Baiej Az = Bjyiej A1)
1
- E(Akzk,jAjyk—l,j - Njzi i Arykj-1)s (3.19)
) 1
(%) = 5 (Akzij Ao = Ajzi A1)
1
- E(Akxk,jAjzk—l,j — ANjxpj Az i), (3.20)
) 1
(A%0z), = o (i Y1 = Dk A1)

1
- E(Akyk,j Ajxic1j = AjYij A1) (3.21)
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For example, we consider the case that the boundary of the domain is a sphere:
Lyl =d (3.22)

where a > 0. The following is shown in The divergence theorem of a triangular integral [6].

1. The Cartesian coordinates (%, ¥j,zj) of the antisymmetric first finite area element
vector (Azaﬂ)j,k foru=1,2,3and;j=0,1,2,...,kand k = 0,1,2,...,n on the surface of the
sphere (3.22) are respectively expressed as

Xk = asin6; cos ¢y, Yjk = asin 6 sin gy, Zjx = acos b, (3.23)

where angular arithmetic sequences 6; and ¢y are respectively

k
0j==m, O =2—1. (3.24)
n

2. The Cartesian coordinates (x, yx, zx;) of the antisymmetric second finite area ele-
ment vector (AZO'M)k,j forp=1,2,3and;j=0,1,2,...,kand k= 0,1,2,...,n on the surface

of the sphere (3.22) are respectively expressed as
Xkj = asinf cos ¢j, Yk, = asin by singy;, Zjj = acos b, (3.25)

where angular arithmetic sequences 6, and ¢; are respectively

k J

O = —m, @j=2-m. (3.26)
n

n
3.2 Triangular triple integral for a 3-variable function

Assume that D is a domain and 9D is the boundary of the domain in the 3D space,
expressed in the Cartesian coordinates (x,7,z) € R3. Let X' = X = X(x, Y,2), X2=Y =
Y(x,9,2), and X> = Z = Z(x, y,z) be partially differentiable functions with respect to x! = x,

x% = y,and 3 = z in D. There are 2! = 2 kinds of the double sequences

(X#)j,k = ()(j,kr Yj,kt Zj,k)r (327)

(X*); = K Yo Ziy) (3.28)

forp=1,2,3andj=0,1,2,...,kand k= 0,1,2,...,n. There are two alternatives for decom-
position of two kinds of double sequences (X*);x and (X" )i for u =1,2,3andj =1,2,...,k.

As mentioned in the Introduction, the inappropriate two sets of increments, used
in the previous article [6], are replaced by the appropriate kind of two sets of incre-
ments {Ay,(x")on Ai(x” )ik} and {Ap(x)p0, Aj(x? )i} for y =1,2,3 and i = 1,2,...,j and
h=1,2,....,kand k=1,2,...,n to calculate the numerical values in Example 2.

The following formulae have been revised based on the appropriate set of increments.
In order to prove Theorem 2, (X*);x and (X*); for u =1,2,3 and j = 1,2,...,k and k =
1,2,...,n are respectively modified in Lemmata 2 and 3.

There are 3! = 6 sets of possible partial increments for a 3-variable function.
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1. The total increments of (X*)o, for u =1,2,3 and h=1,2,...,k are denoted

Ap (X”)o,h = (Xﬂ)o,h - (Xu)o,h—l

= X" (%0, Yo,n0 Z0,1) — X" (X0,1-15 Y0, h-1) Z0,h-1)- (3.29)

The increments of (¥ )o,, for y =1,2,3 and k1 =1,2,...,k are denoted

Ap (xy)o,h = (xy)o,h - (xy)o,h—l' (3.30)

The sets of possible partial increments of (X*)o, for © =1,2,3 and h=1,2,...,k are de-

noted
AX*[Apxon] = X* (%01 Yo, Z0,1) — X (X0,1-15 Yo,15 Z01)s (3.31)
AX*[Apyon] = X" (%0,1-1, Yo,nr Z0,1) — X" (%0,1-1, Y0,1-15 Z0,1)5 (3.32)
AX*[Apzon] = X (%0,1-15 Yo,n-15 Zo,n) — X" (%0,1-15 Y0,h-15 Z0,5-1)- (3.33)

2. The total increments of (X*);x for x =1,2,3 and i =1,2,...,jand k =1,2,...,n are
denoted

Al’(XM)i,k = (Xu)i,k - (X“)i—l,k
= X" (Ko Yikr Zik) — XM (K1 ko Yie1,k0 Zi10)- (3.34)
The increments of (x”);x for y =1,2,3and i=1,2,...,jand k =1,2,...,n are denoted

Al’(xy)i,k = (xy)i,k - (xy)i—l,k' (3.35)

The sets of possible partial increments of (X*);x for © =1,2,3 and i =1,2,...,j and k =
1,2,...,n are denoted

AXP[Aix] = XM Ko Yigo Zik) = XM (K10 ik Zik)s (3.36)
AXP[AYik] = XH (Kicik Yigo Zik) — X i1k Vicn ko Zik)s (3.37)
AX*[Aizig] = XF (i Vicv ko Zik) — XH (Kic o Vi o Zic1 ) - (3.38)

Lemma2 Inthecaseof (j, k) fornu=1,2,3andj=1,2,...,kand k =1,2,...,n, the following
holds:

k

(Xu)j,k = (Xu)o,o + Z

h=1

AXH[AR(X")on]

Ap(x" o, Ah(xy)o’h
j

N Z AX”’[A;‘(?CV);‘,](] A( y)i,k’

A )ik l (3.39)

i=1

where the index is summed over y =1,2,3.
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Proof Using (3.29) and (3.34), (X*);x for p =1,2,3 and j=1,2,...,kand k =1,2,...,n s
split into

k j
()= () g0 + D0 DX g + D Ai(X) (3.40)
h=1 i=1

1. Substituting (3.31), (3.32), and (3.33) into (3.29) for u =1,2,3 and h =1,2,...,k, we
obtain

AR(X")o, = AX [Apxon] + AX*[Apyou] + AX" [Anzo]

_AXM[ARR )ou]
ST A e Ah(x”)o,h, (3.41)

where the index is summed over y =1,2,3.
2. Substituting (3.36), (3.37), and (3.38) into (3.34) for u =1,2,3 and i = 1,2,...,j and
k=1,2,...,n, we obtain

Ai(X"), o = AX [Awig] + AXP[Asyir] + AXM [Agzig]
AXPIA(R )]

AxY
A e (342

where the index is summed over y =1,2,3.
Substituting (3.41) and (3.42) into (3.40), we obtain (3.39). O

Lemma 3 Inthe case of (k,j) fornu =1,2,3andj=1,2,...,kand k =1,2,...,n, the following
holds:

k
AXF[AR" o]
(X”)k, (X")g0 + 21: A o Ah("y)h,o

j
AXHIA )]
——A; " 3.43
D Y (049

i=
where the index is summed over y =1,2,3.

Proof In a similar manner as Lemma 2, we obtain (3.43). O

Our triangular double and triple integrals and the divergence theorem in the 3D space
are shown as follows.

Definition 4 The triangular area double integral in the 3D space [, , X" d*o,, is defined
as

/ / X" d’o, = lim ZZ [(0), (8%0,)  + (X*) (8%0,) ] (3.44)

k=1 j=1

where 9D is the boundary of a domain, d%o,, is the antisymmetric infinitesimal area ele-
ment vector and the index is summed over i = 1,2, 3.
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Definition 5 The triangular triple integral for integrands of which are partial differentials
in the 3D space [[[,, X dx"” d?o,, is defined as

ax//y

f / / X" //y d2
ax//y

AXH[Ap(x")on]
- Y| [l 0, )

k=1 j=1 h=1

AXFA)ik]
+Z< A )ix : Ai(x )i,k>:|(AZG/‘)j,k

X AXP A o]
’ |:Z( Ah(xh")h,oho Ah(xy)h’o)

h=1

I AX[A 1]
(TR ) (3 (.45

i=1
where D is a domain and the indices are summed over y, 1 =1,2,3.
The following proposition is necessary for the condition (3.47) in Theorem 2.

Proposition 2 Denote constants as C* = C*, C* = C?, and C? = C?, then
k
& [[ o=t i 3 T3+ (3%, ) 546
k=1 j=1

holds, where the index is summed over u = 1,2, 3.

Proof The proof of this proposition is shown in The divergence theorem of a triangular
integral [6]. O

The following is the revised version of the theorem shown in The divergence theorem of
a triangular integral [6].

Theorem 2 (The divergence theorem of the triangular integral in the 3D space) Assume
that D is a domain and 0D is the boundary of the domain in the 3D space, expressed in the
Cartesian coordinates (x,y,z) € R3. Let X" for u =1,2,3 be a set of partially differentiable
functions with respect to x° for v =1,2,3 in D, where X* = X*(x"). In the case of a closed
2D surface which satisfies

cr / / d*o, =0, (3.47)
oD

the divergence theorem of the triangular integral in the 3D space holds:

X"
X*d*o, = / / / 8—/,ydx”y d*o,, (3.48)
aD D 0X

where the indices are summed over v, = 1,2,3 and C" are constants.
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Proof Combining (3.39) with (3.12) and combining (3.43) with (3.13) forj = 1,2,...,k and
k=1,2,...,n, we obtain

n

k
[(XM)/,k(Azoﬂ)j,k + (Xﬂ)k,j(Azaﬂ)k,j]
k=1 j=1

" S AXH AL o]
k=1 Z|:2<WAh (xy)O,h)

j=1 L =1

J XH[A; (xy)l ]
+Z=ZI<A(T)M(](AZ(QC )lk) (AZO_M)L](
[ (AXM AL o]
k=1 le[;(WAh(xy)h,o)

L AXP[A )i ]
DY v ] (A

+(X") 00 Xn: Z[(Azau)ﬁk + (%)) (3.49)

k=1 j=1

n

+

where the indices are summed over y, i = 1,2, 3. Using Proposition 2, (3.47) is rewritten

as

n k
(X")g0 Jim Z[(Azau),’,k + (Azau)k,j] =0, (3.50)

W Hn— 00
k=1 j=1
where the index is summed over p = 1,2,3. The limit at infinity n — oo of (3.49) is ex-

pressed as (3.48) by Definitions 4 and 5 under the condition of a closed surface (3.50). [J

The triangular triple integral for a 3-variable function g = g(x,y,z) in the 3D space by
the infinitesimal volume element d®V is given by

[[[ av=2 [[[ aa” e, .

where the index is summed over y =1,2,3.

The calculation process of a triangular triple integral in the 3D space is precisely defined
as follows.

