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Why item response theory should be used
for longitudinal questionnaire data analysis
in medical research
Rosalie Gorter1,2*, Jean-Paul Fox3 and Jos W. R. Twisk1,2

Abstract

Background: Multi-item questionnaires are important instruments for monitoring health in epidemiological
longitudinal studies. Mostly sum-scores are used as a summary measure for these multi-item questionnaires. The
objective of this study was to show the negative impact of using sum-score based longitudinal data analysis
instead of Item Response Theory (IRT)-based plausible values.

Methods: In a simulation study (varying the number of items, sample size, and distribution of the outcomes) the
parameter estimates resulting from both modeling techniques were compared to the true values. Next, the models
were applied to an example dataset from the Amsterdam Growth and Health Longitudinal Study (AGHLS).

Results: The results show that using sum-scores leads to overestimation of the within person (repeated
measurement) variance and underestimation of the between person variance.

Conclusions: We recommend using IRT-based plausible value techniques for analyzing repeatedly measured multi-item
questionnaire data.

Keywords: Longitudinal data, Hierarchical model, Item response theory, Questionnaires, Measurement error, Structural
model, Plausible values, Multilevel model

Background
In the field of medical epidemiological research, multi-item
questionnaires are often used to measure the development
of a subject’s health status over time. The resulting item
observations are used as measurements of a continuous
latent variable (i.e. a variable that is not directly observable).
Examples of latent variables are health related quality of life
[1, 2], and depression [3]. A measurement model is re-
quired to describe the relation between the observed cat-
egorical item responses (for example, Likert items with four
answering categories: agree/slightly agree/slightly disagree/
disagree) and the continuous latent variable.
To make statistical inferences about longitudinal mea-

surements of the latent variable a statistical model is re-
quired that describes the development of the latent variable
over time, while addressing the typical correlations between

measurements of one person. The central question is how
to measure the latent variable given the response data, and
how to perform the longitudinal data analysis given the
measured variables. In longitudinal designs, the data has a
nested structure; i.e. repeated measurements are nested
within the subjects. Due to the nested structure, the com-
mon independence assumptions between measurements
do not hold and neither linear/logistic regression nor ana-
lysis of variance can be used in a straightforward way [4–8].
A multilevel model can be used to model the dependencies
when there are multiple measurements nested within par-
ticipants [9]. This multilevel modelling approach will be re-
ferred to as structural modeling to explore differences in
longitudinal analyses with sum-scores and IRT-based scores
as estimates for the latent variable.
Two fundamental theoretical frameworks can be used

to measure latent variables given the response data. His-
torically, there is classical test theory (CTT), where sum-
scores are the estimates of the latent variable. The other,
theoretically more advanced framework is item response
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theory (IRT) where item response patterns are used to
construct scores for the latent variable. Under CTT, item
differences are ignored and sum-scores have a common
measurement error variance across subjects. Under IRT,
different scores are assigned to the different response
patterns leading to the same sum-score, making it pos-
sible to distinguish between the latent variable scores of
subjects with similar sum-scores. Item response patterns
are lower-level observations and more informative about
the latent variable than higher-level aggregated sum-
scores, which ignore differences between response pat-
terns leading to equal sum-scores. Another advantage of
IRT is that the distribution of the latent variable can ad-
dress skewness of the population distribution, where
under CTT, the distribution of the latent variable is re-
stricted to be symmetric. In most epidemiological stud-
ies however, a symmetric latent variable population
distribution is not present [10, 11]. Despite the known
benefits of IRT, epidemiological researchers are still
using sum-scores [12–15] as estimators of the latent
variable.
The measurement error associated with latent vari-

ables is usually ignored in the structural model when
using sum-scores with equal amounts of measurement
error for all scores on the latent variable. The parameter
estimates of the structural model will be biased [16]
consequently. To address the uncertainty associated
with the measurements, the plausible value technology
[17–21] can be used. In plausible value technology,
several draws (mostly five [22]) from the posterior dis-
tributions of latent variable scores for each person are
used as latent variables in the structural model. The
results from the structural model are pooled for all
draws to obtain parameter estimates. Plausible value
technology can be used to address directly the negative im-
plications of using sum-scores as measurements of latent
variables, while making the comparison with IRT-based
plausible values.
The objective of this paper is to stress the important

differences between IRT and CTT for latent variable
modeling in different situations and show why IRT
measurement models should be used in longitudinal re-
search. As a case study in epidemiological longitudinal
data, the repeatedly measured trait anxiety questionnaire
from the Amsterdam Growth and Health Longitudinal
Study (AGHLS) [23] is used.

