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Abstract

In this article, a shifted Legendre tau method is introduced to get a direct solution
technique for solving multi-order fractional differential equations (FDEs) with
constant coefficients subject to multi-point boundary conditions. The fractional
derivative is described in the Caputo sense. Also, this article reports a systematic
quadrature tau method for numerically solving multi-point boundary value problems
of fractional-order with variable coefficients. Here the approximation is based on
shifted Legendre polynomials and the quadrature rule is treated on shifted Legendre
Gauss-Lobatto points. We also present a Gauss-Lobatto shifted Legendre collocation
method for solving nonlinear multi-order FDEs with multi-point boundary conditions.
The main characteristic behind this approach is that it reduces such problem to
those of solving a system of algebraic equations. Thus we can find directly the
spectral solution of the proposed problem. Through several numerical examples, we
evaluate the accuracy and performance of the proposed algorithms.

Keywords: multi-term FDEs, multi-point boundary conditions, tau method, colloca-
tion method, direct method, shifted Legendre polynomials, Gauss-Lobatto
quadrature.

1 Introduction
Fractional calculus, as generalization of integer order integration and differentiation to

its non-integer (fractional) order counterpart, has proved to be a valuable tool in the

modeling of many phenomena in the fields of physics, chemistry, engineering, aerody-

namics, electrodynamics of complex medium, polymer rheology, etc. [1-9]. This mathe-

matical phenomenon allows to describe a real object more accurately than the classical

integer methods. The most important advantage of using FDEs in these and other

applications is their non-local property. It is well known that the integer order differ-

ential operator is a local operator, but the fractional-order differential operator is non-

local. This means that the next state of a system depends not only upon its current

state but also upon all of its historical states. This makes studying fractional order sys-

tems an active area of research.

Spectral methods are a widely used tool in the solution of differential equations,

function approximation, and variational problems (see, e.g., [10,11] and the references

therein). They involve representing the solution to a problem in terms of truncated
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series of smooth global functions. They give very accurate approximations for a

smooth solution with relatively few degrees of freedom. This accuracy comes about

because the spectral coefficients, an, typically tend to zero faster than any algebraic

power of their index n. According to different test functions in a variational formula-

tion, there are three most common spectral schemes, namely, the collocation, Galerkin

and tau methods. Spectral methods have been applied successfully to numerical simu-

lations of many problems in science and engineering, see [12-15].

Spectral tau method is similar to Galerkin methods in the way that the differential

equation is enforced. However, none of the test functions need to satisfy the boundary

conditions. Hence, a supplementary set of equations are needed to apply the boundary

conditions (see, e.g., [10] and the references therein). In the collocation methods

[16,17], there are basically two steps to obtain a numerical approximation to a solution

of differential equation. First, an appropriate finite or discrete representation of the

solution must be chosen. This may be done by polynomials interpolation of the solu-

tion based on some suitable nodes such as the well known Gauss or Gauss-Lobatto

nodes. The second step is to obtain a system of algebraic equations from discretization

of the original equation.

Doha et al. [18] proposed an efficient spectral tau and collocation methods based on

Chebyshev polynomials for solving multi-term linear and nonlinear FDEs subject to

initial conditions. Furthermore, Bhrawy et al. [19] proved a new formula expressing

explicitly any fractional-order derivatives of shifted Legendre polynomials of any degree

in terms of shifted Legendre polynomials themselves, and the multi-order fractional

differential equation with variable coefficients is treated using the shifted Legendre

Gauss-Lobatto quadrature. Saa-datmandi and Dehghan [20] and Doha et al. [21]

derived the shifted Legendre and shifted Chebyshev operational matrices of fractional

derivatives and used together spectral methods for solving FDEs with initial and

boundary conditions respectively. In [18,22,23], the authors have presented spectral tau

method for numerical solution of some FDEs. Recently, Esmaeili and Shamsi [24]

introduced a direct solution technique for obtaining the spectral solution of a special

family of fractional initial value problems using a pseudo-spectral method, and Pedas

and Tamme [25] developed the spline collocation method for solving FDEs subject to

initial conditions.

Multi-point boundary value problems appear in wave propagation and in elastic sta-

bility. For examples, the vibrations of a guy wire of a uniform cross-section, composed

of m sections of different densities can be molded as a multipoint boundary value pro-

blem. The multi-point boundary conditions can be understood in the sense that the

controllers at the end points dissipate or add energy according to censors located at

intermediate points. Rehman and Khan [26] introduced a numerical scheme, based on

the Haar wavelet operational matrices of integration for solving linear multi-point

boundary value problems for fractional differential equations with constant and vari-

able coefficients. Moreover, Rehman and Khan [27] derived a Legendre wavelet opera-

tional matrix of fractional order integration and applied it to solve FDEs with initial

and boundary value conditions. In fact, the numerical solutions of multi-point bound-

ary value problems for FDEs have received much less attention. In this study, we focus

on providing a numerical scheme, based on spectral methods, to solve multi-point

boundary conditions for linear and nonlinear FDEs.
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In this article, we are concerned with the direct solution technique for solving the

multi-term FDEs subject to multi-point boundary conditions, using the shifted

Legendre tau (SLT) approximation. This technique requires a formula for fractional-

order derivatives of shifted Legendre polynomials of any degree in terms of shifted

Legendre polynomials themselves which is proved in Bhrawy et al. [19]. Another aim

of this article is to propose a suitable way to approximate the multi-term FDEs with

variable coefficients subject to multi-point boundary conditions, using a quadrature

shifted Legendre tau (Q-SLT) approximation, this approach extended the tau method

for variable coefficients FDEs by approximating the weighted inner products in the tau

method by using the shifted Legendre-Gauss-Lobatto quadrature.

