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Abstract

We have fabricated a DNA-based nanofiber created by self-assembly of guanine quadruplex (Hoogsteen base
pairing) and double-stranded DNA (Watson-Crick base pairing). When duplexes containing a long stretch of
contiguous guanines and single-stranded overhangs are incubated in potassium-containing buffer, the preformed
duplexes create high molecular weight species that contain quadruplexes. In addition to observation of these larger
species by gel electrophoresis, solutions were analyzed by atomic force microscopy to reveal nanofibers. Analysis of
the atomic force microscopy images indicates that fibers form with lengths ranging from 250 to 2,000 nm and
heights from 0.45 to 4.0 nm. This work is a first step toward the creation of new structurally heterogeneous
(quadruplex/duplex), yet controllable, DNA-based materials exhibiting novel properties suitable for a diverse array of
nanotechnology applications.

Keywords: Guanine quartet, Guanine quadruplex, Atomic force microscopy, Nanowires, Nanofibers, DNA
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Background
Programmable self-assembly from deoxyribonucleic acid
(DNA) building blocks has led to a myriad of nanoscale
structures, including 3D architectures [1-8]. At the core,
construction of ever more complicated and elegant
DNA nanoshapes relies on the self-recognition proper-
ties of DNA. In DNA-based wires, tiles (double or triple
crossover) [8-11], and DNA origami structures, canon-
ical Watson-Crick base pairing drives and stabilizes for-
mation of the desired structure. Non-canonical base
pairing schemes are not typically exploited to create
novel DNA-based materials [12], even though such in-
teractions are in the lexicon of nucleic acid self-
interactions observed in biological systems [13-23].
Several years ago, Watson-Crick self-recognition was

combined with non-canonical base pairing to create
‘synapsable’ DNA [24]. Synapsable DNA is fashioned
from two duplex DNA precursors that connect to form
a four-stranded DNA unit with blunt ends. Each DNA
strand in the unit created originally by Sen's group con-
tains an internal run of eight guanines, which creates a
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region of guanine-guanine mismatches in the duplex
precursor. Introduction of potassium ions induces the
guanine-rich tracts in the duplex precursors to
Hoogsteen base pair, creating a DNA element called a
guanine quartet. In the final structure, the central six
guanines are involved in creating the guanine quartets
[24], and four duplex ‘tails,’ two at each end, project
from the quadruplex core.
In addition to the Hoogsteen base pairing in

synapsable DNA mimicking interactions and structures
found in biology [13,15,19,20,25], synapsable DNA also
has been suggested to be an attractive tool for
nanofabrication [1,26] although there are no reports of
specific examples utilizing synapsable DNA in such a
capacity. For the first time, we report the assembly of
synapsable DNA-based nanofibers that constitute a
novel DNA molecular manufacturing element. Our
structure is likely stiffer than canonical DNA-based
structures, which potentially improves its ease of use in
patterning and other nanotechnology applications. Fur-
ther, our unique strategy is expected to create DNA
building blocks with a broad temperature response range
that can be modulated additionally by sequence control.
Finally, our novel design permits future integration with
other established and emerging programmable self-
assembly methods such as DNA origami or tiles to cre-
ate new multi-functional nanomaterials.
his is an Open Access article distributed under the terms of the Creative
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Methods
Certain commercial entities, equipment, or materials
may be identified in this document in order to describe
an experimental procedure or concept adequately. Such
identification is not intended to imply recommendation
or endorsement by the National Institute of Standards
and Technology, nor is it intended to imply that the en-
tities, materials, or equipment are necessarily the best
available for the purpose.
All DNA oligonucleotides were purchased from Midland