Methods
Structural model for longitudinal latent variables
A structural model (also known as latent regression
model) describes the relationships between predictors
and latent variables while addressing additional depend-
encies between the repeatedly measured latent variables.
A well-known method to account for the nested

structure of longitudinal data is multilevel modeling
(or mixed modelling, random effects modelling, hier-
archical linear modelling) as the structural model.
Advantages of using multilevel modelling for longitu-
dinal data analysis are that it is not necessary that sub-
jects are measured on the same time points nor do
follow up times need to be uniform. Furthermore, the
model is capable of handling time-invariant and time-
variant covariates. Also, it is possible to estimate
subject-specific change across time. The following
multilevel model will be considered,

θij ¼ βj þ eij
βj ¼ γ þ uj

ð1Þ

where θij is the latent variable location of person j for
measurement occasion i, βj is the random intercept
representing the average latent variable location of per-
son j over measurement occasions; both error terms are
normally distributed with eij ~ N(0, σ2), and uj ~ N(0, τ2).
The variance parameter τ2 of the multilevel model is the
variance between persons (i.e. level-2 variance) whereas
σ2 is the repeated measurement variance (i.e. the vari-
ance of the measurements within person; level-1
variance).

Measurement part of the model
To estimate the latent variable θij that is used in the struc-
tural model as described in equation Eq. 1, CTT or IRT-
based methods can be used. Lord and Novick [24] pp. 44
describe the basic equation for the composition of the
observed score, Xgij, for the latent variable, Tgij, for person
j on measurement occasion i on questionnaire g as

Xgij ¼ Tgij þ Egij; ð2Þ
where Tgij is the true score, and Egij the error of meas-

urement. The observed score consists of the true score
and the error of measurement, which is assumed to be
unbiased. When making this assumption about the
measurement error, numbers can be attached to the an-
swering categories of the items and summed over all
items of the questionnaire. Then, a test score (i.e., sum-
score) can be defined as

θijCTT ¼
XK
k¼1

Xkij; ð3Þ

where the response pattern for person j on measure-
ment occasion i is given by (X1ij, …, XKij), and where K
represents the number of items in the questionnaire.
These sum-scores are the CTT estimates for the latent
variable and used as outcome variable in the longitudinal
analysis (i.e. the structural model). There are two main
problems with this way of quantifying latent variables.
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The first issue is that the characteristics of the test and
the subject are inseparable, i.e. they cannot be inter-
preted without the other, which makes sum-scores
population dependent. The second problem is that the
standard error of measurement is assumed to be the
same for all subjects, although some sum-scores are
more informative about the latent variable than others.
That is, it is much more likely that different subjects are
measured with different precision. For example, extreme
high or low sum-scores are more unreliable compared
to average sums scores, meaning that the extreme sum-
scores are less likely to distinguish between the subjects
than the sum-scores in the middle of the scale.
The item response patterns are more informative

about the latent variable than the aggregated sum-
scores, which ignore differences between response pat-
terns leading to the same sum-score. For example, when
answering ‘yes’ to 10 out of 20 dichotomous items (1
= ' yes ', 0 = ' no '), the sum-score of 10 can be obtained in
20 !/10 ! ways. Under IRT different scores are assigned to
the different response patterns all leading to the same
sum-score, making it possible to distinguish the scores
of respondents with similar sum-scores.
Using IRT modeling is an accepted way to account for

the differences in measurement precision between per-
sons [25–29] and can be used to estimate scores for the
latent variable. In IRT, the relation between the unob-
served latent variable θ and the observed item scores are
described by item characteristic curves that model the
probability of observed item responses. As a result, the
item and latent variable estimates in IRT modeling are
not dependent upon the population [30]. Fig. 1 depicts
an example of item characteristic curves for an item
with four response categories where the probabilities of
choosing a certain category are plotted against the latent

variable. An IRT model describes the relationship be-
tween latent variables and the answers of the persons on
the items of the questionnaire measuring the latent vari-
able [31]. For ordered response data, the probability that
an individual indexed ij with an underlying latent vari-
able θij, responds into category c (c = 1, . . . ,C) on item
k is represented by

p yijk ¼ cjθij; ak ; τk
� �

¼ ϕ akθij−τkc−1
� �

−ϕ akθij−τkc
� �

;