Moreover the treatment of the nonlinear multi-order fractional multi-point value

problems; with leading fractional-differential operator of order ν (m - 1 <ν ≤ m), on

the interval [0, t] is described, by shifted Legendre collocation (SLC) method to find

the solution uN(x). More precisely, such a technique is performed in two successive

steps, the first one to collocate the nonlinear FDE specified at (N - m + 1) points; we

use the (N - m + 1) nodes of the shifted Legendre-Gauss-Lobatto interpolation on the

interval [0, t], these equations together with m equations comes form m multi-point

boundary conditions generate (N + 1) nonlinear algebraic equations, in general this

step is cumbersome, and the second one to solve these nonlinear algebraic equations

using Newton’s iterative method. The structure of this technique is similar to that of

the two-step procedure proposed in [18,20] for the initial boundary value problem and

in [21] for the two-point boundary value problem. To the best of the our knowledge,

such approaches have not been employed for solving fractional differential equations

with multi-point boundary conditions. Finally, the accuracy of the proposed algorithms

are demonstrated by test problems.

The remainder of the article is organized as follows. In the following section, we

introduce some notations and summarize a few mathematical facts used in the remain-

der of the article. In Section 3, we consider the SLT method for the multi-term FDEs

subject to multi-point boundary conditions, and in Section 4, we construct an algo-

rithm for solving linear multi-order FDEs with variable coefficients subject to multi-

point boundary conditions by using the Q-SLT method. In Section 5, we study the

general nonlinear FDEs subject to multi-point boundary conditions by SLC method. In

Section 6, we present some numerical results. Finally, some concluding remarks are

given in Section 7.

2 Preliminaries and notations
2.1 The fractional derivative in the Caputo sense

In this section, we first review the basic definitions and properties of fractional integral

and derivative for the purpose of acquainting with sufficient fractional calculus theory.

Many definitions and studies of fractional calculus have been proposed in the past two

centuries (see, e.g., [8]). The two most commonly used definitions are the Riemann-

Liouville operator and the Caputo operator. We give some definitions and properties

of the fractional calculus.

Definition 2.1 The Riemann-Liouville fractional integral operator of order μ (μ ≥ 0)

is defined as
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Jμf (x) =
1

�(μ)

x∫
0

(x − t)μ−1f (t)dx, μ > 0, x > 0,

J0f (x) = f (x).

(1)

Definition 2.2 The Caputo fractional derivatives of order μ is defined as

Dμf (x) = Jm−μDmf (x)

=
1

�(m − μ)

x∫
0

(x − t)m−μ−1 dm

dtm
f (t)dt, m − 1 < μ ≤ m, x > 0,

(2)

where Dm is the classical differential operator of order m.

For the Caputo derivative we have

Dμxβ =

⎧⎨
⎩
0, for β ∈ N0 and β < �μ� ,

�(β + 1)
�(β + 1 − μ)

xβ−μ, for β ∈ N0 and β ≥ �μ� or β �∈ N and β > �μ	 . (3)

We use the ceiling function ⌈μ⌉ to denote the smallest integer greater than or equal

to μ, and the floor function ⌊μ⌋ to denote the largest integer less than or equal to μ.

Also N = {1,2,...} and N0 = {0,1,2,...}. Recall that for μ Î N, the Caputo differential

operator coincides with the usual differential operator of an integer order.

2.2 Properties of shifted Legendre polynomials

Let Li(x) be the standard Legendre polynomial of degree i, then we have that

Li(−x) = (−1)iLi(x), Li(−1) = (−1)i, Li(1) = 1. (4)

Let w(x) = 1, then we define the weighted space L2w(−1, 1) ≡ L2(−1, 1) as usual,

equipped with the following inner product and norm

(u, v) =

1∫
−1

u(x)v(x)w(x)dx, ‖u‖ = (u, u)1/2.

The set of Legendre polynomials forms a complete L2(-1, 1)-orthogonal system, and

∥∥Li(x)∥∥2 = hi =
2

2i + 1
. (5)

If we define the shifted Legendre polynomial of degree i by

Lt,i(x) = Li( 2xt − 1), t > 0 , then the analytic form of the shifted Legendre polynomials

Lt,i(x) of degree i is given by

Lt,i(x) =
i∑

k=0

(−1)i+k
(i + k)!xk

(i − k)!(k!)2tk
. (6)

Next, let wt(x) = w(x) = 1, then we define the weighted space L2wt
[0, t] in the usual

way, with the following inner product and norm
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(u, v)wt =

t∫
0

u(x)v(x)wt(x)dx, ‖u‖wt
= (u, u)1/2wt . (7)

The set of shifted Legendre polynomials forms a complete L2wt
[0, t] -orthogonal sys-

tem. According to (5), we have

∥∥Lt,i(x)∥∥2wt
=

t
2
hi = ht,i. (8)

The shifted Legendre expansion of a function u(x) ∈ L2wt
[0, t] is

u(x) =
∞∑
j=0

ajLt,j(x),

where the coefficients aj are given by

aj =
1
ht,j

t∫
0

u(x)Lt,j(x)dx, j = 0, 1, 2, . . . . (9)

In practice, only the first (N + 1)-terms shifted Legendre polynomials are considered.