Oligos (Midland, TX, USA). DNA was resuspended in
purified water with a total organic content of less than
3.4 × 10−5 kg m−3 (34 μg/L) and a resistivity of 18.2
MΩ·cm. DNA was ethanol-precipitated using a slightly
modified version of a previously reported protocol and
resuspended in purified water [27]. Tetramethylammonium
chloride (TMACl), ammonium persulfate, mercaptoethanol,
MgCl2, KCl, tris(hydroxymethyl) aminomethane (Tris),
boric acid, and N-methylmesoporphyrin IX were biochem-
ical grade or equivalent reagents purchased from commer-
cial suppliers. To separate and isolate DNA in some
cases, microcentrifugal filter units (3,000 or 10,000 molecu-
lar weight cutoff) and hydrophilic polyvinylidene fluoride
filters (0.45-μm pore size) were used. A solution of a
mixture of 19 equivalents of acrylamide to 1 equivalent
bisacrylamide with an acrylamide mass fraction of 40%
was used for gel electrophoresis. Three types of buffer were
used and are given here and listed in Table S1 in Additional
file 1: 0.01 KMgTB, which is 1.0 × 10−2 mol/L (10 mM)
KCl, 1.0 × 10−3 mol/L (1.0 mM) MgCl2, 0.05 mol/L (50
mM) Tris-borate, pH 8.0; 0.01 TMgTB, which is 1.0 × 10−2

mol/L (10 mM) TMACl, 1.0 × 10−3 mol/L (1.0 mM) MgCl2,
0.05 mol/L (50 mM) Tris-borate, pH 8.0; and 1 KMgTB,
which is 1.0 mol/L (1 M) KCl, 1.0 × 10−3 mol/L (1.0 mM)
MgCl2, 0.05 mol/L (50 mM) Tris-borate, pH 8.0. A silicon
wafer substrate for atomic force microscopy was obtained
from Silicon Valley Microelectronics, Inc. (Santa Clara, CA,
USA). Sybr Green I Nucleic Acid Gel Stain 10 000 X was
purchased from Lonza (Rockland, MA, USA).

Standard DNA handling and purification
Oligonucleotide sequence information is in Table 1. Syn-
thetic oligonucleotide pellets resuspended in water were
Table 1 Oligonucleotide sequences

Name Length 5′→3′ sequence

C1A 39 ACAGTAGAGATGCTGCTGATTCGTTCA

C1B TGTCATCTCTACGACGACTAAGCAAGT

SQ1A 39 CAGTAGAGATGCTGCTGAGGGGGGGG

SQ1B CTCTACGACGACTGGGGGGGGACACG

C2 29 TCTACGACGACTGGGGGGGGACACGA

The G-box region in each sequence is underlined. aExtinction coefficients for single
ethanol-precipitated using 2.5 mol/L (2.5 M) TMACl.
Typically, an equal volume of 2.5 mol/L (2.5 M) TMACl
and oligonucleotide (typically 1 × 10−3 mol/L to 3 × 10−3

mol/L (1 mM to 3 mM)) in water were combined and
vortexed. A volume of ethanol/water with a volume frac-
tion of 95% ethanol (2.5 times the initial sample volume)
was added, and the sample was stored at −13°C for 1 h or
−80°C for 30 min. Samples were centrifuged for 90 to 100
min at 14,000 ×g. The ethanol supernatant was removed
using a pipette, and the pellet was resuspended in purified
water. Extinction coefficients for the single-stranded oligo-
nucleotides were calculated by the nearest neighbor
method and are included in Table 1 [28]. The strand con-
centration was determined spectrophotometrically. Com-
parisons of experimentally measured spectra and spectra
predicted using nearest neighbor-derived extinction coeffi-
cients [29] generate overall root mean square deviations of
0.013 for single-stranded DNA.
Double-stranded DNA was purified by native poly-

acrylamide gel electrophoresis (PAGE) in TMACl prior
to use in assembling larger structures. Complementary
single-stranded DNA sequences were hybridized in 0.01
TMgTB by heating to 90°C for 10 min followed by slow
cooling to 25°C. TMACl inhibits guanine quadruplex
formation [30]. Duplex DNA was stored at 4°C prior to
further purification by native PAGE. In most cases, du-
plex DNA precursor was prepared immediately before
gel electrophoresis. Duplex DNA requiring storage for
longer than 12 h prior to electrophoresis was stored at
−17°C or −80°C. Duplex DNA was purified by native
PAGE (acrylamide mass fraction of 12%) run at 250 to
300 V. The electrophoresis running buffer was 0.01
TMgTB. All solutions containing TB were prepared
from a TB stock solution consisting of 0.5 mol/L (0.5 M)
Tris and 0.5 mol/L (0.5 M) boric acid at pH 8.0. The
DNA in the gel was visualized by UV shadowing, and
the gel was imaged using a digital camera. Duplex DNA
was excised from the gel and recovered following stand-
ard procedures [31]. DNA was either isolated and con-
centrated in 0.05 mol/L (50 mM) TMACl using
microfuge filtration devices (10,000 molecular weight
cutoff ) or ethanol-precipitated using 2.5 M TMACl as
described above and resuspended in 0.01 TMgTB buffer.
εa260 ε260
(L mol−1 m−1) (mM−1 cm−1)