Let g = q(x,y,z) be a piecewise smooth function in the 3D plane, expressed in the Carte-
sian coordinates (x,7,z) € R>.

Definition 6 The triangular triple integral for a 3-variable function g = g(x, y, z) in the 3D
space £ [[[, qdx" d*c, is defined as

1
IR

-3 ,,1520 Z Z: |:Z 1k’ (xﬁ)j,k’ (xy)o,h) Ap (xy)o,h

k=1 j=1 h=1
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i=1

+ i q((xa)k,j’ (xﬂ)k,j’ (™)) Ai(xy)k,i] (A2UV)k,j } (3.52)

fora #8,8#y,y #a,and a, 8 = 1,2,3 as the indices of variable of function g = g(x, y, z),

where D is a domain and the index is summed over y =1,2,3.

The revised corollary shown below derived from Theorem 2 is the 3D version of Corol-
lary 1.

Corollary 2 (A corollary of Theorem 2) Assume that D is a domain and 9D is the bound-
ary of the domain in the 3D space, expressed in the Cartesian coordinates (x,y,z) € R3. Let
XH for u =1,2,3 be a set of partially differentiable functions with respect to x* forv =1,2,3
in D, where X* = X*(x"). In the case of

?%Dxﬂdzaﬁ / / /D qd’V, (3.53)

where q = q(x,,z) is a 3-variable function and the index is summed over . = 1,2,3, the

following holds:
axXH
— =q. 3.54
o =4 (3.54)

Proof Substituting (3.48) and (3.51) into (3.53), it is rewritten as

XM 1
//y 2 ny 32
Ry | R 659

where the indices are summed over y, u = 1,2, 3. Substituting (3.45) and (3.52) into (3.55),

it is expressed as

R AXP AR o]
i S| [,

k=1 j=1

L AXM A )] 1 ;
D Dy A )ik Ai(x), Esaﬁ#(Aza ")

i=1

k
AXP[AL(xY)
* |:Z (86 o Ah(xy)h,o
1

AR )0

AXFLA(XY )i 1 «
T%Al(xy)k,i] ES“ﬁM(Azg ﬂ)k,j}

j
i=1
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i=1

1
+ Z q((xa)k,j’ (xﬂ)k,j’ (xy)k,i)Ai(xy)k,i] 58‘157 (Azaaﬂ)k,/}’ (3.56)

where the indices are summed over «, 8,y, 1 = 1,2, 3. In order for (3.56) to hold for any
value of integral variables, the following 2 x 2! = 4 kinds of formulae in two categories are
required.

1. The formulae for o, 8,y =1,2,3 and h = 1,2,...,k,

AXH[AR(X )ou] 1

1
_ B
Ah(xyl)o,h—>0 Ap(x")on 28(1‘3” - q((x"‘)j‘k, (x )/'k' (x”)o,h) S!SO‘M’ (8:57)

AXH[AR(*")no] 1 1
T AN 20T () () () 0) 378 (3.58)

Ap&Y )po—0
where the index is summed over u = 1,2, 3.
2. The formulae for o, 8,y =1,2,3and i =1,2,...,jand k = 1,2,...,n,

AXM[A(R )ix] 1 o P 1
A 2T ()0 ()0 () 1) 3, s (3.59)

Ai(x7)ix—0

AXMIA(X il 1 o P oL
() () NG 060
where the index is summed over u =1,2, 3.

In the 3D space, 3¢qp,6*#7 = 8], holds for y, i = 1,2,3, where the indices are summed
over a, 8 =1,2,3. We therefore obtain 3 44, = 1, where the indices are summed over
o, B,y =1,2,3. Multiplying by e*#” both sides of the four kinds of (3.57), (3.58), (3.59), and
(3.60), they are reduced to the differential equation (3.54). O

3.3 Component representation and an example of it for a 3-variable function
The left-hand side of (3.44) is expressed as

/ / X" d*o, = f / Xd%o, + / / Yd®o, + / / Zd%o,, (3.61)
D aD D aD

where the index is summed over p = 1,2, 3. Using (3.44) in Definition 4, each component

of (3.61) is
n k
/ / Xd%o, = lim ZZ[X,,,((AZU,C)M+Xk,,(A20—x)k,j], (3.62)
D T A
n k
/ f Yd’oy = lim 3% [Vix(A%0,),, + Yii(A%0), ] (3.63)
aD n—00 P ’

n k

/ / Zd%0, = lim ZZ[zj,k(AZJZ)I, o+ Zii(8%02), . (3.64)
aD n— ’ ’

k=1 j=1
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In component representation, (3.51) is expressed as

1 1 1
/// qd®V = = /// qdx’ d*o, + = /// qdy’ d*oy + = /// qdZ' d*c,.  (3.65)
D 3 D 3 D 3 D

Using (3.52) in Definition 6, each component of (3.65) is

1
gf‘//l;qu”oﬂox
1

n k j
=3 Ji Z{ [Zq X0 Yoo Zik) Ao, + Zq xtk;y/k:Z/k)Azxzki| (A%02),,

k=1 j=1 h=1 i=1

k j
+ [Z q(Xn,05 Ykj» Zij) AnXno + ZQ(xk,i,yk,j; Zk,j)Aixk,i] (A%0y) k,j}’ (3.66)

h=1 i=1

1
g///qdyﬁdzo'y

k
= § y}g}o Z Z: |:Z q(%j 6 Yo, Zj) A Yo, + Zq(x]k»yzk,zjk)Azyzk:| (A Uy)

k=1 j=1 h=1 i=1

k j
+ |:Z X jp V05 2k,j) Anyno + Z q(xk,j;yk,i»Zk,j)Aiyk,ii| (Azdy),ﬂj}, (3.67)

h=1 i=1

1
g///quz”dzaz

= g nlin(;loz Z: |:Z q(x;k;y/klzo h)AhZOh + Zq(xjkr_y/k:zzk)A sz] (A Gz) &

k=1 j=1 h=1 i=1

k J
+ |:Z Ak Yijs 210) Mizino + Y q (ks Vi Zk,i)AiZk,i:| (A%02),; } (3.68)

h=1 i=1

In Corollary 2, (3.53) is expressed as

# (XdPoy+Yd’0,+ Zd’0;) = f f / qd*Vv (3.69)
oD D

and (3.54) is expressed as

0X aY 0Z
—+—+—=q (3.70)
ox 8y 0z

We show an example of Corollary 2 in the following.

Example 2 In the case of

X(x,9,2) = %x(y2 +2%), Y(x,9,2) = %y(z2 +x%),
(3.71)

Z(x,9,2) = %z(x2 +5°).
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Substituting (3.71) into (3.70), we obtain
q(x,y,2) =x* +y* + 2% (3.72)

The boundary of the domain is a sphere (3.22).

Since Xo0 = 0, Yp0 = 0, and Zyo = 0, (3.71) satisfies the condition of a closed surface
(3.50).

1. The value of the left-hand side of (3.69) is

4
# (Xd’o,+Yd’0y+ Zd0,) = —ma’. (3.73)
D 5

See (B.3), (B.6), and (B.9) in Appendix 2 for calculations in detail.
The value of the right-hand side of (3.69) is

1 1 1
/// qd3V:gfffqu”dzox+gfffqdy//d2oy+gfffqdz”dzaz
D
4 5

=—ma’. 3.74
cma (3.74)

See (B.14), (B.19), and (B.24) in Appendix 2 for calculations in detail.
We thus see the coincidence of the value of (3.73) and that of (3.74).

We consider the following approximation formula of (3.69) for 1 « n < oo:

n k

[X (0 Yjko Z/,k)(AZGx)jyk + X (%> Vi Zk,j)(AZO‘x)k,j + Y (0 Yk Zjk) (Azﬁy)l.’k
k=1 j=1

+ Y(xk,jyyk,j) Zk,]') (A2Gy)kJ + Z(xj,kiyj,k) Zj,k) (Azoz)] k + Z(xk,j) Yij» Zk,j) (A2O'z)k,j]

>

1 k k J
~3 > |:Z q(%0,1, ¥jk» Zjic) Ao n + 21: 4%k Vjko z/,k)Aixi,k} (A%0x)
-

k=1 j-1 Lt
1 n k[ k j ]
*3 SN D aGonos i 2 Auxino + > aCkis Viojs zij) Aidic (M%),
k=1 j=1 L h=1 i=1 i
Lo KTk j 7
+ 320D D AWk Yo 50 Miyon + D aWik Yiks k) Ak | (A%03)
k=1 j=1 Ln=1 i=1 i
1 n k[ k j ]
t3 DON D Sy yno 2 Auyno + Y aijs Yioi» zi)) Ay | (A%0y) kj
k=1 j=1 L =1 i=1 i
L KTk j T
t3 Z Z ZQ(xj,k,y/.k, Zo0.n) Anzos + Zq(x,,k, Vidor Zi) AiZik (A2az)j’k
k=1 j=1 Ln=1 i=1 i
1 n k[ k
*3 SN D ales v zn0) Auzio
k=1 j=1 Lr=1

j
+ Z q(Xxj Vi j» Zk,i)Aizk,i:| (Azaz)k’j- (3.75)

i=1
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In the case of n — o0, (3.75) coincides with (3.69). It is verified by (3.73) and (3.74) in
Example 2. An approximation formula, see (3.69), for Example 2 is

DR IATIEAICEINES 3 ST RETIICAN

k=1 j=1 k 1 j=1
n
+—ZZM g+ ) (M), +—ZZ% (2, +0,) (M%),
k=1 j=1 k=1 j=1
—ZZ% x5+ Vi) (M%), ZZ% x5+ 9%) (M%),
k=1 j=1 k 1 j=1
1 n k k j
2 2 2 2 2 2
g Z Z xo,h +yj,k+Zj,k)Ahx0yh+Z(xi,k+yj,k+zj,k)Aixi'k (A Ux),',k
k=1 h=1 i=1

k j
Z (xf,’() + y,z(,j + z,z(,j) Apxpo + Z(xil + y,z(,j + z,z(,j) Aixyi (Azox)kJ

k
k=1 j=1 L =1 i=1 J
. )

n

wl»——‘

n k

2 2 2 2 2 2 2
+ = (xj,k +You+ zj,k) Apyon + Z(x/,k Y+ zj‘k)A,’yi‘k (A Oy);’,k
k=1 j=1 L h=1 i-1 i

g

J
(5 + o * 2) Daymo + D (068 + Vi + k) Ay | (A%0)
i=1

n

—_

M- -
- I £

+ —

k=1 j=1 L

kT j

=

2 2 2 2 2 2 2
t5 (x;,k +Ykt Zg1) Dnzo + Z(xj,k + Y+ z) Azik | (A az)j,k
k=1 j=1 L i-1 i
1 n k[
2 .2 .2
T3 D[ Dk + 9+ Zho) Anno
k=1 j=1 Lh=1
j
2 2 2 2
+ Z(xk,j Tkt Zk,z’)AiZk,i (A O'z)k,j' (3.76)
i-1

The left- and the right-hand sides of (3.76), respectively expressed as L and R, are shown
in Table 2 and plotted in Figure 2, where a = 1.