Hence we can write

uN(x) 
N∑
j=0

ajLt,j(x). (10)

Lemma 2.1 Let Lt,i(x) be a shifted Legendre polynomials then

DμLt,i(x) = 0, i = 0, 1, . . . , �μ� − 1, μ > 0. (11)

where

Dμf (x) =
1

�(�μ� − μ)

x∫
0

(x − t)�μ�−μ−1f (�μ�)(t)dt, �μ� − 1 < μ ≤ �μ� , (12)

is the usual Caputo fractional derivative of order μ of the function f(x) and ⌈μ⌉

denote the smallest integer greater than or equal to μ.

Proof. This lemma can be easily proved by using (6).

Next, the fractional derivative of order μ in the Caputo sense for the shifted

Legendre polynomials expanded in terms of shifted Legendre polynomials can be

represented formally in the following theorem.

Theorem 2.2 The fractional derivative of order μ in the Caputo sense for the shifted

Legendre polynomials is given by

DμLt,i(x) =
∞∑
l=0

�μ(i, l)Lt,l(x), i = �μ� , �μ� + 1, . . . , (13)
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where

�μ(i, l) =
i∑

k=�μ�

(−1)i+k(2l + 1)(i + k)!(k − l − μ + 1)l
tμ(i − k)!k!�(k − μ + 1)(k − μ + 1)l+1

. (14)

(For the proof, see, [19].)

3 A shifted Legendre tau method
Prompted by the application of multi-point boundary value problems to applied

mathematics and physics, these problems have provoked a great deal of attention by

many authors (see, for instance, [28-34] and references therein). In pursuit of this, we

use the shifted Legendre tau method to solve numerically the following FDE:

Dνu(x) +
r−1∑
i=1

γiD
βi u(x) + γru(x) = g(x), in x ∈ I = [0, t], (15)

subject to the multi-point boundary conditions

u(q0)(0) = s0, u(qi)(xi) = si, u(qm−1)(t) = sm−1,

xi ∈]0, t [, i = 1, 2, . . . ,m − 2 ,

0 ≤ q0, q1, . . . , qm−1 ≤ m − 1,

(16)

where 0 <b1 <b2 < ... <br-1 <ν, m - 1 <ν ≤ m are constants. Moreover, Dνu(x) = u(ν)(x)

denotes the Caputo fractional derivative of order ν for u(x), gi, i = 1, 2,..., r are constant

coefficients, s0,..., sm-1 are given constants and g(x) is a given source function.

The existence and uniqueness of solutions of FDEs have been studied by the authors

of [33-36].

Let us first introduce some basic notation that will be used in the sequel. We set

SN[0, t] = span
{
Lt,0(x), Lt,1(x), . . . , Lt,N(x)

}
, (17)

then the shifted Legendre-tau approximation to (15) subject to (16) is to find uN Î
SN[0,t] such that

(
DνuN, Lt,k(x)

)
wt
+

r−1∑
i=1

γi
(
Dβi uN, Lt,k(x)

)
wt
+ γr

(
uN, Lt,k(x)

)
wt

=
(
g, Lt,k(x)

)
wt,N

, k = 0, 1, . . . ,N − m,

(18)

and

u(q0)N (0) = s0, u
(qi)
N (xi) = si, u

(qm−1)
N (t) = sm−1,

xi ∈]0, t [, i = 1, 2, . . . ,m − 2 .
(19)

Here, the main idea is that we employ a truncated series of shifted Legendre polyno-

mials to approximate the unknown function, and the fractional-differential operator of

this truncated series is expanded by shifted Legendre polynomials themselves (see,

Theorem 2.2), and then the coefficients of this series are taken to be equal to the coef-

ficients of the right-hand side expansion. Let us denote
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uN(x) =
N∑
j=0

ajLt,j(x), a = (a0, a1, . . . , aN)T ,

gk = (g, Lt,k)wt , k = 0, 1, . . . ,N − m,

g = (g0, g1, . . . , gN−m, s0, s1, . . . , sm−1)T ,

then (18), (19) can be written as

N∑
j=0

aj

[(
DνLt,j(x), Lt,k(x)

)
wt
+

r−1∑
i=1

γi
(
Dβi Lt,j(x), Lt,k(x)

)
wt

+γr
(
Lt,j(x), Lt,k(x)

)
wt

]
=

(
g, Lt,k(x)

)
wt
, k = 0, 1, . . . ,N − m,

(20)

N∑
j=0

ajL
(q0)
t,j (0) = s0,

N∑
j=0

ajL
(qi)
t,j (xi) = si, i = 1, 2, . . . ,m − 2,

N∑
j=0

ajL
(qm−1)
t,j (t) = sm−1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(21)

We define the following square matrices

A = (akj)0≤k,j≤N, Bi = (bikj)0<k,j<N;i=1,2,...,r−1,

C = (ckj)0≤k,j≤N, D = (dkj)0≤k,j≤N.