ð4Þ
where τkc are the Ck − 1 threshold parameters. The

probability that the response yijk falls into category c is
the difference of the probability densities (ϕ) of category
c − 1 and category c. The response categories are ordered
as −∞ ≤ τk1 ≤ τk2 ≤ τk3 ≤ ∞.
This item response model is called the graded re-

sponse model [32] (or ordinal probit model [31, 33]). A
Rasch [34] restriction was used fixing the discrimination
parameters, ak, to one.

Computing and generating IRT- and CTT-based scores
Different methods exist for generating values for the la-
tent variable in the IRT framework. The first way is to
generate point estimates of the latent variable modeled
by the IRT model by constructing the posterior distribu-
tion of the latent variable given the data. An important
assumption of IRT modeling is conditional independ-
ence, which entails that response probabilities for items
rely solely on the latent variable, θij, and the item param-
eters. As a result, the joint probability of a response pat-
tern yij, given the latent variable θij, of a person j on
measurement occasion i, and given the item parameters,
over the K items of the questionnaire is the product of
the probabilities of the individual answers of a person on
all items of the questionnaire given this person’s position
on the latent variable θij (equation Eq. 5).

p yijjθij
� �

¼ p yij1jθij
� �

p yij2jθij
� �

…p yijK jθij
� �

¼
YK
k¼1

p yijk jθij
� �

; ð5Þ

When assuming a prior distribution for the latent vari-
able distribution, g(θij), a posterior mean can be derived
from the posterior p(θij|yij) = p(yij|θij)g(θij)/p(yij), where
the posterior is derived according to Bayes’ rule [35].
The posterior mean can be used as an estimate of the la-
tent score.
When using the posterior mean as an estimate of the

latent score and thus as an outcome variable in the
structural model, the uncertainty associated with the
score is ignored. To account for this uncertainty, plaus-
ible value technology is used [18, 19, 36, 37] where the

Fig. 1 Item response characteristic curves for item 2 from the STAI-DY
with four answering categories. The item that was used for this example
was ‘I feel nervous and restless’ with four answering categories ‘1. Almost
never’, ‘2. Sometimes’, ‘3. Often’, and ‘4. Almost always’. The crossing of
two lines mark a threshold and can be interpreted as the location on the
latent parameter where the probability of choosing the corresponding
category or higher is 0.5
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latent outcome variable is treated as missing data. Plaus-
ible values are generated from the posterior distribution
of the latent variable to obtain a complete data set. This
data set can be analyzed in the secondary data analysis.
When constructing the posterior of the latent variable,
all available information is used. The posterior is propor-
tional to the likelihood times the prior, which can be
represented by

p θijjyij; σ2; τ2; γ
� �

∝p yijjθij
� �

p θijjσ2; τ2; γ
� �

: ð6Þ

The structural model parameters are integrated out
such that the (marginal) posterior of the latent variable
only depends on the response pattern. This marginal
posterior is only dependent on the data, in this case
upon the data of subject j on occasion i. We sample
from the marginal distribution in order to obtain plaus-
ible scores for subjects with similar response patterns
and background characteristics as in the sample of
subjects [20, 21].
For the CTT model, the sum score defined in equation

Eq. 3 is considered to be an unbiased estimate of the
true score. This true score is considered to be an out-
come of the multilevel model in equation Eq. 1. When
assuming the CTT model for the measurement of the
construct score, according to equation Eq. 2, the distri-
bution of the observed scores given the true score is
given by p(yij|θij_CTT). Subsequently, the posterior distri-
bution of the true score is given by

p θijCTT yij; σ
2; τ2; γ

��� �
∝p yij θijCTT

�� �
p θijCTT σ2; ; τ2; γ

�� �
:

���

ð7Þ

Parallel measurements are needed to estimate the true
score (error) variance, but they are usually not available.
When the measurement error variance cannot be esti-
mated under the CTT model, the first term on the
right-hand side is not included in defining the posterior
distribution, and an unbiased estimate of the true score
is assumed. However, the measurement error can still be
assumed to be included in the multilevel model specifi-
cation (i.e., the second term on the right-hand side). In
that case, the population variance is used as an approxi-
mation of the subject-specific measurement error vari-
ance [24] pp. 155. This approach was also used in the
present study.
Analogue to generating plausible values under the IRT

model (equation Eq. 6), the marginal distribution of the
(true) scores is used to generate plausible values under
the CTT model. Note that the drawn plausible values
are realizations of the true score under the structural
multilevel model given the sum score as an unbiased es-
timate of the true score.

In the literature, it is recommended to draw five sets
of plausible values to address the uncertainty associated
with the plausible values for the missing data [37, 38].
Various results of data analysis are obtained for the five
different complete data sets, which are constructed from
multiple sets of plausible values. The final results are
constructed by averaging the analysis results, in this
case, the structural model from equation Eq. 1.

Comparing CTT and IRT-based estimates
When comparing the IRT and CTT-based structural
model estimates, it is required to take scale differences
into account. For the comparison, the CTT scores were
rescaled to the IRT-based plausible values scale, using a
linear transformation as proposed by Kolen and Brennan
[39] pp. 337,

sc yð Þ ¼ σ pvð Þ
σ Yð Þ yþ μ pvð Þ− σ pvð Þ

σ Yð Þ μ Yð Þ
� �

; ð8Þ

where μ(pv) and σ(pv) are the mean and the standard
deviation of the IRT-based plausible values, and where
μ(Y), and σ(Y) are the mean and standard deviation of
the CTT-based plausible values.
Next, the structural model was fit to the plausible

values for each of the five draws. Finally, the estimates
resulting from the structural model were pooled to ob-
tain the final parameter estimates.

Simulation study
A simulation study is presented for evaluating the use of
IRT-based plausible values compared with CTT model-
ing for estimating latent variables used in longitudinal
multilevel analysis. The aim of this study was to investi-
gate how the true values of the population parameters
are retrieved in different situations with varying sample
sizes, number of items and skewness of the latent vari-
able distribution.

Design
The full cross classified design resulting in 546 condi-
tions is depicted in Table 1. Per condition, 10 datasets
were simulated using R statistical software [40] and ana-
lyzed using an extended version of the R-Package mlirt
[31] and WinBUGS [41, 42]. Data was generated follow-
ing the model described in equation Eq. 1 with the vari-
ance between persons (i.e. level-2 variance) set to τ2=.8,
and repeated measurement variance to σ2=.4 while using
the IRT-model from equation Eq. 4 to generate values
for the normally distributed underlying latent variable;
θij ~N(0, 1). An unidimentional latent variable was as-
sumed to cause the responses, measured six times J = 6
using a varying amount of items with four answering
categories per item C = 4. The number of items that
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were used are listed in Table 1. In the simulated data,
skewness of the latent variable was generated by chan-
ging the location of threshold parameters of the IRT
model. For example, for a positive skewness of 2.6, τk1 =
3, τk2 = 2, and τk3 = 1 were used for all items k. This
skewed to the right data could indicate that relatively
healthy persons were asked to answer a questionnaire
measuring clinical depression, leading to high sum-
scores. The same can occur when subjects have recov-
ered after treatment and the same questionnaire is used
on the baseline and follow up measurement. Item scores
were generated based on the latent variable and the pa-
rameters of the IRT model. The CTT based scores are
calculated according to equation Eq. 3 using the simu-
lated item scores. These sum-scores are the CTT esti-
mates for the latent variable. In Fig. 2, the distributions
of the CTT scores are visualized using density plots of
different skewness conditions. In epidemiological data,
skewness in the data is often found. The influence of
various levels of skewness of the latent variable distribu-
tion on retrieving the multilevel regression parameters
was investigated.