4 Triangular integral in the 4D time-space

Six kinds of combined and antisymmetric finite hyper-surface element vectors in the 4D
time-space are reviewed in Section 4.1. The triangular quadruple integral for a 4-variable
function is shown in Section 4.2. In the following, the Cartesian coordinates are denoted

K=t xl=x,x*=y,and x> = z.

4.1 Six kinds of finite hyper-surface element vectors in the 4D time-space
For the triangular quadruple integral, the following increments of a triple sequence of
points in the 4D time-space are introduced.

1. The increments of a triple sequence of points at (j, k, /) are denoted as follows:

A, (xa)/,k,l = (xa)j,k,l - (xa)j—Lk,l’ (4.1)
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Table 2 Approximate values of Example 2

n L R R-L
2 0 0 0
4 1.06694173...  2.18060515...  +1.11366341...
8 240955699... 264197558... +0.23241859...
16 256097581...  262093273... 4+0.05395691...
32 2.56645589...  257577633... +0.00932043...
64 254629327...  2.54651836...  4+0.00022508...
128 2.53136275...  2.53038066... -0.00098209...
256 252270918...  252194728... -0.00076189...
512 2.51808880... 2.51764056... -0.00044824...
1,024 251570568...  251546479... -0.00024088...
2,048 2.51449594...  251437132... -0.00012462...
4,096 251388654... 251382318... -0.00006335...
8,192 2.51358071...  251354877... -0.00003194...
16,384  2.51342750... 251341147... -0.00001602...
32,768  251335080... 251334280... —0.00000799...
00 251327412... 251327412... 0
value
3 R
S, 4
ceEerEEEIELE NSk e a s tAteaarnrstnsmmmnsn P
v x 5 57!'
L
2
1
n
0 10 20 30 40
Figure 2 Approximate values of Example 2.
B B
A ), Lkl —( ), Lkl - (x )j—l,k—l,l’ (4.2)
y —(x
A;(x ); Lk-10 = ( )1—1,k—1,l (x )j—l,k—l,l—l’ (4.3)
o o
Ar(#) 0 = () s = (), (4.4)
B B _ (B
Ay ),,k 11—( )j,k—l,l (x ),',1«1,171’ (4.5)
y y —(xY
Ay )},k L1 = (x )j,k—l,l—l (x )j—l,k—l,l—l’ (4.6)
o — o
A(x )1,k,l:( )j,k,l_ (x )j,k,l—l’ (4.7)
B B — (P
INIE );,k =(x )j,k,l—l (x )j—l,k,l—l’ (4-8)
¥ = (xV —(x
Ak (x );—1,k,l—1 = (x )j—l,k,l—l (x )/—1,1<—1,l—1 (4-9)

fore,B,y =0,1,2,3and/=1,2,...,jandj=1,2,...,kand k=1,2,...,n
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The first combined finite hyper-surface element vector (A3 V% Y)ikifora, B,y =0,1,2,3
and/=1,2,...,jandj=1,2,...,kand k=1,2,...,n is introduced as

(a° Vaﬁy)/,k,l = _Aj(xa)‘ Ak(xﬂ)j 1,k,1Al(xy),>1,k71,l
- Ag(x ),szl( )] k—l,lAf(xy)j,k—l,l—l

- Ay(x) it B G )j,k,l—l Ax(x") -1k 1" (4.10)

2. The increments of a triple sequence of points at (j, [, k) are denoted as follows:

Aj() e = ) = (07) Ly e (4.11)
Ay(x” )]._W( = (xﬁ)j—l,l,k - (xﬂ)j—l,l—l,k’ (4.12)
Ak (xy)j—l,l—l,k = (xy)j—l,l—l,k - (xy)j—l,l—l,k—l’ (4.13)
Ay (xa)j,l,k = (xa);,z,k - (=) RV (4.14)
Ac) 0= )= ) (4.15)
A, (xV)l,,lkaf1 = (acV)j’,kaf1 - (xV)Hl*kal, (4.16)
Ar(x); = (7)1 = (%), 1y (4.17)
A/(xﬂ),zk 1= = (»” )/lk—l - (xﬁ)j—l,l,k—l’ (4.18)
Al(xy), Lik-1— ( ), Lik-1" (xy)j—l,l—l,k—l (4.19)

fore,8,y=0,1,2,3and/=1,2,...,jandj=1,2,...,kand k=1,2,...,n
The second combined finite hyper-surface element vector (A3 V"‘ﬂy),,l,k for o, B,y =
0,1,2,3and/=1,2,...,jandj=1,2,...,kand k=1,2,...,nis introduced as

(AS Vaﬂy)j,l,k =4 (xa)j,l,kA’(xﬁ)j-Ll,kAk(xy )/-1,1—1,k
- Ag(x7) ik Bk (") -1k (") Ji-1,k-1

AV (xa) Lk A (xﬂ ) k-1 Ay (xy ) i-1k-1° (4.20)

3. The increments of a triple sequence of points at (/, ], k) are denoted as follows:

Al(xa)l/kz( )zjk (x a)l—l,j,k’ (4.21)
A() jk = = (« )l—l,j,k - (xﬂ)l—l,j—l,k’ (4.22)
Ar() g =) gy = OF) g (4.23)
A () = () s = () a0 (4.24)
)1 = 0 p = () (4.25)
A = ) g = OF) Ly e (4.26)

>

)
k() e = () 0 = ) o (4.27)
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Al(xﬂ)l,j,k—l = (xﬂ)l,j,k—l - (xﬂ)lfl,j,k—l’ (4.28)

A, (xy)l—l,j,k—l = (xy)l—l,j,k—l - (xy)l—l,/’—l,k—l (4.29)

fore,8,y=0,1,2,3and/=1,2,...,jandj=1,2,...,kand k=1,2,...,n
The third combined finite hyper-surface element vector (A3V*f7), ik for a, B,y =
0,1,2,3and/=1,2,...,jandj=1,2,...,kand k =1,2,...,nis introduced as
3B _
(a’ve y)l,j,k = _Al(xa)z‘kA (x )1 1,1<Ak( )1 1j-Lk
- A )l;kAk( )1/-1,1<A1(xy)1,/_1,k-1

— Ax(x" )l,j,kAl(xﬁ)l,j,k—l A; (xy)l—l,j,k—l' (4.30)

4. The increments of a triple sequence of points at ([, k,j) are denoted as follows:

A(x®) i = () e = (%) Ly (4.31)
Ak, Lkj = (), Lkj T (xﬂ)l—l,k—l,j’ (4.32)
NN Lk-1/ = (" )l—l,k—l,j_ (xy)l—l,k—l,j—l’ (4.33)
Ar() ;= () s = () iap (4.34)
A F) gy = O7) sy = 0F) ey (4.35)
Ay = ) i = OF) Ly (4.36)
Aj() = ) s = (0) ey (4.37)
Al(xﬂ)zk; =" )lk; )~ ﬂ)l—l,k,j—l’ (4.38)
Ak (xy)l—l,k,j—l = (xy)l—l,k,j—l - (xy)l—l,k—l,j—l (4.39)

fore,B,y =0,1,2,3and[=1,2,...,jandj=1,2,...,kand k=1,2,...,n
The fourth combined finite hyper-surface element vector (A3V*7),, . for o, B,y =
0,1,2,3and/=1,2,...,jandj=1,2,...,kand k =1,2,...,n is introduced as

(a Vaﬁy)z,k,; = —A(x )lk;Ak(xﬂ)l—l,k,/‘Aj(xy)l—l,k—l,j
- Ak (xa)l,k,j Aj (xﬁ)l,k—l,j Al (xy)l,k—l,j—l

— A4 (xa)l,k,j Ay (xﬁ)l,k,j—l Ak (xy)l—l,k,j—l' (4.40)

5. The increments of a triple sequence of points at (k, /, /) are denoted as follows:

Ak(xa)k,z,/ = (xa)k,l,j - (xa)k—l,l,j’ (4.41)
Al(xﬂ)kfl,l,j = (xﬂ)k—l,l,j - (xﬁ)k—l,l—l,j’ (4.42)
Aj(x”) ki1 = ) 1y~ (") PEYRYRT (4.43)
Al(xa)k,l,j = (xa)k,l,j - (xa)k,l—l,j’ (4.44)
A, (xﬂ)k,l—l,j = (xﬁ)k,l—l,j - (xﬂ)k,l—l,j—l’ (4.45)
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A ) pajor = ) gajor = O )iy (4.46)
A ) g = () g = ) g0 (4.47)
Ak(xﬂ)kzl = )k,l,j—l - (xﬂ)k—l,l,j—l’ (4.48)
A ) = )~ O ) (4.49)

foreo,B,y =0,1,2,3and [ =1,2,...,jandj=1,2,...,kand k=1,2,...,n
The fifth combined finite hyper-surface element vector (A3VeP Ykujforo, B,y =0,1,2,3
and/=1,2,...,jandj=1,2,...,kand k =1,2,...,n is introduced as

(A Vaﬁy)k,z,j =—Ak (xa)k A (x )k—l,l,j Aj (xy)k—l,l—l,j
- Ag(x), 18 () 11,0k (xy)k,l—l,j—l

-4 (xa)kz;Ak( )k,l,j—lAl(xy)k—l,l,j—l' (4.50)

6. The increments of a triple sequence of points at (k,j,/) are denoted as follows:

Ar(@) = () = )i (4.51)
D)= ) = O )i (4.52)
A= 0= O )y (4.53)
A ) = ()= ) (4.54)
A,(xﬁ)k] U= = («’ )k,j—l,l_ (xﬁ)k,jfl,lfl’ (4.55)
A )i = O )i = )y (4.56)
Ar(a) = )= ) (4.57)
A ()0 =) = 7) (4.58)
A ), 1= = («” )k—l,j,l—l - (xy)k—l,j—l,l—l (4.59)

fora,B,y =0,1,2,3and[=1,2,...,jandj=1,2,...,kand k=1,2,...,n
The sixth combined finite hyper-surface element vector (A3V*7).;; for o, B,y =
0,1,2,3and/=1,2,...,jandj=1,2,...,kand k =1,2,...,n is introduced as