TGTGCTTCAAGC 3.732 × 107 373.2

ACACGAAGTTCG 3.769 × 107 376.9

TGTGCTTCAAGCG 3.799 × 107 379.9

AAGTTCGCTACTG 3.732 × 107 373.2

AGT 2.856 × 107 285.6

-stranded oligonucleotide in SI units.
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Non-denaturing PAGE of synapsable G-quadruplexes
Duplex precursors were incubated in high potassium
ion-containing buffers to form quadruplexes. Control
samples of the homoquadruplexes formed by SQ1A,
SQ1B, or C2 were prepared by heating a single-stranded
oligonucleotide to 95°C in 1 KMgTB buffer for 10 min
followed by slow cooling to room temperature. For N-
methylmesoporphyrin IX (NMM)-staining experiments,
samples were incubated with NMM for at least 30 min
at room temperature prior to gel loading.
Non-denaturing PAGE for gels with an acrylamide

mass fraction of 15% was performed at 4°C at 300 V;
gels containing an acrylamide mass fraction of 12% were
run at 4°C and 250 V. The electrophoresis running buf-
fer was either 0.01 TMgTB buffer or 0.01 KMgTB buffer.
Gels were UV-shadowed, imaged by UV transillumin-
ation, or stained with Sybr Green I dye by soaking the
gels for 10 to 20 min. All gels were wrapped in plastic
wrap prior to imaging. UV shadowing was accomplished
using a handheld UV lamp and standard digital imaging
device. Transillumination to visualize NMM fluores-
cence was performed using a standard UV transillumi-
nator device equipped with an ethidium bromide
photographic filter. Images were processed (background
subtraction, contrast adjustment) using ImageJ software.
Sybr Green I-stained gels were scanned on a laser-based
fluorescence imaging device and analyzed using the
instrument-supplied software.

Atomic force microscopy
For the preparation of atomic force microscopy (AFM)
substrates, small squares of silicon wafer were washed at
65°C for 30 min in a cleaning solution (piranha) made of
three parts sulfuric acid to one part H2O2 in H2O (H2O2

mass fraction of 30%) followed by rinsing three times
with purified water. Cleaned silicon wafers were stored
under purified water. Immediately prior to use, cleaned
silicon wafer substrate squares were dried under a
stream of nitrogen gas. One drop of 2 mol/L (2 M)
MgCl2 in water (enough to cover the surface) was
dropped on the silicon wafer. The substrate was washed
extensively with purified water until cloudy spots were
no longer visible on the surface. The wafer was then
dried under a stream of nitrogen. The washing and dry-
ing process was repeated twice. At this point, 2 μL of
the sample was applied to the surface and allowed to dry
for 5 min. The surface was washed with purified water
and dried under nitrogen three times.
We imaged mixtures of higher order structures and

monomers by AFM. Three sets of sample preparation
conditions were used. In the first set, samples were pre-
pared from native PAGE-purified duplex DNA solutions
that had been incubated at 4°C for 12 h with 1 KMgTB
buffer. Note that this condition does not involve thermal
treatment. Samples for the second set of conditions were
heated at 90°C for 5 min and incubated at 50°C for 12 or
72 h. In this second strategy, the precursor synapsable
DNA was heated to 90°C, which should not affect the
G-quadruplex structure but should affect the duplex re-
gion. The third procedure was more involved and was
chosen to test if under mild conditions of heating the
synapsable DNA fiber formation was improved or
resulted in significantly different structures than under
the other two conditions tested. Gel-purified comple-
mentary strands were annealed in the presence of
TMACl to obtain precursor duplex DNA. These du-
plexes were exchanged into the 1 KMgTB buffer using
microcentrifugal filters and then incubated at 30°C for
10 min followed by slow cooling to 4°C at a rate of
0.5°C/min. Fibers formed from this protocol are shown
in Figures S1 and S2 in Additional file 1.
In summary, the prepared DNA solutions were incu-