Therefore (20) and (21), are equivalent to the matrix equation(
A +

r−1∑
i=1

γiB
i + γrC +D

)
a = g. (22)

where the nonzero elements of matrices A, Bi, i = 1, 2,..., r - 1, C, and D are given

explicitly in the following theorem.

Theorem 3.1 If we denote

akj = (DνLt,j(x), Lt,k(x))wt , bikj = (Dβi Lt,j(x), Lt,k(k))wt , ckj = (Lt,j(x), Lt,k(x))wt , for 0 ≤ k

≤ N-m, 0 ≤ j ≤ N, then the nonzero elements of (akj), (b
i
kj) , (ckj) are given by

akj = ht,k �v(j, k), k = 0, 1, . . . ,N − m, j = m,m + 1, . . . ,N, (23)

bikj = ht,k �βi(j, k), k = 0, 1, . . . ,N − m, j = �βi� , �βi� + 1, . . . ,N,

i = 1, 2, . . . , r − 1,
(24)

ckk = ht,k, k = 0, 1, . . . ,N − m. (25)

Moreover, if we denote by dkj, 0 ≤ k, j ≤ N the elements of the square matrix corre-

sponding to the multi-point boundary conditions, then the nonzero elements of dkj are

given by

Bhrawy and Al-Shomrani Advances in Difference Equations 2012, 2012:8
http://www.advancesindifferenceequations.com/content/2012/1/8

Page 7 of 19



dN−m+1,j =
(−1)(j−q0)�(j + q0 + 1)

tq0�(j − q0 + 1)�(q0 + 1)
, j = 0, 1, . . . ,N,

dkj =
j∑

l=qk−N+m−1

(−1)j+l
�(j + l + 1)xl−qk−N+m−1

k−N+m−1

tl�(j − l + 1)�(l + 1)�(l − qk−N+m−1 + 1)
,

k = N − m + 2,N − m + 3, . . . ,N − 1,

dN,j =
�(j + qm−1 + 1)

tqm−1�(j − qm−1 + 1)�(qm−1 + 1)
, j = 0, 1, . . . ,N,

(26)

Proof. The square matrix A is defined from the bilinear form:

akj =
{(

DνLt,j(x), Lt,k(x)
)
wt
, k = 0, 1, . . . ,N − m, j = 0, 1, . . . ,N,

0, k = N − m + 1, . . . ,N, j = 0, 1, . . . ,N,

and its nonzero elements are

akj =
(
DνLt,j(x), Lt,k(x)

)
wt

=

t∫
0

DνLt,j(x)Lt,k(x)wt(x)dx,

k = 0, 1, . . . ,N − m, j = 0, 1, . . . ,N,

Immediately, if we set μ = ν in Theorem 2.2, and we consider the only the first (N +

1)-terms shifted Legendre polynomials in relation (13), then we obtain

ak,j =

t∫
0

N∑
l=0

�ν(j, l)Lt,l(x)Lt,k(x)wt(x)dx, k = 0, 1, . . . ,N − m,

j = �ν� , �ν� + 1, . . . ,N,

where Πν(j, l) is given in (14). By the orthogonality of the shifted Legendre polyno-

mials (8), we immediately with direct calculation observe that the nonzero elements of

akj can be given as (23). The matrix Bi for i = 1, 2,..., r - 1 and C defined by the

bilinear forms:

bikj =
{(

Dβi Lt,j(x), Lt,k(x)
)
wt
, k = 0, 1, . . . ,N − m, j = 0, 1, . . . ,N,

0, otherwise,

ckj =
{(

Lt,j(x), Lt,k(x)
)
wt
, k = 0, 1, . . . ,N − m, j = 0, 1, . . . ,N,

0, otherwise,

then due to (7) and making use of the orthogonality relation of shifted Legendre

polynomials (8), and after some manipulation, one can show that the nonzero elements

of bikj; i = 1, 2, . . . ,m − 1 , and ckj are given explicitly as (24) and (25), respectively.

The matrix D corresponding to the treatment of multi-point boundary conditions

(21), its elements can be written as

dkj =

⎧⎪⎪⎨
⎪⎪⎩
0, k = 0, 1, . . . ,N − m, j = 0, 1, . . . ,N,
D(q0)LL,j(0), k = N − m + 1, j = 0, 1, . . . ,N,
D(qi)LL,j(xi), k = N − m + 2,N − m + 3, . . . ,N − 1, j = 0, 1, . . . ,N,
D(qm−1)LL,j(t), k = N, j = 0, 1, . . . ,N,

Bhrawy and Al-Shomrani Advances in Difference Equations 2012, 2012:8
http://www.advancesindifferenceequations.com/content/2012/1/8