(AB Vaﬁy)k,/,l = _Ak(xa) j Aj(xﬁ)k—l,j,lAl(xy)k—l,j—l,l
= 8(x%),;,A il o+ )k,j—l,lAk(xy)k,j—l,l—l

-4 (xa)k; ! (xﬁ)k,j,l—l Aj (xy)kfl,j,l—l' (4.60)

The antisymmetric symbol in the 4D time-space is

+1 for even permutation of {0,1,2,3},
€% =45, =1 -1 for odd permutation of {0,1,2,3}, (4.61)

0  otherwise.
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Using the antisymmetric symbol in (4.61), the first antisymmetric finite hyper-surface el-
ement vector (A®V),);x;, the second antisymmetric finite hyper-surface element vector
(A3V,)j1k the third antisymmetric finite hyper-surface element vector (A3V),);;x, the
fourth antisymmetric finite hyper-surface element vector (A®V),);x;, the fifth antisym-
metric finite hyper-surface element vector (A3V),)x,;; and the sixth antisymmetric finite
hyper-surface element vector (A3V,); for £ =0,1,2,3and [ =1,2,...,jand j=1,2,...,k

and k =1,2,...,n are respectively introduced as

(A°Vii) i = %saﬁm(ﬁvaﬂy)ﬁm, (4.62)
(A%Via), i = %sam(ﬁvaﬂy)ﬂk, (4.63)
(A°Vid) i = %sam(ﬁv‘*ﬂy) Lk (4.64)
(A%Vid) = %sam(ﬁwﬂy) Ik (4.65)
(a? Vit = %Eaﬂw (a7 Vaﬂy)k,l,j’ (4.66)
(a? Vidji = %Saﬂw (A7 Vaﬂy)k,j,l’ (4.67)

where the indices are summed over «, 8,y =0,1,2,3.

4.2 Triangular quadruple integral for a 4-variable function

Assume that D is a domain and 9D is the boundary of the domain in the 4D time-
space, expressed in the Cartesian coordinates (t,x,7,z) € R*. Let X° = T = T(¢,%,%,2),
X=X =X(t,%,9,2), X2 =Y = Y(t,x,9,2), and X3 = Z = Z(t,x,7,2) be partially differen-
tiable functions with respect to ° = ¢, x' = x, % = y,and x> = z in D. There are 3! = 6 kinds

of triple sequences,

(x*) it = Likots Xies Vit Zi), (4.68)
(X )j,,,k = (Tju 0 X Vi Zji ) (4.69)
(x") Lk = (Tt Xijr Yijoo Z1j i) (4.70)
(x") ik = Tokojp Xikjs Yikjs Zik), (4.71)
(x™) it = Thotjs Xiotjo Yoot Zii ), (4.72)
(X0 = Tjs Xcjir Yiis Zicjit) (4.73)

for n=0,1,2,3and / =0,1,2,...,jand j=0,1,2,...,k and k = 0,1,2,...,n. There are six
alternatives for decomposition of six kinds of triple sequences (X*);x s, (X*) 1k, (X*)1j ks
XP)ikjr (XP)xpj» and (XH)gjy for p=0,1,2,3 and [ =1,2,...,jand j=1,2,...,k and k =
1,2,...,n.

As mentioned in the Introduction, the inappropriate kind of six sets of increments,
used in the previous article [6], is replaced by the appropriate kind of six sets of incre-

ments {An(x°)0,1,00 Ai(x)is0r A )jsembs {ARE 0,080 Ail)is0 ks A ()i} { AR 0,015
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Ai(x)o0,ijo A ()i} {21000 Ai(%)o,kis Ak} {AL()10,00 Ai(x°)kco,0
A ()i} and {A(x°)5,0,0, Ai(6° k00 A (8°)icjm} for § =0,1,2,3 and m =1,2,...,1 and
i=1,2,...,jandj,h=1,2,...,kand k = 1,2,...,n to calculate appropriate numerical values.

The following formulae have been revised based on the appropriate set of increments.
In order to prove Theorem 3, (X*); ks (X*)jn0r (XPF)1jkr (X¥)14s (XH)i 1 and (X*) 0 for
©nw=0,1,23and/=1,2,...,jandj=1,2,...,kand k =1,2,...,n are respectively modified
in Lemmata 4, 5, 6,7, 8, and 9.

There are 4! = 24 sets of possible partial increments for a 4-variable function.

1. The total increments of (X*)g 0 for £ =0,1,2,3 and 7 =1,2,...,k are denoted

m — (yH _(yH
Ah(X )o,h,o—(X )o,h,o (X )O,h—l,O
= X* (01,05 %0,1,00 Y0,1,05 20,1,0) — X" (£0,5-1,0s %0,1-1,05 Y0,5-1,0, Z0,h-1,0)-  (4.74)

The increments of A, (x%)g 0 for § =0,1,2,3 and # =1,2,...,k are denoted

Ao 0 = (oo = ()oporr (475)

The sets of possible partial increments of A,(X*)o 0 for u =0,1,2,3and h=1,2,...,k are
denoted
AX"[Aptono] = X" (£0,1,0,%0,8,05 Y0,1,0, 20,1,0) = X (£0,5-1,0, %0,5,0, Y0,1,05 20,1,0)s (4.76)
AX"[Apxon0] = X" (E0,1n-1,0,%0,1,05 Y0,1,0» Z0,1,0)
— X" (£0,1-1,0»%0,1-1,0» Y0,1,0 20,1,0) (4.77)
AX"[Apyonol = X" (to,5-1,0,%0,5-1,00 Y0,4,05 20,1,0)
— X" (£0,5-1,0,%0,1-1,0, Y0,4-1,01 20,1,0)> (4.78)
AX"[Anzo,n0] = X" (£0,1-1,0,%0,1-1,0 Y0,1-1,0» Z0,1,0)
— X" (t0,1-1,0,%0,1-1,01 ¥0,1-1,0, 20,4-1,0)- (4.79)

2. The total increments of (X*);x0 for © =0,1,2,3and i=1,2,...,jand k=1,2,...,n are
denoted

Ai(Xu)i,/<,0 = (Xu)i,k,o - (Xu)i—l,k,o
= X (84,0 %ik,00 Vi, 05 Zik,0) — X (£im1,k,05 im1,k,05 Vi-1k,05 Zi=1,k,0)- (4.80)
The increments of A,«(x‘s)i,k,o for6=0,1,2,3andi=1,2,...,jand k =1,2,...,n are denoted
s (.8 s
A, (x )i,k,O = (x )i,k,O - (x )i—l,k,()' (4.81)

The sets of possible partial increments of A;(X*);xo for © =0,1,2,3 and i =1,2,...,j and
k=1,2,...,n are denoted

AXP[Aitik0] = X" (i k,0s Xi k05 Vik,0 Zik,0) — X (Eim1,1,05 %ik,05 Visk 00 Zik,0)s (4.82)

AXP[Aixixo] = XM (Eimk,00 Xik,0s Vid05 Zik,0) — X (Eim1,k,05 Xic1,k,00 Vik,05 Zik,0)s (4.83)
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AX"[AYixo] = X (tic1,6,05 %1605 Vik05 Zik,0)

— XM (ti-1,k,00 Xi-1,k,05 Vi-1,k,00 Zik,0)s (4.84)
AX"[Aizigo] = X" (Eic1,k,00 %im1,6,05 Vic1,k,05 Zik,0)

— X" (ti1,4,00 Xi-1k,05 YiLk,05 Zi-1k,0)- (4.85)

3. The total increments of (X*)x, for © =0,1,2,3 and m=1,2,...,land j = 1,2,...,k
and k =1,2,...,n are denoted

m — (x* _(xn
Am(X )j,k,m - (X )j,k,m (X )j,k,m—l
= X" ks Xj s Vi ey Zj )
— X (8 k15 % k=15 Vjshm—15 Zj ym=1)- (4.86)

The increments of (x°);x,, for § = 0,1,2,3 and m = 1,2,...,/ and j = 1,2,...,k and k =
1,2,...,n are denoted

Ap (xls)j,k,m = (xa)j,k,m - (xa)j,k,m—l' (4.87)

The sets of possible partial increments of (X*);x, for © =0,1,2,3 and m =1,2,...,/ and
j=12,...,kand k=1,2,...,n are denoted

AX[Amtim) = X koms X ks Vjikms Zidean) = X G km=15 X eyms Vi Zj ) (4.88)
AXP A gom] = XH @ km=1 % ks Vj koms Zjikom)

— X (& k=15 %) =15 Vs Zj ey )s (4.89)
AXP A Yjaom] = X" (& k=15 %) kom=1s Yjskons Zj k)

= X" () o yn—15 Xj k=15 Vj k=15 Zjh)» (4.90)
AXP[Apzigm] = X (8 km1s % km-15 Vkom=15 Zjshym)

— X" (& ke m—15 %) k=15 Y om—1> Zjkm-1)- (4.91)

Lemma 4 In the case of (j, k,1) for © =0,1,2,3 and [ =1,2,...,jand j=1,2,...,k and k =
1,2,...,n, the following holds:

AX*[AR(x)on0]
o 00t Z

XH
( ) Ap®®)on0

Ap (xﬁ)o,h,o

k
ikl =
h=1

XM[A X )lkO] (x )
A(x(S lkO ! Lk,0

j
T A
Z A)(M[Am(x )/,k m)

- A (% )})k,m, (4.92)

where the index is summed over § = 0,1,2,3.
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Proof Using (4.74), (4.80), and (4.86), (X");jx, for u = 0,1,2,3 and / = 1,2,...,j and j =
. kand k=1,2,...,n is split into

k j !
(XM);kl (Xu)o 0ot Z Ap (XM)O,h,O + Z Ai(XM)i,k,O + Z Am(Xu)j,k,m' (4.93)
h=1 i=1 m=1
1. Substituting (4.76), (4.77), (4.78), and (4.79) into (4.74) for n = 0,1,2,3 and & =
1,2,...,k, we obtain

An(X") o, 0 = AX [Antopol + AX [Apxonol + AX [Apyouol + AX [Anzoo]

0,10
_AXPIARE)o 0]

An(#%) ., (4.94)
Ap(x3)o,n0 ( )O‘h’o

where the index is summed over § = 0,1,2, 3.
2. Substituting (4.82), (4.83), (4.84), and (4.85) into (4.80) for u = 0,1,2,3 and i =
2,...,jand k =1,2,...,n, we obtain

Ai(X"), 0 = DX [Aitigo] + AXM[Axigo]l + AXF[Aiko]l + AX [Aizigo]

_AXH A )iko]

A5, 4.95
Ai(x)ixo l( )”k‘o ( )

where the index is summed over § = 0,1,2, 3.
3. Substituting (4.88), (4.89), (4.90), and (4.91) into (4.86) for u =0,1,2,3 and m =
»landj=1,2,...,kand k=1,2,...,n, we obtain

Am(X”')j,k,m = A)(M[A;'nt/,k,m] + AX“[Amxj,k,m] + A)(p'[Amyj,k,m] + AXM[Aij,k,m]

_ AXH [Am(x(S )j,k,m]

A ()., 4.96
A (x); fom (s )Wq (4.96)

where the index is summed over § = 0,1,2,3.
Substituting (4.94), (4.95), and (4.96) into (4.93), we obtain (4.92). O

In a similar manner, we obtain the cases of (j,/,k), (1,}, k), (l,k,}), (k,1,j), and (k,j,I) as
follows.