bated at different temperatures prior to deposition on
the AFM substrate. In the first and second protocols,
DNA samples were prepared to test duplex-mediated
synapsable quadruplex formation. In many cases, the
same stock solutions, or the same samples used for na-
tive PAGE, were used for AFM, but they were diluted so
that the final DNA concentration applied to the silicon
wafer was 1.6 × 10−4 kg m−3 (0.16 ng/μL). Images were
collected in air in tapping mode.
To calculate the average height of the fiber, a trajectory

along the fiber was traced to obtain cross sections of the
images. This method gives the values of heights along
the trajectory of the fiber. A number of points, N, were
obtained for the fibers in the image being analyzed, and
the average and standard deviation of these values were
calculated. One fiber representative of those found in
each image was used and the value reported. In general,
there was a height distribution between fibers and also
within each fiber depending on the direction of the cross
section. Nevertheless, the distribution was tight (within
1 to 2 nm of the total height depending on the sample).
An explanation of the factors that created height vari-
ability will be discussed further below. One of those fi-
bers was selected per method of preparation to be
reported here.
Persistence length [32] was calculated using a freeware

program developed by S. Minko and Y. Roiter. The pro-
gram calculates persistence length from microscopy im-
ages of DNA according to Frontali et al. [33]. The mean
is reported along with one standard deviation. For the
shortest fibers, eight images were analyzed with a total
number of fibers measured equal to 26. In two images, a
persistence length (about 600 nm) was obtained. This
persistence length was more than one standard deviation
away from the average of 203 nm and was not used in
calculating the final average and standard deviation. For



Figure 1 Duplex precursor assembly in TMACl assessed by
native PAGE. Lane 1, 4.0 × 10−5 mol/L (40 μM) SQ1A:SQ1B duplex;
lane 2, mixture of 4.0 × 10−5 mol/L (40 μM) C1A:C1B duplex and 8.0 ×
10−5 mol/L (80 μM) single-stranded C1A. C1A:C1B is a 39-mer
blunt-end duplex used as a control. SQ1A:SQ1B is the 39-mer
synapsable duplex with overhangs. Gel with a mass fraction of
12% acrylamide was run in 0.01 TMgTB buffer and imaged by
UV shadowing.
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the longer fibers, six images were analyzed for a total of
30 fibers.

Results and discussion
Duplex precursors form synapsable DNA nanofibers
Single-stranded DNA sequences (Table 1) were annealed
in TMACl-containing buffer (0.01 TMgTB). The resulting
duplexes were purified by native PAGE using standard
methods [31]. Figure 1 shows that the SQ1A:SQ1B duplex
runs slightly more slowly than the random sequence,
blunt-end C1A:C1B duplex control, which is of the same
length (39 bases). The C1A:C1B duplex control was used
as a migration standard because it shows reproducible gel
mobility that is not affected by the presence of overhangs
or secondary structure. This result is reproducible over a
dozen replicates.
Upon incubation in potassium-containing buffer, the

SQ1A:SQ1B duplex assembles into a ‘synapsed’ quadruplex,
(SQ1A:SQ1B)2. In addition to observation of the (SQ1A:
SQ1B)2 quadruplex, a much slower mobility species is also
observed (Figure 2, higher order structures). These slower
migrating species form at the high duplex concentrations
used in the UV-shadowing gel experiments (Figure 2, left)
as well as in SYBR Green-stained gels loaded with lower
DNA concentration samples (Figure 2, right). To test if the
assembly of larger species is specific to the SQ1A:SQ1B du-
plex sequence, we used the C2:SQ1A duplex. This duplex
is generated by hybridizing C2, a 29-mer complementary
strand, to SQ1A, which results in a duplex with a smaller
molecular mass and shorter overall length than the SQ1A:
SQ1B duplex. As shown in Figure 2, both the SQ1A:SQ1B
and SQ1A:C2 duplexes incubated in potassium-containing
buffer form species that migrate more slowly in the gel than
the 39-mer homoquadruplexes of C2 and SQ1A.