Page 8 of 19



or in more convenient form

dkj =

⎧⎪⎪⎨
⎪⎪⎩
0, k = 0, 1, . . . ,N − m, j = 0, 1, . . . ,N,
D(qk−N+m−1)Lt,j(0), k = N − m + 1, j = 0, 1, . . . ,N,
D(qk−N+m−1)Lt,j(xk−N+m−1), k = N − m + 2,N − m + 3, . . . ,N − 1, j = 0, 1, . . . ,N,
D(qk−N+m−1)Lt,j(L), k = N, j = 0, 1, . . . ,N,

(27)

If we use the analytical form of shifted Legendre polynomial of degree i (6) and in

virtue of (4), then it can be easily shown that

Dq0Lt,j(0) =
(−1)j−q0�(j + q0 + 1)

tq0�(j − q0 + 1)�(q0 + 1)
, (28)

DqiLt,j(xi) =
j∑

l=qi

(−1)j+l
�(j + l + 1)xl−qi

i

tl�(j − l + 1)�(l + 1)�(l − qi + 1)
, (29)

Dqm−1Lt,j(t) =
�(j + qm−1 + 1)

tqm−1�(j − qm−1 + 1)�(qm−1 + 1)
. (30)

The substitution by (28), (29), and (30) into (27), gives the nonzero elements of dkj as

mentioned in (26).

4 A quadrature shifted Legendre tau method
In this section, we use the Q-SLT method to solve numerically the following FDE with

variable coefficients

Dνu(x) +
r−1∑
i=1

γi(x)Dβi u(x) + γr(x)u(x) = g(x), xin I = [0, t], (31)

subject to the multi-point boundary conditions (16).

It is worthy to mention that the pure spectral-tau technique is rarely used in prac-

tice, since for variable coefficient terms and a general right-hand side function g one is

unable to compute exactly its representation by Legendre polynomials. In fact, the so-

called pseudospectral-tau (quadrature-tau) method is used to treat the variable coeffi-

cient terms and right-hand side, (see for instance, Funaro [17]. In fact, Doha et al. [37]

used a quadrature Jacobi dual-Petrov-Galerkin method for solving some ordinary dif-

ferential equations with variable coefficients but by considering their integrated forms.

Moreover, Bhrawy et al. [19] introduced a quadrature shifted Legendre tau method for

developing a direct solution technique for solving multi-order fractional differential

equations with variable coefficients with respect to initial conditions.

If we denote by xN,j(xt,N,j), 0 ≤ j ≤ N, and ϖN,j(ϖt,N,j), (0 ≤ j ≤ N), the nodes and

Christoffel numbers of the standard (respectively shifted) Legendre-Gauss-Lobatto

quadratures on the intervals [-1, 1] and [0, t], respectively. Then one can easily show

that

xt,N,j =
t
2
(xN,j + 1),

�t,N,j =
t
2

�N,j,
0 ≤ j ≤ N, (32)
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and if SN[0, t] denotes the set of all polynomials of degree at most N, then it follows

that for any j Î S2N+1[0, t],

t∫
0

wt(x)φ(x)dx =
t
2

1∫
−1

w(x)φ
(
t
2
(x + 1)

)
dx

=
t
2

N∑
j=0

�N,jφ

(
t
2
(xN,j + 1)

)
=

N∑
j=0

�t,N,jφ(xt,N,j).

(33)

According to Legendre-Gauss-Lobatto quadrature, xN,j are the zeros of (1 - x2)∂xLN,

and

�N,j =
2

N(N + 1)
1

(LN(xN,j))
2 , 0 ≤ j ≤ N.

We define the discrete inner product and norm as follows:

(u, v)wt ,N =
N∑
k=0

u(xt,N,k)v(xt,N,k)�t,N,k, ‖u‖wt ,N =
√
(u, u)wt ,N. (34)

Obviously,

(u, v)wt ,N = (u, v)wt ∀u, v ∈ S2N−1. (35)

Thus, for any u Î SN[0, t], the norms ‖u‖wt ,N and ‖u‖wt coincide.

Associating with this quadrature rule, we denote by ILtN the shifted Legendre-Gauss-

Lobatto interpolation,

ILtNu(xt,N,j) = u(xt,N,j), 0 ≤ j ≤ N.

The quadrature tau method for (31) subject to (16) is to find uN Î SN[0, t] such that

(
DνuN, Lt,k(x)

)
wt
+

r−1∑
i=1

(
γi(x)Dβi uN, Lt,k(x)

)
wt ,N

+
(
γr(x)uN, Lt,k(x)

)
wt ,N

=
(
g, Lt,k(x)

)
wt ,N

, k = 0, 1, . . . ,N − m,

(36)

and

N∑
j=0

ajL
(q0)
t,j (0) = s0,

N∑
j=0

ajL
(qi)
t,j (xi) = si, i = 1, 2, . . . ,m − 2,

N∑
j=0

ajL
(qm−1)
t,j (t) = sm−1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(37)
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where (.,.) is the discrete inner product defined in (34). Let us denote

uN(x) =
N∑
j=0

ajLt,j(x), a = (a0, a1, . . . , aN)T ,

then equation (36) can be written as

N∑
j=0

aj
[(
DνLt,j(x), Lt,k(x)