Lemma 5 [n the case of (j,[,k) for w =0,1,2,3 and [ =1,2,...,jand j=1,2,...,k and k =
1,2,...,n, the following holds:

AXP[AR(x*)0,0,1]
Ap(*®)o,0,n

(Xﬂ),',z,k = (X") 000 * Z

k
h=1

L AXP[A);04]
" a0

Ap (xg)o,o,h

AXH [Am (sz )j,m,k]

)
A (%2)jm i B () g (4.97)

m=1

where the index is summed over § =0,1,2,3.
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Lemma 6 In the case of (1,j,k) for u =0,1,2,3 and [ =1,2,...

1,2,...,n, the following holds:

k
AXH[An(*)o,01]
(x*) v —Ah(xs)
1j, k 0 0,0 S 0,0,h
’ — D)oo
j
XM[A 0 lk]
Z A (x ) A; (x )O,i,k
1 0,i,k
AXM[Am(xs)m,j,k] A (x(g)
el Am(»’ca)m,j,k " mjk’

where the index is summed over § =0,1,2,3.

Lemma 7 In the case of (I, k,j) for . =0,1,2,3 and [ =1,2,...

1,2,...,n, the following holds:

k
AX*[An(%°)00]
L S
(x )l,k,j ooo + ; Ao Ah(x )o,h,o
i XM[A X )Okt]A (x)

A; (x )Okl Ok
AXM[Am(xs)m,k,j] (x )

el Am(»’ca)m,k,j " ik’

where the index is summed over § = 0,1,2,3.

Lemma 8 In the case of (k,1,j) for  =0,1,2,3 and [ =1,2,...

1,2,...,n, the following holds:

AX* AR () 50,0]
0 00t Z

Xﬂ
( ) Ap®)n0,0

kij Ap (xﬁ)h,o,o

k

h=1
AXM[A X )kOl] (x )

A; (x k,0,i k.

A8 ) ioms Am (x )k,m,j’

j
10 Do v
Z A)(#[Am(x )k m;]

where the index is summed over § = 0,1,2, 3.

Lemma 9 In the case of (k,j,1) for u =0,1,2,3 and [ =1,2,...

1,2,...,n, the following holds:

AXP[ARE®)10,0]

(Xﬂ)k,;,z = (Xu)o,o,o + ; Ah(x‘s)h,o,o’ — A (xé)h,o,o

Jandj=12,...,

Jjandj=1,2,...,

Jandj=1,2,...,

Jandj=1,2,...,

k and k =

(4.98)

k and k =

(4.99)

k and k =

(4.100)

k and k =
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XM[A X )kzO] (x )
Ao 0

A (%) ki’ (4.101)

j
P v e
Z AXM[A (x )k/m]

x5 )k/ m
where the index is summed over § =0,1,2,3.

Our triangular triple and quadruple integrals and the divergence theorem in the 4D
time-space are shown as follows.

Definition 7 The triangular hyper-surface triple integral in the 4D time-space
[[[,p X" d*V,, is defined as

/ / X*d?V,
aD

n k j
= Tim > 7Y D LX) (D) + (X, (A2V0), e+ (X), (APV2)
k=1 j-1 =1
+ (X#)l,k,/(ASVI‘)l,k,j (X" )kl;(A Vl‘)k,l,j + (X" )k;z(ASV )k,j,l]’ (4.102)

where 9D is the boundary of a domain, d®V,, is the antisymmetric infinitesimal hyper-
surface element vector and the index is summed over 1 =0,1,2,3.

Definition 8 The triangular quadruple integral for integrands of which are partial differ-
entials in the 4D time-space [/[[,, 7% dx"® d®V,, is defined as

dx”"s
/j/ /]‘ //:# 8
8 X

. LS [ AXH AL ()0 o]
=gg222{[2 Aol )

h=1

J s
AXHIA;(*)iko0] s
b 32 2 0D A (68
2 Ai(x)ix0 #)ixo

+ Z = Am (xs)j,k,m:| (A3 V#)j,k,l
m=1

A )]km

o
Ly MA( ), ] V),

m=1 /"‘ k

' |:2k1: AX:[ht;)o OZOh] Joos* ,Z;: AXZ[(Ax )Oz;lk] Ao i
5 %Au] (8%Vi) 0
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X j
| Al ), e e ),
1

Ap®®)on0 ” )0,k

AX“[A (x )mk/]

Al >m,k,,-] (V)

1 m mk/

!
|: AX“[Ah(x )h,0,0] AXT LA ool 5 () XI: AXP[A(x)k,0,1] ()
h,0,0 k,0,i

Ap(x®)n0,0 Ak,

h=1 i=1

!
AXH [Am(xs)k,m,']
+ Z B (xs)k,m,j:| (AB v/‘)k,l,j

el Am(»’c(s)k,m,j

k

Iy AXM[AWE o] i AXM[Ay(x )klo]A )

pa An()noo hOO = N k0

!

AX“[Am(x )k]m] 3

Z () Am (x )k,j,m (A Vu)k,j,l ’ (4.103)
m= )M

where D is a domain and the indices are summed over §,« =0,1,2,3.
The following proposition is necessary for the condition (4.105) in Theorem 3.

Proposition 3 Denote constants as C° = C*, C* = C*, C* = C?, and C® = C?, then

n

kK
c* ///aDdSV C“)EEOZZZ[(ABVM);,kﬂ (ASVH)],J’](+(A3VM)U,](

k=1 j=1 =1

+ (Agvﬂ)l,k,j + (A7 Vi iy + (a? Vi)l (4.104)

holds, where the index is summed over u = 0,1,2,3.

Proof The proof of this proposition is shown in The divergence theorem of a triangular
integral [6]. O

The following is the revised version of the theorem shown in The divergence theorem of
a triangular integral [6].

Theorem 3 (The divergence theorem of the triangular integral in the 4D time-space) As-
sume that D is a domain and 3D is the boundary of the domain in the 4D time-space,
expressed in the Cartesian coordinates (t,x,y,z) € R*. Let X" for u = 0,1,2,3 be a set of
partially differentiable functions with respect to x* forv = 0,1,2,3 in D, where X* = X"*(x").
In the case of a closed 3D hyper-surface which satisfies

cr / / " a*v, =0, (4.105)

the divergence theorem of the triangular integral in the 4D time-space holds:

1% 3 XW# /ms 33
X4 Ly dx AV, (4.106)

where the indices are summed over 8, = 0,1,2,3 and C* are constants.
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Proof Combining (4.92) with (4.62), combining (4.97) with (4.63), combining (4.98) with
(4.64), combining (4.99) with (4.65), combining (4.100) with (4.66) and combining (4.101)
with (4.67) for[=1,2,...,jandj=1,2,...,kand k =1,2,...,n, we obtain

k
Z Z[(XM),;k,z(A3 Vu)j,k,z + (XH);J,k(A3 Vﬂ)j,z,k + (Xu)l,j,k(AS Vﬂ)z,j,k

Jj
n Kk d K AX“[Ah(x‘S)O,ho L AXP[A)ix0]
= ZZ Z Au(x) 0h0+Z A;(xd) A~(x )zk,()
k=1 j=1 1=1 LLh=1 hA7)0,10 i=1 k0

AX'M[Am(x )}km]

Ay (% )},k,m

k J 4
+|:ZM ooh+ZAXM[A x)lOk]Ai(x )zO,k

Ap(*)0,0,1 — Aok

A (% ), k,m:| (a° V#)/’,k,l

A)(M[Am(xls)/mk]

!
o, s s
+ Z WAm(x )}.,m,k] (A Vﬂ)ﬂ,k

m
) j
AXH[A (a0 AXF[A)o,

= Ap(¥)oon T A()ok
!
AXFIA (%) k] s ;
+ — TPV AL(x ’ A3V ’
; Ay (X% ) 1 j i a4 )m,/,k ( M)z,,,k
k
o 3 AX A donol iAX"[A oy 0
h=1 Ah(xa)o,h,o OhO - xé)o ki 0,k,i

AXH[A,, (x )mk]]

. Z e >m,k,,-] (V)

x mk/

k j 5
AXP[ARX®)n0,0] 5 AX*A(%)k0,] 5
[ ol S A ),

5
~  Au)noo =

!
AXH [Am(xs)k,m,']
+ Z B (xs)k,m,j:| (AB V/‘)k,l,j

el Am(xa)k,m,j

k A o] L AXP[A ) 50]
{Zw hoo Z “ kOA(x)k,i,o

: Ap®®)n0,0 ” A%k i0

L AXH[A &)
Z#A () | (A°Vi)

= k/m

ko j
ooo ZZ A V 1/<1 (ABVM) (A3V )l,j,k

(4.107)
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where the indices are summed over §, i = 0,1, 2, 3. Using Proposition 3, (4.105) is rewritten
as

A (AVL) g+ (A%V) ] =0, (4.108)

k,j,l]

where the index is summed over u = 0,1,2,3. The limit at infinity n — oo of (4.107) is
expressed as (4.106) by Definitions 7 and 8 under the condition of a closed hyper-surface,
(4.108). O

The triangular quadruple integral for a 4-variable function w = w(t,x,y,2) in the 4D
time-space by the infinitesimal hyper-volume element 4* is given as

////Dw’ﬁgzi////DWd’CWWV& (4.109)

where the index is summed over § = 0,1,2, 3. In component representation, (4.109) is ex-
pressed as

f///DWd4Q=i////Dwdt’”dBVt+i////Dwdx’”d?’Vx
* % / / / fDWddegVN % / / / /D wdz" d>V.. (4.110)

The calculation process of the triangular quadruple integral in the 4D time-space is pre-
cisely defined as follows.