Higher order species contain quadruplexes
When referenced to the control C1A:C1B duplex, the
SQ1A:SQ1B duplex in TMACl (Figure 1) migrates
with about the same mobility as the (SQ1A:SQ1B)2
quadruplex in KCl (Figure 2). This observation raises the
possibility that the bands we ascribe to higher order
structures are either simple quadruplexes (i.e., not linked
together) or duplexes that link together without
quadruplex formation. To test this possibility, gel elec-
trophoresis was performed on samples incubated with
NMM, a dye that exhibits increased fluorescence only
upon binding quadruplex DNA [34-37]. Figure 3 shows
gel images of samples incubated with NMM and ana-
lyzed by gel electrophoresis in TMACl (Figure 3a,b) or
KCl (Figure 3c,d). Figure 3a shows that incubation of
NMM with our samples does not generate new species;
a slight shift in band mobility is observed, which is due
to NMM binding. Figure 3b,d shows NMM fluorescence
intensity recorded for each gel. The control sequence is
the preformed SQ1A homoquadruplex, which causes
NMM to fluoresce in either buffer (Figure 3b, lane 6;
Figure 3d, lane 4). The SQ1A:SQ1B duplex in TMACl
does not induce NMM fluorescence (Figure 3b, lane 2),
while the synapsed (SQ1A:SQ1B)2 quadruplex in KCl
clearly does (Figure 3d, lane 3). There is a slight amount
of NMM fluorescence for the SQ1A:SQ1B duplex pre-
pared in TMACl and run on the KCl gel (Figure 3d, lane
2), which is an expected result because exposure of the



Figure 2 Native PAGE showing higher order species formed by SQ1A:SQ1B duplex incubated in potassium-containing buffer. Left:
Sample concentrations are 1.0 × 10−4 mol/L (100 μM) per strand SQ1A or SQ1B, 5.0 × 10−5 mol/L (50 μM) SQ1A:SQ1B duplex, and 5.0 × 10−5

mol/L (50 μM) C1A:C1B duplex. Gel (acrylamide mass fraction 12%) was run in 0.01 KMgTB buffer and then UV-shadowed. Right: Sample
concentrations are 2.0 × 10−6 mol/L (2 μM) strand C2, 2.0 × 10−6 mol/L (2 μM) strand SQ1A, 1.0 × 10−6 mol/L (1 μM) duplex C2:SQ1A, and 1.0 ×
10−6 mol/L (1 μM) duplex SQ1A:SQ1B. Gel (acrylamide mass fraction 15%) was run in 0.01 KMgTB buffer and then stained with Sybr Green I dye.
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SQ1A:SQ1B duplex to KCl during gel electrophoresis
should shift the structure from duplex to quadruplex.
The strongest NMM fluorescence is observed for
the slowly migrating species formed by (SQ1A:SQ1B)2
(Figure 3d, lane 3), indicating that quadruplex is present
in this structure.

Morphology of the synapsable DNA nanofibers by AFM
On the basis of the gel electrophoresis results indicating
that slowly migrating species form quadruplex DNA, we
examined solutions of (SQ1A:SQ1B)2 using AFM. We
observed that fibers form under several conditions with
varying morphology depending on the preparation
method. Gel-purified duplex DNA precursors formed
very long fibers (>2 μm) when incubated at 4°C for 12 h
in 1 KMgTB (Figure 4, left). The average height of the
nanofiber in Figure 4 is 0.45 ± 0.04 nm. When synapsed
samples were heated to 90°C and then incubated at 50°C
for 72 h in 1 KMgTB, more fibers were observed by
AFM and some of these fibers form bundles with lengths
longer than 2 μm (Figure 4, right). The height above the
background for these bundles is 0.9 ± 0.4 nm.
The AFM images show that fibers form with lengths