)
wt

+
r−1∑
i=1

(
γi(x)Dβi Lt,j(x), Lt,k(x)

)
wt ,N

+
(
γr(x)Lt,j(x), Lt,k(x)

)
wt ,N

]
=

(
g, Lt,k(x)

)
wt ,N

, k = 0, 1, . . . ,N − m,

(38)

Now it is not difficult to show, by using (13), that the variational formulation (38) is

equivalent to

N∑
j=0

aj
[(
DνLt,j(x), Lt,k(x)

)
wt

+
r−1∑
i=1

(
γi(x)

N∑
l=0

�βi(j, l)Lt,l(x), Lt,k(x)

)
wt ,N

+
(
γr(x)Lt,j(x), Lt,k(x)

)
wt ,N

]
=

(
g, Lt,k(x)

)
wt ,N

, k = 0, 1, . . . ,N − m,

(39)

subject to (37) which may be written in more convenient form (27). Let us denote

gk = (g, Lt,k)wt ,N, k = 0, 1, . . . ,N − m,

g = (g0, g1, . . . , gN−m, s0, . . . , sm−1)T ,

Ei = (eikj)0<k,j<N;i=1,2,...,r−1, F = (fkj)0<k,j<N ,

where

eikj =

⎧⎪⎪⎨
⎪⎪⎩

(
γi(x)

N∑
l=0

�βi(j, l)Lt,l(x), Lt,k(x)
)
wt ,N

, k = 0, 1, . . . ,N − m, j = 0, 1, . . . ,N

i = 1, 2, . . . , r − 1,
0, otherwise,

fkj =
{(

γr(x)Lt,j(x), Lt,k(x)
)
wt ,N

, k = 0, 1, . . . ,N − m, j = 0, 1, . . . ,N,
0, otherwise.

Thereby, we can write (39) and its multi-point boundary conditions in the following

matrix algebraic system form(
A +

r−1∑
i=1

Ei + F +D

)
a = g, (40)

where A and D are given in Theorem 3.1, while Ei; i = 1, 2,..., r - 1, and F are given

explicitly in the following theorem.

Theorem 4.1 If we denote eikj = (γi(x)Dβi Lt,j(x), Lt,k(x))wt ,N , k = 0, 1, ..., N - m, j =

0,1,..., N, i = 1,2,..., r - 1, and fkj = (γr(x)Lt,j(x), Lt,k(x))wt ,N , k = 0,1,..., N - m, j = 0,1,...,

N,, then the nonzero elements of (eikj) ; i = 1, 2,..., r - 1 and (ckj) are given by
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eikj =
N∑
p=0

�t,N,p γi(xt,N,p)

(
N∑
l=0

�βi(j, l)Lt,l(xt,N,p)

)
Lt,k(xt,N,p), k = 0, 1, . . . ,N − m,

j = �βi� , �βi� + 1, . . . ,N, i = 1, 2, . . . , r − 1,

fkj =
N∑
p=0

�t,N,pγr(xt,N,p)Lt,j(xt,N,p)Lt,k(xt,N,p), k = 0, 1, . . . ,N − m, j = 0, 1, . . . ,N.

Proof. The proof of this theorem can be accomplished by following the same proce-

dure used in proving Theorem 3.1.

Remark 4.2 In the case of gi(x) ≠ 0, i = 1, ..., r, the linear system (40), can be solved

by forming explicitly the LU factorization; i.e., A +
r−1∑
i=1

Ei + F +D = LU . The expense of

calculating LU factorization is O(N3) operations and the expense of solving the linear

system (35), provided that the factorization is known, is O(N2).

5 A shifted Legendre collocation method for nonlinear multi-order FDE
Since the collocation methods approximate differential equations in physical space, it is

very easy to implement and adaptable to various of problems, including variable coeffi-

cient and nonlinear differential equations (see, for instance [16]). In this section, we

use the shifted Legendre collocation method to numerically solve the nonlinear multi-

order FDE with multi-point boundary conditions, namely

Dνu(x) = F(x, u(x),Dδ1u(x), . . . ,Dδku(x)), x ∈ I, (41)

subject to (16), where m - 1 < ν ≤ m, 0 <δ1 <δ2 < ··· <δk <ν.

We approximate the solution in the form uN(x) =
N∑
j=0

ajLt,j(x), then, making use of

formula (13) enables us to express explicitly the derivatives

Dνu(x),Dδ1u(x), . . . ,Dδku(x) in terms of the expansion coefficients aj and the shifted

Legendre polynomials.

The shifted Legendre collocation method for (41) is to find uN(x) Î SN[0, t] such that

N∑
j=0

ajD
νLt,j(xt,N−m+1,k) = F

⎛
⎝xt,N−m+1,k,

N∑
j=0

ajLt,j(xt,N−m+1,k) ,

N∑
j=0

ajDδ1Lt,j(xt,N−m+1,k), . . . ,
N∑
j=0

ajDδkLt,j(xt,N−m+1,k)

⎞
⎠ , k = 0, 1, . . . ,N − m.