Figure 3 shows a schematic display of the simulation
procedure for one replication. IRT and CTT-based
plausible values were generated using the datasets from
one of the simulation conditions. The CTT-based Plaus-
ible values were rescaled according to equation Eq. 7
and the structural model described in equation Eq. 1
was fit to five draws of plausible values and the results
were pooled by averaging the parameter estimates. Mean
squared errors (MSE) given by

MSE θ̂
� �

¼ Var θ̂
� �

þ Bias θ̂; θ
� �� �2

; ð9Þ

were calculated where θ̂ denote the parameter esti-
mates resulting from the different replications and θ are
the true values.
The MSE’s were calculated for the level-1 and level-2

variance estimates for both the CTT and the IRT-based
plausible value analysis.

Simulation Results
Figure 4 shows a selection of the variance estimates
within persons (level-1) and between persons (level-2).
The estimates for the IRT-based plausible value scores
are closer to the true parameter value of 0.4 for the
within person variance and 0.8 for the between person
variance compared to the estimates from the CTT-based
analysis. The difference between the methods is the
smallest when the latent variable is perfectly normal dis-
tributed, and becomes gradually bigger with increasing
skewness of the latent variable distribution. The esti-
mates from the CTT model get closer to the true values
when the number of items increase moving from the left
to the right graphs. The estimates from the IRT model
are close to the true values for number of item condi-
tions with except for the N = 100 condition. The CTT
repeated measurement variance estimates for the condi-
tions with ten or less items are even higher compared to
the between person variance estimates in case of more
extreme skewness. This in contrary to the IRT-based es-
timates, where the variance estimates are very close to
the true values regardless of the skewness. Overall, the
IRT method gives more accurate estimates compared to
the CTT model over all the simulation conditions.
When comparing the plots from the top to bottom, the
sample size increases from N = 100 to N = 500 to N = 1,
000. Increase in sample size does not influence the mag-
nitude of the difference between both models. The IRT
model gives better estimates in all sample size condi-
tions. With the increasing sample size, the lines between
the estimates become more stable, indicating a more
stable pattern of the differences between both methods.
The MSE’s for the variance estimates are presented in
Fig. 5, where it can be seen that the CTT model

Table 1 Simulation conditions. The conditions of the full cross
classified design for the simulation study. The numbers of items,
number of participants, as well as the skewness from a normal
distribution of the latent variable were varied

Modela Itemsb Nc Skewness

IRT 3 100 0

CTT 5 500 +/− 0.4

7 1000 +/− 0.8

10 +/− 1.3

15 +/− 1.9

20 +/− 2.6

50 +/− 3.6
aMeasurement model that was used for drawing the plausible values for the
latent variable
bNumber of items
cNumber of participants

Fig. 2 The density of four different skewed normal distributions for
the latent variable
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systematically overestimates the repeated measurement
variance and underestimated the between person vari-
ance. The differences between the true value and the es-
timated value by the CTT model increases when the
latent variable distribution becomes more skewed. These
differences become smaller for the CTT-based estimates
when the number of items and the sample size increase.
The observed difference between the IRT and CTT esti-
mates seems to be dependent on the manipulated fac-
tors. The extremer data situations are causing larger
differences between IRT and CTT-based estimates in a
consistent way. A complete representation of the results
can be found in Additional file 1 and Additional file 2
online.

Empirical dataset
An example dataset was analyzed to illustrate the applica-
tion of IRT-based plausible values in epidemiological prac-
tice. Data were obtained from the Amsterdam Growth and
Health Longitudinal Study (AGHLS), which is a multidis-
ciplinary longitudinal cohort study that was originally set
up to examine growth and health among teenagers [43].
Data from the AGHLS were used in previous research to
answer various research questions dealing with the relation-
ships between anthropometry [44], physical activity [45],
cardiovascular disease risk [46, 47], lifestyle [48, 49], muscu-
loskeletal health, psychological health [50] and wellbeing.
The presented sample consists of 443 participants who
were followed over the period 1993–2006 with maximal
three data points over time nested within the individuals. A
subscale of the State Trait Anxiety Index Dutch Y-version
(STAI-DY) [51] questionnaire was used to measure the la-
tent variable ‘state anxiety’ and consists of 20 items with
four answering categories. The histograms in Fig. 6 depict
the sum-score distributions on the three measurement oc-
casions. The aim of the analysis was to estimate the inter-
cept and the variance parameters (i.e. an intercept only
model) in order to compare the CTT and IRT-based esti-
mates. The measurement models as well as the structural

model that were used are comparable to those in the simu-
lation study above.