ranging from 250 to 2,000 nm and heights from 0.45 to
4.0 nm. The variation in height is most likely due to the
existence of the two different regions in the structure:
the G-quadruplex box and the duplex arms. G-
quadruplexes have a similar diameter to B-form DNA
on the basis of AFM measurements [38], although there
is a difference in G-quadruplex height depending on
whether the quadruplex is unimolecular (1.0 ± 0.2 nm
[39] or 1.5 ± 0.3 nm [40]) or tetramolecular (2.2 ± 0.2
nm [39,41]). In our final suprastructures, the duplex
arms could be stacked on one another, which could ex-
plain the considerable height variation because duplex
DNA height depends on the thickness of the hydration
layer [38]. Up to a 0.6-nm increase can be observed as
a function of hydration [38]. Figures S1 and S2 in
Additional file 1 show the existence of at least two
height distributions, which are likely due to G-quadruplex
and duplex arm regions. We estimate a persistence length,
depending on the treatment, that ranges from 161 ± 20
nm for the longest fibers (i.e., Figure 4, left panel). For the
shortest fibers, the average persistence length is 203 ± 70
nm, which is within error of the persistence length of the
longest fibers. We consistently observe a long persistence
length in our fibers, suggesting that this reflects the stiff-
ness of our nanofibers.
Previously, duplex DNA containing a mismatched G-box

region has been used to form an unusual G-quadruplex
termed ‘synapsable DNA.’ These G-quadruplexes are as-
sembled from duplex precursors and therefore contain two



Figure 3 Native gel electrophoresis images showing that quadruplex is present in synapsed (SQ1A:SQ1B)2. TMACl (top row): Samples in
lanes 2, 4, and 6 contain 1.0 × 10−5 mol/L (10 μM) NMM. Lanes 1 and 2, 4.0 × 10−5 mol/L (40 μM) SQ1A:SQ1B duplex; lanes 3 and 4, mixture of
4.0 × 10−5 mol/L (40 μM) C1A:C1B duplex with 1.0 × 10−4 (100 μM) C1A; lanes 5 and 6, 8.0 × 10−5 mol/L (80 μM) per strand SQ1A. Gel
(acrylamide mass fraction 12%) was run in 0.01 TMgTB buffer and (a) UV-shadowed (b) or UV-transilluminated. KCl (bottom row): All samples
contain 1.0 × 10−5 mol/L (10 μM) NMM. Lane 1, 4.0 × 10−5 mol/L (40 μM) C1A:C1B duplex; lane 2, 4.0 × 10−5 mol/L (40 μM) SQ1A:SQ1B duplex
in TMACl; lane 3, 3.0 × 10−5 mol/L (30 μM) SQ1A:SQ1B duplex incubated overnight at 4°C in high potassium-containing buffer to assemble
quadruplex; lane 4, 6.0 × 10−5 mol/L (60 μM) per strand SQ1A. Gel (acrylamide mass fraction 12%) was run in 0.01 KMgTB buffer and
(c) UV-shadowed or (d) UV-transilluminated.
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pairs of antiparallel strands. This is unusual as, typically,
intermolecular G-quadruplexes containing four separate
strands of DNA tend to adopt a parallel strand alignment
[42]. The unique structural features of the synapsed
quadruplexes have led to the suggestion that they are suit-
able for building nanostructures [26]. Actual preparation of
nanostructures using this strategy has not been demon-
strated, however.
We aimed to exploit synapsable quadruplex DNA to

create a novel, addressable material by adding additional
Watson-Crick base pairing regions the synapsable G-
quadruplexes. The ‘duplex’ precursor DNA in our design
includes a long sequence of guanines in each strand, se-
quences flanking the G-rich region that are complemen-
tary to another strand, and single-stranded overhangs.
Formation of the duplex precursor in buffers containing
TMACl, which does not facilitate quadruplex formation
[43], is observed clearly and reproducibly in our experi-
ments using 0.01 TMgTB. When two duplex precursors
associate upon addition of potassium, the final guanine