Let w = w(t,x,7,z) be a piecewise smooth function in the 4D time-space, expressed in
the Cartesian coordinates (¢,x,y,z) € R%.

Definition 9 The triangular quadruple integral for a 4-variable function w = w(t, x,7, 2)
in the 4D time-space 1 [[[[, wdx"" d®Vy is defined as

+ Z w((x) e (xﬂ) ik (€29) ik (xé) j,k,m) Am (xs) j,k,m] (A3 Vs) ik
m
k
P P I ST

j
+ Z w((x) LK (") s («") Lk (xg)t,o,k) A (xg)t,o,k

i=1
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+

MN

w( (xa ) ik (xﬁ ) Lk (xy ) Lk (xB ) j,m,k) Am (xs ) j,m,k] (A3 Vs ) ik
m=1
k

+ |:Z W((xa)l,j,k’ (xﬁ)z,/,k’ (xy)l,j,k’ (xs)o,o,h) Ap (xs)o,o,h

h=1

j
+ Z W((xa)l,j,k’ (xﬂ)l,j,k’ (xy)l,j,k’ (xa)o,i,k) A (xa)o,i,k

!
+ Z W((xa)l,j,k’ (xﬂ)z,/,k’ (xy)l,j,k’ (xa)m,j,k) Am (xa)m,j,k] (A%Vs )l,j,k

+ |:Z W((xa)z,k,;' (xﬁ)l,k,j’ (xy)l,k,j’ ( )o h 0) Ah( )0 1,0

S () () () <x3>,,,,k,,>Am<x8>m,k,j] (Vi)

, [Zw«xm () () ()00 ),

+
M\
—_
—
K
R
N—
>~
Z
=
—_
X
=
N—
>
.
=
—
N—
>~
Z
=
—
=2
SN—
~
[=)
N—
—
=2
N—
>~
[=)

+ Z W((xa)k,j,l’ (xﬂ)k,j,l’ (" )k,/’,l’ (xs)k,j,m) Am (xs)k,/,m:| (AS Vﬁ)k,j,l ]

m=1

fora #B,a#y,a#8,B#y,B#8, v #Sanda, B,y =0,1,2,3 as the indices of variable of
function w = w(¢, x,y, z), where D is a domain and the index is summed over § = 0,1,2,3.

The revised corollary shown below derived from Theorem 3 is the 4D version of Corol-

Corollary 3 (A corollary of Theorem 3) Assume that D is a domain and 9D is the
boundary of the domain in the 4D time-space, expressed in the Cartesian coordinates
(t,%,9,2) € R*. Let X* for u = 0,1,2,3 be a set of partially differentiable functions with
respect to x* forv =0,1,2,3 in D, where X* = X*(x"). In the case of

o e
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where w = w(t, x,¥,z) is a 4-variable function and the index is summed over n = 0,1,2,3,

the following holds:
aXH
= =w. (4.113)
ox#

Proof Substituting (4.106) and (4.109) into (4.112), it is rewritten as

X" ms g3 1 ms g3
s ax" d’Vv, = 1 wdx""° d’ Vs, (4.114)
D

where the indices are summed over §, u = 0,1,2, 3. Substituting (4.103) and (4.111) into

(4.114), it is expressed as

n k j k S
. AXH[Ap(x°)on0]
i [ A

J s
AXH[A;(x)ixo0] 5
p 32 i JikO] A
Z Ai(*)ik0 )ik

l
AXP[A () ko] 1
+ Z #AM(’CS)/,k,m] g,gaﬂwt(A ve y);k,l

AX“ [AL(x)5,0,0] 4 AXPA(x)k,i0] 5
A (0 ()00 D AN Al 50
#(°)n0,0 i1 i(x°)k,5,0

+

) Am(x(s)j,k,m
k
ZM i AXUAG 0]
. An(¥)oon ooh — A0k i i,0,k
I
AXM[Am(x )/mk] 1 3
+ _— X —g A3yer).
; A (x0)j i ) 3! apn )i
k j 5
AXP[A()0,0,1] AXM[A(x%)0,:x] 5
+ T S et s LTIy NP N
|:h2=1: An(x%)o,0,n ( )O’O’h ; Ai(x)o,ik i )Oﬂvk
l
AXM[Am(x m;k] 1 3
+ —A ) =eusy (APVEEYY
; Ay () j nl )’"’f’k 3! pru )1,,,;(
k j 5
AXH] Ah(x )o,i0] AX*A(%)o k] s
w3 T O AL () o+ D e A () o
I
AXH[Ay, (x )mk/] 1
* Z (—)A'n(x )m,k,] 3,8wﬁyu(A 4 ﬂy) Lk
m=1 Ay m,k,j
k j
AXF[Ap(x )hoo] AXHA(P)r0.]
+ + A (x .
|:h2=1: Ah(xé)hOO hOO lZ=1: A (x )ka ( )/(,O,z
l
AXM[Am(x )km;] 1 3
+ —A x —&, yepry
= A )kmy iy 3! pru (A i

1
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]
AXPTA (%) jm] 1
+ Z —Am(:;)k’jvm] m Ay (xs)k’j’m] ggaﬂw (A3 vaﬂy)k#}
1 k k
T4 Jim, 21: Z [ |:Z w((*) 4 (xﬂ)j,k,l’ (xy)j,k,l’ () o0) A5 (%) 10
o

Jj
+ Z W((xa)/,k,l’ (xﬂ);,k,z' (") s (xs)i,k,o) A (xB)i,k,O

+

1
Z W((xa)/,k,z’ (xﬁ)j,k,l’ (xy)j,k,l’ (xs)j,k,m) Am (xs)j,k,m] S,Saﬂyﬁ(A 4 ﬁy); ki

1
Y ) ) () <x3>m,k,,>Am<x5>m,k,,] L8V,
k
D s 0 )5
W((xa)k,z,;’ (xﬁ)k,z,," (xy)k,l,] (x 6)ka)A (x S)kOl
1
() s <x3>k,m,,>Am<x5>k,m,,] L8V,

m=
k
+ |:Z w k} o ( k; P (xy)k,j,l’ (xs)h,o,o) Ap (xs)h,o,o
1
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j
+ Z W((xa)k,j,l’ (xﬁ)k,j,l’ (xy)k,j,l’ (xs)k,i,o) Ai(xg)k,i,o
-1

!
+

() () () <x5>k,,,m>Am<x6>k,,-,m]

m=1

1 3y,
x 5ea,gys(A 1% ﬁy)kﬂ}, (4.115)
where the indices are summed over «, 8,v,8, u = 0,1,2, 3. In order for (4.115) to hold for
any value of integral variables, the following 3 x 3! = 18 kinds of formulae in three cate-
gories are required.

1. The formulae for o, 8,y,8 =0,1,2,3and 1 =1,2,...,k,

AX* AR )on0] 1

li —
Ah(xa)l(f,l;«l,o—’o Ap®®)on0 31 by
. 1
= (&) &) &) () 10) 7Bt (4.116)
lim AXP[ARX®)0,0,1] 18
A)oon—0  Ap(¥)oon 3! “pri
1
= ()00 ()00 ()0 () 0) g1 5y (4-117)
lim AXP[AR(x*)0,0,1] lg
Ap®)o,0i—0 Ah(x(s)o,o,h 3! “prn
1
= () 0 &) g ) 0 (). 0,) 78 (4-118)
lim AX*[AR(x)on0] lg
Ap)o,n0—0 Ah(xa)o,h,o 3! epri
o 1
=w((» )l,k,j’ (xﬂ)l,k,j’ (*") Lk} (xa)(),h,o) 1 Gy (4.119)
lim AXP[ARE®)n0,0] 18
Ap)o0—0  Ap(X®)poo 3! P
1
= w((*) (xﬁ)k,l,j’ () (*')400) 21 5ebr® (4.120)
lim AXP[ AR n0,0] lg
A oo—0  Ap(X)poo 3! “pri
1
=w((@) 0 )i @) () 00) TR (4.121)

where the index is summed over u = 0,1,2,3.
2. The formulae for o, 8,7,6 =0,1,2,3and i = 1,2,...,jand k =1,2,...,n,

lim AXP[A(x)ix0] lg
Ai(xa)i‘k‘gao Ai(xa)i,kyo 3! By

1
=w((@) o ) @), (F)0) TR (4.122)
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lim AXH[A(%)i04] lg
Ai(x);0,,—0 Ai(xa)i,o,k 3! eprie

1
- W((xa)i,l,k’ (xﬁ)j,l,k’ (xy)j,l,k’ (xa)i,o,k) 1 b

lim AX[A(x)0,ix] lg
Ai(#%)o,;k—0 Ai(xs)o,i,k 3! “hri
1
= W((xa)l,j,k’ (xﬂ)l,j,k’ (xy)l,j,k’ (xa)(),i,k) 1 Caprds

AXP[A; ()] 1

lim §8aﬁw

Ai(@)o k=0 Ai(xa)o,k,i
1
= W((xa)l,k,/’ (xﬁ)l,k,j’ (xy)l,k,j’ (xa)o,k,i) a%ﬂy&

AXP[A(x k0] 1

lim 31 6ebri

Ai(*0)g0,—0 Ai(x)i0,i

1
= W((xa)k,l,j’ (xﬁ)k,l,j’ (xy)k,l,j’ (xa)k,o,i) g1 Cabrd

i AXP[A*)x 0] le
Ai(¥)gi0—0 Ai(xa)k,t,o 3! “pru
1
= W((xa)k.j,l’ (xﬂ)k,j,z’ (xy)k,j,l’ (xa)k,i,o) 71 Cabrd

where the index is summed over i = 0,1,2,3.

(4.123)

(4.124)

(4.125)

(4.126)

(4.127)

3. The formulae for «,8,y,6 = 0,1,2,3 and m = 1,2,...,/ and j = 1,2,...,k and k =

1,2,...,n,

lim AXH [Am(xa)j,k,m] lg
An't(xﬁ)j,k,m_’o Am(xa)j,k,m 3! Py

1
= w((»" )j,k,l’ (") ikl («") ikl () j,k,m) g1 abrd

lim AX”[Am(xS)]’,m,k] ig
Am(xa)j,m_kao Am(x‘s),«,m,k 3! “bri

1
=w((x%) ik ("ﬂ) Lk («") Lk (xa) j,m,k) Zlgaﬁy&

lim AXM[Am(xa)m,j,k] l&‘
Am(xa)m‘/,keo A,»(x‘s)m,j,k 3! Py

1
= W((xa)l,j,k’ (xﬁ)z,;,k’ (xy)l,j,k’ (xa)m,j,k) 1 Capr
1 AX/L[Am(xa)m,k,j] 18
Am(x‘s)m’k’]-—w Am(x‘s)m,k,j 3! aByu
1
= W((xa)z,k,/’ (xﬂ)z,k,;’ (xy)l,k,j’ (xa)m,k,j) g1 by

lim AXH [Am(xa)k,m,j] 18
An't(xﬁ)k,m,j_“) Am(xs)k,m,j 3! apyi

1
= W((xa)k,l,j’ (xﬂ)k,l,j’ (xy)k,l,j’ (xa)k,m,j) g1 Cabrd

(4.128)

(4.129)

(4.130)

(4.131)

(4.132)
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AXH [Am(xa)k,j,m] 1

li — -
Am<xﬁl>i?,m—>o Ay (%) ke jm 31°Prn
1
= (@) 0 )i O &) sm) TR (4.133)

where the index is summed over u = 0,1,2,3.