Results
The pooled parameter estimates resulting from both the
IRT and CTT-based models are presented in Table 2.
The parameter estimates are derived by pooling the av-
erages from the posterior distributions of the five draws
of plausible values that are visualized in Fig. 7. Looking
at the estimate for the random intercept on the first row
of Table 2, it can be seen that the IRT and CTT-based
estimates are similar. Furthermore, it can be seen that
the between person variance is lower for the CTT-based
model compared to estimates from the IRT-based
model, 0.685 and 0.733 respectively. The within person
variance was 0.357 for the CTT-based model while it
was 0.294 for the IRT-based model. As a result, the intra
class correlation coefficient (ICC) was higher for the
CTT-based model indicating that there was relatively
more residual variance relative to the total variance
compared to the IRT-based model. As a result, the
CTT-based model overestimates the ICC substantially.
Looking at the posterior distributions resulting from the
first draw of plausible values on the top row of plots in
Fig. 7, the two distributions are overlapping partly how-
ever there is a clear difference between the locations of
the IRT and CTT-based posterior density plots. In draw
two, three, and four there is a difference in the level-1
(within person) variance posterior density, but no large
difference for the level-2 (between person) variance pos-
terior density. The posterior density plots for the ran-
dom intercept estimates in all draws are overlapping
almost completely, indicating no difference in the esti-
mates of the random intercept between the IRT and
CTT-based modeling techniques. The reason that the
estimates for the intercept are the same for both models
is the rescaling procedure that was used as described in
equation Eq. 7. The mean and the variance for plausible
values are rescaled to the same scale in order to

Fig. 3 Simulation procedure for one replication
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guarantee the comparability of the estimates. The results
from the data example are in concordance with the re-
sults from the simulation study, indicating that the IRT
based estimates are closer to the true parameters.

Discussion
Despite the known benefits of IRT modeling when analyz-
ing latent variables, CTT models are still used very often

in the field of epidemiological research. The objective of
this study was to point out the differences between the
use of IRT-based plausible values and the use of sum-
scores in the measurement part of a longitudinal analysis.
In this study, it is shown that the common way of doing
longitudinal analysis with sum-scores leads to systematic-
ally biased results and more advanced statistical methods
are required to make profound inferences in longitudinal

Fig. 4 Pooled variance estimates. Selection of the pooled variance estimates for different distributions, sample sizes (N = 100, 500, 1000), and
number of items (K = 5, 10, 20). The upper left plot for example represents 13 different skewness conditions (from negative to positive) with 100
participants measured on six time points with a five-item questionnaire. The points represent the IRT and CTT-based estimates for the level-1
(repeated measurement) and level-2 (between person) variance. The horizontal lines represent the true values for the variance parameters
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latent variable research. We showed that IRT-based
plausible value techniques performs better compared with
CTT analysis for retrieving variance estimates in longitu-
dinal data with latent outcome variables measured with
questionnaires. The difference between both methods be-
comes consistently larger for the more extreme conditions
of the simulation, indicating that IRT-based plausible
value techniques are quite robust against more extreme
data situations. The bias in the CTT based estimates can

be reduced by using a larger number of items, a larger
sample size, and by using data following a strictly normal
distribution. However, in almost all of the data situations
in our simulation study, longitudinal IRT performs much
better in retrieving the variance estimates. In practice, epi-
demiological questionnaire data is seldom normally dis-
tributed [52–54], and using IRT-based estimates can
improve the quality of the estimates profoundly. The sys-
tematic underestimation of the between person variance