Figure 4 AFM images of the (SQ1A:SQ1B)2 nanofiber. Left panel: The synapsable DNA nanofiber was prepared by dilution of purified SQ1A:
SQ1B duplex originally diluted from 0.05 mol/L (50 mM) TMACl into 1 KMgTB buffer. The quadruplex sample was incubated for 12 h at 4°C prior
to depositing it on the silicon wafer for imaging. The average height of the nanofiber is 0.45 ± 0.04 nm. Right panel: Gel-purified SQ1A:SQ1B
duplex was heated to 90°C for 5 min and kept at 50°C for 72 h. The concentration was 6.7 × 10−9 mol/L (6.7 nM) quadruplex. A drop of sample
was placed on the silicon wafer substrate, evaporated for 10 min at room temperature, and then washed with purified water three times prior to
drying at room temperature for 1 to 2 h. Average height above the background of the bundles is 0.9 ± 0.4 nm.

Figure 5 Proposed model for assembly of quadruplex nanofibers.
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quadruplex contains four DNA strands: two strands are
oriented 5′ to 3′ and the other two oriented from 3′ to
5′ (Figure 5). The synapsed quadruplex is assigned using
gel electrophoresis on the basis of comparison to control
sequences and through quadruplex-specific dye staining
experiments. We note that there are several duplex ar-
rangements possible as a result of the orientations in
which the duplex precursors can come together. In our
design, each synapsed quadruplex contains four duplex
‘arms’ flanking the G-rich region, and each arm has a
short single-stranded overhang. To explain fiber forma-
tion, we propose that the duplex regions in the
quadruplexes partially melt, thereby allowing linking of
synapsed quadruplexes together into a larger structure.
Our tentative model for association of (SQ1A:SQ1B)2

quadruplexes into fibers involves partial duplex melting,
which allows individual quadruplex units to associate
into larger fibers (Figure 5). The G-quadruplex region,
which contains eight guanines, does not melt at the salt
concentrations used in our work [24,27]. After the du-
plex is incubated in potassium to form a quadruplex, a
considerable amount of crowding is introduced at the
ends of each G-quadruplex. Under these conditions, it
might be more favorable for a (partially) melted duplex
region to base pair with a complementary strand in an-
other synapsed quadruplex. Because four strands are
available at each end of the G-quadruplex region, the
likelihood of occurrence of a single event (base pairing
with a strand in another synapsable quadruplex unit) is
greatly increased. We observed by AFM that increasing
the annealing temperature increases fiber formation,
which is consistent with our assembly model. The in-
creased annealing temperature melts the duplex regions
more completely, thereby increasing the likelihood that
two arms on separate synapsed quadruplex molecules
will pair. This model allows for formation of branched
structures. This working hypothesis is currently under
investigation in our laboratories to test its validity.
Our work is one of the first in which a macromolecu-

lar structure is assembled actively via cooperation of
Hoogsteen and Watson-Crick base pairing [12]. In con-
trast, structures such as G4-DNA [44-48], frayed wires
[49-51], and G-wires [46] are driven only by Hoogsteen
hydrogen bonding in G-quartets. Canonical base pairing
has been used to create duplex DNA branches on the
ends of frayed wires [49], but initial assembly of the
frayed wires exploits only Hoogsteen hydrogen bonding
and used a single DNA sequence, which does not allow
significant variability/flexibility [49]. Finally, structures
created by acid-dependent assembly of d(CGG)4 also de-
pend mainly on Hoogsteen hydrogen bonding [52]. In
contrast, all of the main DNA fabrication methods using
DNA tiles/origami rely on canonical base pairing, with
the exception of a structure in which building blocks are
connected by quadruplexes rather than duplexes [12].
The presence of duplex and quadruplex elements in our
final structures results in distinct recognition sites for in-
corporation of additional elements [53]. Future work will
measure the accessibility and selectivity of these address-
able sites in both precursor units and final structures.

Conclusions
We present a novel strategy to generate fibers with
morphologies that differ from duplex-only-based wires.
Our method uses hybridization of DNA strands to form
duplexes followed by cation-mediated assembly of
quadruplexes. The dimensions and quantities of our fi-
bers vary depending on the preparation conditions, but
the final assemblies contain quadruplexes. We have
shown here the proof of concept for mixed duplex-
quadruplex fiber fabrication that we believe holds prom-
ise for organized control of fiber assembly.

Additional file
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