In the 4D time-space, 3£4py,£7° = 8, holds for 8, 11 = 0,1,2,3, where the indices are
summed over «, 8,y = 0,1,2,3. We therefore obtain %eaﬂy(;g“ﬂ”‘s =1, where the indices
are summed over «, 8,¥,8 = 0,1,2,3. Multiplying by £*#7 both sides of the 18 kinds of
formulae (4.116), (4-117), (4-118), (4.119), (4.120), (4.121), (4.122), (4.123), (4.124), (4.125),
(4.126), (4.127), (4.128), (4.129), (4.130), (4.131), (4.132), and (4.133), they are reduced to
the differential equation (4.113). O

Appendix 1: Calculations for Example 1 in detail
The value of limy,_, 00 Y y_; Xky3 Ayx in (2.43) is

n
. 2
Jim Z XYk AYk
k=1
n
=ab® lim Z COS Pk sin® Or(sin gy — sin @g_1)

n—00

k=1

=ab® lim Zcos(kz—n> sin? (kz—n> {sin|:/<2—ﬂ] - sin[(k - 1)2_71:| }
e k=1 n " " "

1
= Enabg. (A1)

The value of lim,,, o0 > y_; X2¥x Axy in (2.43) is

n
lim Zx,%ykAxk
n— o0 ](71

n
=a’b lim Z cos2 @y sin @i (cos g — cos g_1)
n—00 k_l

- 2 2 2 2
=a’b lim Zcos2 (k—ﬂ) sin(k—n> {cos|:k—ni| - cos[(k - 1)—71] }
n—00 Py n n n n
= -—na’b. (A.2)

The value of lim,_o0 Y 1, Z/'.‘zl x]? Ax;Ayy in (2.44) is

n k
nlinolo Z Z xl2 Axj Ay

k=1 j=1
n k

3 1 2 . .
- 1 E E . _ - _ ~
a bnlm 2.2 cos” gj(cos ¢; — cos @j_1)(sin @x — singr_1)
1 j=
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n & 2 2w 2
= aanlirrgo Z ZCOSZ (]7> {cos[j7] - cos[(]’ - 1)7:| }

k=1 j=1

X {sin[kz—ﬂ} - sin|:(k - 1)2_71] }
n n

= Zmz?'b. (A.3)

The value of lim, oo Y Z]’.(:I y2Ax;Ayg in (2.44) is

n k
. 2 .
lim kZ; leykAx;Ayk
=1 j=

n k

3 4. .2 . .
=ab® lim Y . — oS @ - ;
ab Jim 2.2 sin” gy (cos @; — cos g;_;)(sin ¢y — sin gy_1)
e -

_b31. n k _2/27T ‘27-[ . 127’[
—a nl)n;oZZsm (<7>{cos|:]7] —cos[(]— )7“

k=1 j=1

X {sin[kz—ﬂ} - sin|:(k - 1)2_71] }
n n

1
= —mab®. (A.4)
4

The value of lim, oo Y 1, Z]'.;l x2 Axg Ay; in (2.44) is

n k
nli)rgo Z Zx,%Axkij

k=1 j=1
n k
= aSbHILngo Z Z cos? @i (cos g — cos gi_1)(sin @; — sing;_1)
k=1 j=1
n & 2 27 2
=a’b lim Z Zcos2 <k—> :cos I:k—] - cos[(k - 1)—] }
n—00 1 o n n n
2 2
X {sin[j—ﬂ:| - sin|:(/'— 1)—7[] }
n n
1 3p (A.5)
=——ma’b. .
4

The value of lim,_oo Y 1, Z]'.‘zl yjz AxAyjin (2.44) is

n k
. 2 i
)EEO;Z;% Ax,Ay,
=1 j=

n k

3 . . 2 . .
=ab HIHEO kX: 21: sin” @;(cos @i — cos g_1)(sin¢; — sing;_;)
=1 j=
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_ a7 i "X . of .27 /2n k 1271
=a ng&ZZsm (]7>{cos|:(7]—cos[ - )7]}

k=1 j=1

fuf ] i)

1
= —Znab‘o’. (A.6)

Appendix 2: Calculations for Example 2 in detail
1. Calculation of (3.62) for Example 2 in detail.
Since Axzj_14 = 0 and Agzjx = 0, the value of lim,, oo Y ;_ 12 L Xik(A%0,)ix is

i 33 ()

k=1 j=1

=— hm szlk ylk +z k (A,y/kAkz, 1k + ArzZik Ajyn-1)

4 n—00
k=1 j=1

- — hm szlk y/k"' k (Ajzjx Axyj1x + AkYjxAjzjg-1)

4 n—o0
k=1 j=1

5 n k
a
=0-— lim Z Z sin 6 cos @i (sin2 0; sin? gy + cos? 8,»)

4 n—oo
k=1 j=1

x (cos 8 — cos 6;_1)(sin 6;_; + sin 6;)(sin ¢ — sin ¢i_1)

3322 o (o) o)
L) o (5 Jon(5 ) o)
[on(2he) -an(2520)]

2 5
=—ma’. B.1
I (B.1)

Since Ajzi_1,; = 0 and Ajzi; = 0, the value of lim,, o0 Y ;_; Z 1 Xk, (A? Ox )k, is

n k
lim > Xey(A%0),,
T =
1 n k
== lim Z Zxk,j(yij + 23 ;) (DiyrjAjzrorj + Ajza Aryijo1)

4 n—o0
k=1 j=1

k
1., <
— = lim Z Zx"'f (k) + 22;) (DrzrjDyi-rj + Ay Axzijo1)

4 n—oo
k=1 j=1

5 n k
a
=0-— lim Z Z sin 6k cos g; (sin® 6 sin® g; + cos® 6y)

4 n—oo
k=1 j=1
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x (cos O — cos Ox_1)(sinbx_; + sin O)(sin @; — sing;_1)

5 B oo o o))
) ol )]
[ul) (5]

= Erm . (B.2)

:I\

Substituting (B.1) and (B.2) into (3.62), we obtain
/ Xd?c, = inas (B.3)
aD st .

2. Calculation of (3.63) for Example 2 in detail.
Since Agzj_1x = 0 and Az = 0, the value of lim, o > _; Z L Yik(A%0y); is

n k
. 2
i 33 ()
k=1 j=1
1 n k
=2 nhjgo Z ny,k (Z/,k + xj,k)(AJZJvakx}—Lk + Arxik Ajzjj-1)
k=1 j=1

- l1m ZZ)/};( Zk +x Ax,kAkz, Lk + Akzix Ajxj k1)

4 n—o0
k=1 j=1

n k
ﬂS

_ . . . . 2 i . 2 . 2
= ngrgOZZst] sin @y (cos” 0; + sin® 6; cos” ¢y )
k=1 j=1

x (cos 6 — cos 6;_1)(sin6;_; + sin 6;)(cos g — cos gx_1) + 0

- 332 sn(a)o (L) s (Lo (2|
L) o5 () ()
Jeos(2e) e (24225

2 5

= Ena . (B.4)

Since Ajzi_1,; = 0 and Ajzi; = 0, the value of lim,, o0 Y f_; lele Yk,j(A2ay)k,j is

n k
nlingo Z Z Yk'j(Azo'y)k’l

k=1 j-1
1 n k
: 2 2
= nlgrolo Z Zyk,j(zk,/ + ka)(AkszA,xk,l,j + Ajxej Arzij-1)

k=1 j=1


http://www.advancesindifferenceequations.com/content/2014/1/89

Tokunaga Advances in Difference Equations 2014, 2014:89

Page 45 of 53
http://www.advancesindifferenceequations.com/content/2014/1/89

1 n k

: 2 2
-5 lim Z E (i + %5 ) (DakicjAjzkorj + Dz Arkicjo1)
k=1 j=1

n k
6{5

=~ lim Z Z sin 6 sin g;(cos® Gk + sin” 6y cos® g))

4 n—oco
k=1 j=1

x (cos O — cos Ox_1)(sinGx_; + sinO)(cos ¢; — cos ;) + 0
=— l1m ZZsm sin 2171 cos? kn + sin? En cos? 2171
4 n—oo P n n n n
() (“ )|[sn(55) o0
x |cos| —m ) —cos| —m sin| —— | +sin| -7
n n n n
X |:cos(2£7r) —cos(2};n>]
n n
2 5

= Erm . (B.5)

Substituting (B.4) and (B.5) into (3.63), we obtain

4
// deoy = Enas. (B.6)
aD

3. Calculation of (3.64) for Example 2 in detail.
The value of lim,,_, o0 Y ;_; Z 1 Zik(A%0,);x is

n k
Jim > Y Zx(a%)

k=1 j=1

3 e )+ A

k=1 j=1

1 n k

. 2 2
~2 nlilgo Z Z Zjk (x,,k + y,,k) (Ayjx Arxiori + DiXixAjyjk-1)

k=1 j=1

615 n k
=ZMT&E:E:am@QH@@m@—ﬁn@ﬂ@nw—ﬁnwA)

k=1 j=1

x (cos @k sin6;_ + cos gy_1 sin))
615 n k
— — lim Z Z cos ; sin? 0;(sin6; — sin6;_)(cos ¢ — cos gx_1)

4 n—oo
k=1 j=1

X (sin @y sinf;_; + sin ¢g_; sin6})

5 i 3o L)L)

k=1 j=1

()5 o) )
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i) i) )

k

e E (L))

k=1 j=1

()5 o) o)
ol o) e )

1 1
=—na®+ —na’
15 15
2
= BnaS. (B.7)

The value of lim,,—, 00 >z 12 1 Zij (Ao, s

n k
Jim Z Z Zk’j(Azaz)kJ

k=1 j=1
1 n k
. 2 2
= Jim DO Sz (37 + 5 ) (At Ay + Ajyie A1)
k=1 j=1
1 n k
. 2 2
-2 nll)nolo Z sz,/(ka + yk,j)(Akyk,jijk_L}- + A AxYij-1)
k=1 j=1
ﬂS n k
7 nll>rgo Z Z 08 O sin? O (sin O — sin Ox_1)(sin @j —sing;_1)
k=1 j=1

x (cos ¢; sin Bx_; + cos ¢;_; sin )
d5 n k
— — lim Z Z cos O sin® Ok (sin O — sin Hx_;)(cos @j — cos @j_1)

4 n—oo
k=1 j=1

X (sin @ sinO_ + sin ;_ sin )

- ZJH&ZZCOS( )i ()

k=1 j=1

ofte) (5 o) (52
oot 5 )
)

ST CRRCY

k=1 j=1

olte) (5 )52
e 5 )
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1 1
=—na’+—na’
15 15
2
=—na’
15

Substituting (B.7) and (B.8) into (3.64), we obtain

4
// Zd%, = —na°.