(42)

The previous equation means (41) is satisfied exactly at the collocation points

x(α,β)L,N−m+1,k , k = 0, 1,..., N - m. equation (42) constitutes a system of N - m + 1 non-

linear algebraic equations in the unknown expansion coefficients aj; j = 0,1,..., N, also

the treatment of the multi-point boundary condition (16) constitutes m linear algebraic

equations in the unknown expansion coefficients aj; j = 0,1,..., N (see, equation (21)),

the combination of these two algebraic systems can be solved by using any standard

iteration technique, like Newton’s iteration method.

Remark 5.1 The algorithms introduced in this article can be well suited for handling

general linear and nonlinear fractional-order differential equations with initial or two-

point boundary conditions.
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6 Numerical results
In this section, we give some numerical results obtained by using the algorithms pre-

sented in the previous sections.

We consider the following examples.

Example 1 Consider the linear fractional differential equation

Dνu(x) + aDν2u(x) + bDν1 + cu(x) = f (x),

0 < ν1 ≤ 1, 1 < ν2 ≤ 2, 3 < ν ≤ 4,
(43)

and

f (x) =
2a

�(3 − ν2)
x2−ν2 +

2b
�(3 − ν1)

x2−v1 − b
�(2 − ν1)

x1−ν1 + c(x2 − x),

subject to the following three types of four-point boundary conditions:

• The first type:

u(0) = 0, u′(0.25) = −0.5, u′(0.50) = 2, u(1) = 0. (44)

• The second type:

u′′(0) = 2, u′(0.35) = −0.3, u′(0.75) = 0.5, u′′(1) = 2. (45)

• The third type:

u(0) = 0, u′(0.35) = −0.3, u′′(0.75) = 2, u′′′(1) = 0. (46)

The analytic solution of this problem is u(x) = x2 - x. Regarding problem (43) subject

to the three types of multi-point boundary conditions (44)-(46), we study two different

cases of a, b, c, ν 1, ν2, and ν.

• Case I: a = 1, b = 1, c = 1, ν 1 = 0.77, ν2 = 1.44, and ν = 3.91.

• Case II: a = 6, b = -3, c = -4, ν 1 = 0.5, ν2 = 1.5, and ν = 3.5.

Table 1 lists the maximum absolute errors using SLT method, with various choices

of N, for solving equation (43) subject to the first type of multi-point boundary condi-

tions (44) and the two previous cases. While in Table 2, we present the maximum

absolute errors using SLT method, with various choices of N, for equation (43) subject

Table 1 Maximum absolute error using SLT of (43), (44) for Case I and Case II and
various choices of N

N SLT for Case 1 SLT for Case 2

4 1.82 × 10-5 1.26 × 10-4

8 3.75 × 10-6 2.22 × 10-5

16 1.97 × 10-7 2.01 × 10-6

24 1.09 × 10-7 1.33 × 10-6

32 4.91 × 10-8 3.92 × 10-7

40 2.73 × 10-8 1.75 × 10-7

48 1.85 × 10-8 1.29 × 10-7

56 1.26 × 10-8 7.23 × 10-8
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to the second type of multi-point boundary conditions (45). Moreover, the maximum

absolute errors, using SLT method for equation (43) subject to the third type of multi-

point boundary conditions (46) and the two cases of a, b, c, ν1, ν2, ν with various

choices of N are presented in Table 3.

Example 2 Consider the initial value problem of fractional-order

Dνu(x) + u(x) = x2 +
2

�(3 − ν)
x2−ν , u(0) = 0, (47)

whose exact solution is given by u(x) = x2.

In the case of ν = 0.01, 0.10, 0.50, 0.99, the maximum absolute errors of u(x) - uN(x)

for the initial value problem (47) by using the SLT method with various choices of N

is shown in Figure 1.

Example 3 Consider the boundary value problem for fractional differential equation

with variable coefficients

D′′′u(x) + sin(x)D
1
2 u(x) + e3xu(x) = f (x), (48)

subject to the following two types of three-point boundary conditions:

• The first type:

u′(0) = 0, u(0.5) = − 1
256

, u′(1) = 1, (49)

Table 2 Maximum absolute error using SLT of (43)-(45) for Case I and Case II and
various choices of N

N SLT for Case 1 SLT for Case 2

4 1.21 × 10-2 1.92 × 10-2

8 1.30 × 10-3 5.98 × 10-3

16 1.95 × 10-4 8.70 × 10-4

24 7.90 × 10-5 2.62 × 10-4

32 3.78 × 10-5 1.10 × 10-4

40 2.32 × 10-5 5.73 × 10-5

48 1.15 × 10-5 3.33 × 10-5

56 1.04 × 10-5 2.10 × 10-5

Table 3 Maximum absolute error using SLT of (43)-(46) for Case I and Case II and
various choices of N

N SLT for Case 1 SLT for Case 2

4 1.83 × 10-4 7.62 × 10-4

8 9.62 × 10-6 5.64 × 10-4

16 1.33 × 10-6 1.23 × 10-4

24 4.43 × 10-7 5.17 × 10-5

32 2.29 × 10-7 2.68 × 10-5

40 1.30 × 10-7 1.58 × 10-5

48 9.11 × 10-8 1.03 × 10-5

56 6.34 × 10-8 7.18 × 10-6
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• The second type:

u(0) = 0, u′(0.5) = − 3
64

, u′′(1) = 14, (50)

and

f (x) = 336x6 − 210x5 + e3x(x8 − x7) +
sin(x)√

π

(
32768
6435

x
15
2 − 2048

429
x
13
2

)
.