Fig. 5 Mean squared errors. Plots of the MSE’s for level-1 (repeated measurement) and level-2 (between person) variance parameter estimates
resulting from both the IRT and the CTT-based latent variable models
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and overestimation of the within person variance by the
CTT-based model leads to overestimation of the ICC.
This might have impact on the regression coefficients and
cause bias. It would be interesting to investigate the se-
quence and direction of this bias and the impact on the
conclusions of past and future research. Besides that, now-
adays there is also much interest in using multilevel mod-
eling to explain differences between individuals and
groups, which makes it even more important to use un-
biased estimates for the variance parameters. Based on the
outcomes of our research, it is advisable to use IRT-based

plausible value techniques when the outcome variable is a
repeatedly measured latent variable, especially when the
sum-score distribution deviates from strictly normal.
Plausible values are not an estimator for the construct,
they can never be used to make inferences about individ-
uals. Like most statistical inferences, the objective is to
make statements about or comparisons between groups of
people.
In the work of Blanchin et al. [55], longitudinal data

modeling results under classical test theory and Rasch
IRT models have been compared. In their work, scale-
free statistical results are compared as type-I errors and
power, since the dependent (latent) variables are not
measured on a comparable scale. The CTT and IRT-
based analysis showed comparable results in terms of
power. This is in contrast to our findings, where we
showed a significant increase in bias under the CTT
model. However, their comparison is more complex
since a common test approach is used (i.e., t-test and
F-test), which is based on different assumptions in the
different modeling approaches. The accuracy of the ap-
proximation of the distribution of the test statistic is
likely to vary over techniques and models, which could
influence the statistical results. Furthermore, differ-
ences in estimation methods and modeling differences
also influenced their results.
The current study was confined to latent variables mea-

sured using questionnaires with items containing four or-
dinal answering categories. Although this is a common
situation, questionnaires with a dichotomous response for-
mat (i.e. two answering categories) are used as well for
measuring latent variables. When using questionnaires with
dichotomous response format there will be less variance in

Fig. 6 Sum-score distributions. Histograms with the sum-score distribution for the latent variable ‘state anxiety’ on the three measurement occasions in
the AGHLS cohort. The skewness of the sum-score distributions was 1.02; 0.99; and 1.18 on the first, second, and third measurement occasion from left to
right, and 443, 338, and 126 participants were included respectively

Table 2 Results data example. Parameter estimates (posterior
means) of the multilevel model for the example ‘Trait Anxiety’
data with a random intercept using the IRT-based plausible
values technique and the CTT-based scores as outcome
variables

IRTa CTTb

Meanc SD Meanc SD

Fixed effect

γ Intercept 0.018 0.043 0.015 0.045

Random Effects

Between individual (level-2)

τ2 Intercept 0.733 0.067 0.685 0.074

Within individual (level-1)

σ2 Residual variance 0.294 0.030 0.357 0.042

Intra Class Correlation

ρ 0.287 0.343
aItem response theory based estimates
bClassical test theory based estimates using sum-scores
cMean of the coefficients resulting from fitting the structural model
(longitudinal multilevel model) to the five draws of plausible values based on
the IRT or CTT measurement models
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sum-scores compared to ordinal response formats.
There are less possible response patterns leading to less
variance in scores when aggregated into a sum-score.
As a result, the difference in estimates between IRT and
CTT will most likely become even larger in all
situations.

The simulation study as presented, only took into ac-
count complete datasets. Further research is needed to
explore the influence of missing data on the difference
between both methods. Furthermore, the focus of the
current article is the use of latent variables as outcomes
in the structural model. Another interesting study would

Fig. 7 Posterior density plots. Posterior density plots for the level-1 (repeated measurement) variance, the level-2 (between person) variance, and
the random intercept under the IRT and the CTT-based models for all five draws of plausible values
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be to focus on the influence of using CTT based scores
for time (in)variant covariates which is a common situ-
ation in epidemiological research [56].

Conclusions
From this study it can be concluded that the use of IRT-
based latent variable scores, in contrast to sum scores,
leads to unbiased parameter estimates in longitudinal
data analysis given multi-item questionnaire data. The
degree of bias increases when the latent variable distri-
bution is more skewed. It is important to realize that
longitudinal data analysis results are biased when using
sum scores.
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