4. Calculation of (3.66) for Example 2 in detail.

(B.8)

(B.9)

. 1q: n k k 2 .
Since Ajxo,, = 0, the value of 3 lim,, o0 ) i, 21':1 D a1 X0 Vider Ziie) Ao (A% 0k is

1 n k k
= Tim >N " glwom ik Z4) Anxon(A%0y),

3 n—oo
k=1 j=1 h=1

=0.

(B.10)

. 171: n k j
Since Axzj 14 = 0 and Agzjx = 0, the value of 3 lim, . Dk ijl th=1 (i Vi Zjk) X

Aixii(A%0,)k is

Wi
T=
$3
™
™

EM\.

=8
R
=
NS
T
[P
>
=
>
(3%
2
>~

k
a
=0-— lim Z Z(Sin2 6, cos? Ok + sin? 0; sin? Ok + cos? 9;)

x (sin§; — sin6;_1) cos g (cos 6; — cos 6_1)

x (sinf;_1 + sin6;)(sin ¢y — sin @x_1)

(B.11)
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. 11 n k k
Since Ajzx_1; = 0 and Ajzi; = 0, the value of 31lim, . )y, Z/:l D ne1 X005 Vi 2k ) X
2 .
Apxp (A0, is

k  k
1 n
g}’Illpgozqu(xhoyykpzk])Ahth(A ax)k]
-1 j=1 h-1
1 n k k
= gnlingo apa hX;(xho + Vi +zk])Ahxho(Akyk]A Zk-1; + A Zk]Akykj 1)
=1 j= =

Kok
1 ..
=~ 1im Y NN (w50 + 97 + Zy) Ao Akzk Akt + A Arzij-1)

k Kk
a
=0-— lim Z Z sin? 6, + sin® 0 sin? @j + cos Qk) (sin @y, — sinOy,_1)
j=1 h=1

= _“6_5”1320 nl ég[sinz(gn) + sin2<§n> sin® (2£n> +cosz(§n):|
IR HEOR )
[(t51n) vsn( ) [em(aLr) sz 1)

- 0. (B.12)

=

~ N

E ‘

. 17 k j
Since Ajzi_1; = 0 and Ajz; = 0, the value of 3lim, . Y ke ijl M G Vi 2 j) X
2 .
Ay i(A%0y )k is

k=1 j=1 i=1
6l5 n k /
=0-— lim Z Z(Sin2 O cos? ©; + sin® 6 sin? @i+ cos? Qk)
6 n—oo -

x sin O (cos @; — cos ¢;_1)(cos Oy — cos Or_1)

X (sinG_1 + sin 6)(sin g; — sin ;1)

B S Dol e

k=1 j=1 i=1

k j k
+ sin2<—n) sin? <2£n> + cos? <—n>]
n n n
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=—mna’. (B.13)

Substituting (B.10), (B.11), (B.12), and (B.13) into (3.66), we obtain

1 4
3 /// qdx" d*o, = EnaS. (B.14)
D

5. Calculation of (3.67) for Example 2 in detail.
Since Apyo, = 0, the value of 3 lim,—o0 Y lele SN a0 Yo Zix) Dnyou(A20,)ix is

k  k

D lim ZZZq(x,k,yo %K) Diyon(Boy) = 0. (B.15)

3 n—oo
k=1 j=1 h=1

. 1q: n k J
Since Axzj_1x = 0 and Agzjx = 0, the value of 3 lim, .o )}, 21':1 Y i1 Ao Vi Zjk) X

Ayir(A%0y) is

=1 j=1 i=1
1 n k j
= Enlin;o Z( X+ Vi + Za) Ayide(Ajz e Aijo e + Axjpe Az )
k=1 j=1 i=1

=1

Il
Q
=
=i
I
ii >~
—
-
—_
%)
Z.
=
>
o]
]
@
hS]
>~
+
%)
=
=]
>
©»
=
=]
hS)
>
+
(]
Q
@
D>
SN—

X (sin6; — sin#;_1) sin gy

x (cos 6 — cos 6;_1)(sin 6;_; + sin6;)(cos ¢ — cos gx_1) + 0
5 n k 1 . k
:anl)rgo 2 ZZ[sm ( )cos <2;71)
+ sin (Lr) sin® (2571) + cos2<in>]
n n

[in(im) (5 ) Jon(25m)

X -7 sin{ 2—m
n
|:cos< n) <] )][51n(j;171> +sin<1n>]
n n

N

N

X~
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o) )]

2
=" xad°. (B.16)
15

. . Kk k :
Since Ayyno = 0, the value of £ lim,—oe D Dimn 2o ks Y00 28) Anyno (A% 0y )i, is

n k k

L im D2 Y abew yn0 z) Ao (A%0y) = 0. (B.17)

3 n—oo
k=1 j=1 h=1

Since Ajzi_1; = 0 and Ajz; = 0, the value of %lim,Hoo Y ke Z;;l Zé:l (X js Yi,is Zkj) X
Ayii(A20))ij is

=— hm ZZZ sin® O cos? i+ sin® O sin® ©; + COS Qk)

6n—>oo
k=1 j=1 i=1

X sin O (sin ¢; — sin @;_1)
X (cos 6 — cos Bx_1)(sinbx_1 + sin ) (cos ¢; — cos g;_1) + 0

RSt

k=1 j=1 i=1

I E)
ol ()
o)t ) )
) )]

_2os 1
1571:1 (B.18)

Substituting (B.15), (B.16), (B.17), and (B.18) into (3.67), we obtain

1 4
3 /// qdy’ dzay = Bnas. (B.19)
D

6. Calculation of (3.68) for Example 2 in detail.
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. 19 k k .
Since Ayzo,, = 0, the value of 3 limy 0o D3y D01 D4y G > ¥ Z0,0) Anzon(A%0,) k s

k k
1 .
— lim Z Zq(x,-yk,yj,k,zoyh)Ahzoyh (Azo‘z)lk =0. (B.ZO)

B

k=1 j=1 i=1
ﬂS n k ]
=< nli)rgo E E (sin® 6; cos® gy + sin® 6 sin” gy + cos® ;) (cos 6; — cos ;1)
=1 j=1 i=1

x (cosB; — cosb;_1)

X (sin6; — sin 6;_;)(cos @i — cos @x_1)(sin ¢ sin6;_; + sin g_; sin ;)

5 n k .
a .. 2] 2,k
= ZHIEQOZZZ[SIH <Zn) cos (2;71)
k=1 j=1 i=1
+ sin2<in> sin® (2577) + c0s2<in>]
n n n
oo () oo () || 3n () -5
X |cos| —m ) —cos| —m sin| =7 | —sin[ —
L n n n n

n n
eos (2 sn((m ) o255 () |
X [cos|2—m )sin| ——m ) +cos| 2——m | sin| =7
L n n n n
a kS j k
. . 2 2
_anggo ZZ[sm (;n) coS (2;7‘[)
+ sin2<in> sin® (2571) + cos2<in>]
n n n
[ (5) () |30 () -5
X |cos| —m | —cos| — sin{ =7 | —sin| —
n n n n
() (255
X [cos{2—m ) —cos| 2——m
n

S
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. k . (j-1 . k-1 (]
X [sin{2—m )sin| ——m ) +sin{ 2——x ) sin| =7
n n n
7 5 37 <
= wa’ + Ta
2,880 2,880
11
=—na°. (B.21)
720

The value of % im0 D g le.(:l Z’;Zl Gk j» Vij» 21,0) Anzio (A%07)kj is

n

k k
Y a6y zno) Anzno(A0),

1
3
k=1 j=1 h=1
1 n k k
s ,,IEEO Z(xk/ +Vkj T %h 0) Ao (Aku Ay + Ay Axkij-1)
k=1 j=1 h=1
1 n k k
3 Jim Z Z(xk/ + Y2+ Zin0) Do (Aiyij Aje-1 + Ajaj A1)
k=1 j=1 h=1
5 ko Kk
= — lim ZZZ sin® 0y cos® @i+ sin® 0 sin? @;j + coS Gh)(cos 0 — cosb_1)

6 n—oo
k=1 j=1 h=1

X (sin O — sin Gx_1)(sin @; — sin @;_1)(cos ¢; sin O_1 + cos @;_1 sin b)

——5 lim Z

n— 00
6 k=1 j=1 h=1

X (sin O — sin Gx_1)(cos ¢; — cos ¢;_1)(sin ¢; sin Hx_; + sin ¢;_; sin 6)

ko k ,
2 21n>
n

£ mE R ()

6 oo k=1 j=1 h=1
+ sin2<kn> sin® (2177) + c0s2(ﬁn>]
n n
oG ) oo (5 | sn () o (55 )
X | cos| —m ) —cos b4 sin|{ —m | —sin T
L n n n

n k k
sin® 6 cos? @+ sin® 6 sin? @+ cos? Qh)(cos 0 — cosOy_1)

N

n

[efle) (5]

o)) 5]
[t (5.

X~
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[l 55 )

377 . 347
= wTa + wa
2,880 2,880
181
= ——Ta
720

(B.22)

. 1q: n k J 2 .
Since A;zy,; = 0, the value of 3 lim,, D i Z].=1 D1 Ak Yij Zhi) Aizici (A0 is

1 n k j

= lim Z Z Zq(xk,j;J’k,j: Zk,i)Aizk,i(Azaz)kJ =0. (B.23)

3 n—>oo
k=1 j=1 i=1

Substituting (B.20), (B.21), (B.22), and (B.23) into (3.68), we obtain

1 4
3 /// qdZ' d*c, = Eyms. (B.24)
D
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