One can easily check that u(x) = x8 - x7 is the unique analytical solution.

In Table 4, we list the L2wL
, L∞

wL
, and H1

wL
errors of (48) subject to the first type of

boundary conditions, using the Q-SLT method with various choices of N. It is notice

that only a small number of shifted Legendre polynomials is needed to obtain a satis-

factory result. The results of L2wL
, L∞

wL
, and H1

wL
errors of (48) subject to the second

type of boundary conditions is given in Table 5. The approximate solution obtained by

the Q-SLT method at N = 8 for (48) with the second type of boundary conditions is

shown in Figure 2 to make it easier to compare with the analytic solution.

Example 4 In this example, we consider the following nonlinear differential equation

D2.2u(x) +Dβu(x) +Dαu(x) + u(x)3 = f (x), (51)

0 < α ≤ 1, 1 < β ≤ 2,

4 8 12 16 20 24 32 48

6

8

10

12

14

16

18

20

22

N �N from 4 to 48�

�
L
n
�m

ax
im

um
ab
so
lu
te
er
ro
r�

Ν�0.99

Ν�0.50

Ν�0.10

Ν�0.01

Figure 1 Maximum absolute error of u(x) - uN(x) for different values of ν and various choices of N
for Example 2.

Table 4 L2wL
, L∞

wL
, and H1

wL
errors using Q-SLT method of (48), (49) for N = 4, 8, 12, 16

N L2-error L∞-error H1-error

4 3.18 × 10-1 4.87 × 10-2 1.05 × 100

8 2.77 × 10-11 2.44 × 10-11 1.28 × 10-10

12 4.63 × 10-15 4.85 × 10-15 4.70 × 10-14

16 4.14 × 10-16 1.45 × 10-16 6.43 × 10-16
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where

f (x) =
2x0.8

�(1.8)
+

2x3−β

�(4 − β)
+

2x3−α

�(4 − α)
+

x9

27
,

subject to the following three types of three point boundary conditions

• The first type:

u(0) = 0, u′(0.6) =
9
25

, u(1) =
1
3
, (52)

• The second type:

u′′(0) = 0, u′(0.6) =
9
25

, u(1) =
1
3
, (53)

• The third type:

u(0) = 0, u′(0.7) =
49
100

, u′′(1) = 2. (54)

The exact solution of (51) is u(x) =
x3

3
.

Table 5 L2wL
, L∞

wL
, and H1

wL
errors using Q-SLT method of (48)-(50) for N = 4, 8, 12, 16

N L2-error L∞-error H1-error

4 1.79 × 10-1 1.47 × 10-1 6.93 × 10-1

8 1.45 × 10-11 3.36 × 10-12 1.27 × 10-10

12 8.41 × 10-15 4.42 × 10-15 5.51 × 10-14

16 4.07 × 10-16 7.76 × 10-16 5.23 × 10-16

0.0 0.2 0.4 0.6 0.8 1.0
�0.05

�0.04

�0.03

�0.02

�0.01

0.00

x

u�
x�

Spectral Solution

Exact Solution

Figure 2 Comparison of the approximate solution uN(x) at N = 8 and u(x) for Example 3.
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In this example we take a = 1.25, and b = 0.75. The absolute errors of u(x) - uN(x)

for (51) subject to (52) and (53) for N = 20 are shown in Figures 3 and 4, respectively.

Absolute errors between exact and numerical solutions of (51) subject to (54), using

the SLC method for various choices of N, are introduced in Table 6.

7 Conclusion
We have presented some accurate direct solvers for the multi-term linear fractional-

order differential equations with multi-point boundary conditions by using shifted

Legendre tau approximation. The fractional derivatives are described in the Caputo

0.0 0.2 0.4 0.6 0.8 1.0
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8.�10�8
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A
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Figure 3 Absolute value of u(x) - uN(x) for the first type of boundary conditions at N = 20 for
Example 4.
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Figure 4 Absolute value of u(x) - uN(x) for the second type of boundary conditions at N = 20 for
Example 4.
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sense. Moreover, we developed a new approach implementing shifted Legendre tau

method in combination with the shifted Legendre collocation technique for the numer-

ical solution of fractional-order differential equations with variable coefficients. To our

knowledge, this is the first study concerning the Legendre spectral methods for solving

multi-term FDEs with multi-point boundary conditions.

In this article, we proposed a numerical algorithm to solve the general nonlinear high-

order multi-point FDEs, using Gauss-collocation points and approximating directly the

solution using the shifted Legendre polynomials. The numerical results given in the pre-

vious section demonstrate the good accuracy of these algorithms. Moreover, the algo-

rithms introduced in this article can be well suited for handling general linear and

nonlinear mth-order differential equations with m initial conditions. The solutions

obtained using the suggested algorithms show that these algorithms with a small num-

ber of shifted Legendre polynomials are giving a satisfactory result. Illustrative examples

presented to demonstrate the validity and applicability of the algorithms.
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