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Abstract
A proper orthogonal decomposition (POD) method is used to establish a POD-based
reduced-order finite difference (FD) extrapolating model with fully second-order
accuracy for the non-stationary incompressible Boussinesq equations (NSIBEs). The
error estimates of the POD-based reduced-order FD solutions obtained from the
POD-based reduced-order FD extrapolating model are provided. The algorithm
implementation for the POD-based reduced-order FD extrapolating model is given.
A numerical experiment shows that the numerical results are consistent with the
theoretical conclusions. Moreover, it is shown that the POD-based reduced-order FD
extrapolating model is feasible and efficient for finding the numerical solutions for
NSIBEs.
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1 Introduction
Let � ⊂ R be a bounded and connected polygonal domain. Consider the following non-
stationary incompressible Boussinesq equations (NSIBEs) including the velocity vector
field and the pressure field as well as the temperature field (see [, ]).

Problem I Find U = (u, v),p, and T such that for tN > ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂x +

∂v
∂y = , (x, y, t) ∈ � × (, tN ),

∂u
∂t +

u∂u
∂x + v∂u

∂y = – ∂p
∂x + γ ( ∂u

∂x + ∂u
∂y ), (x, y, t) ∈ � × (, tN ),

∂v
∂t +

u∂v
∂x + v∂v

∂y = – ∂p
∂y + γ ( ∂v

∂x +
∂v
∂y ) + T , (x, y, t) ∈ � × (, tN ),

∂T
∂t +

u∂T
∂x + v∂T

∂y = 
γ
( ∂T

∂x + ∂T
∂y ), (x, y, t) ∈ � × (, tN ),

u(x, y, t) = ϕu(x, y, t), v(x, y, t) = ϕv(x, y, t), (x, y, t) ∈ ∂� × (, tN ),
T(x, y, t) = ϕT (x, y, t), (x, y, t) ∈ ∂� × (, tN ),
u(x, y, ) = u(x, y), v(x, y, ) = v(x, y), (x, y) ∈ �,
T(x, y, ) = T(x, y), (x, y) ∈ �,
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whereU = (u, v) is the velocity vector, p the pressure, T the temperature, tN the total time,
Re the Reynolds number, Pr the Prandtl number, γ =

√
Pr/Re, γ =

√
RePr, and ϕu(x, y, t),

ϕv(x, y, t), ϕT (x, y, t), u(x, y), v(x, y), and T(x, y) all are given functions.

Problem I constitutes an important nonlinear system of equations in fluid dynamics. Be-
cause this system of equations does not only contain the velocity vector field as well as the
pressure field but also includes the temperature field, especially, due to its nonlinearity, it
is not easy to find its analytical solutions. One has to rely on numerical solutions. A clas-
sical finite difference (FD) scheme with fully second-order accuracy is one of the most
effective high accuracy numerical methods for finding the numerical solutions of NSIBEs
(see []). However, the classical FD scheme with fully second-order accuracy for NSIBEs
generally includes many degrees of freedom so that it could bring about many difficulties
in practical engineering computing. Especially, due to the truncation error accumulation
in the computational process, the classical FD scheme with fully second-order accuracy
may also appear to have no convergence after some computing steps. Thus, an extremely
meaningful work is how to establish a reduced-order FD scheme with fewer degrees of
freedom and sufficiently high accuracy so that it can reduce the truncation error accu-
mulation, alleviating the computational load as well as saving time for calculations and
resource demands in the computational process such that it can continuously simulate
the development of the fluid flow.
The proper orthogonal decomposition (POD; see []) technique is one of the primary

methods to construct low-order bases for the model reduction of complex and nonlin-
ear problems. It has its roots in statistics (see []) and was initially used in the study
of coherent structures in turbulent flows (see [, ]). Over the past three decades, the
POD technique has been steadily developed (see [–]). Especially, in the past decade,
it is used for model reduction of the numerical computational methods (for example, the
Galerkin method, the FD scheme, the finite element method) to bring about a very good
efficiency for finding the numerical solutions to partial differential equations (for example,
see [–]). However, almost all existing POD-based reduced-order numerical methods
employ the numerical solutions obtained from classical numerical methods on the to-
tal time span [, tN ] to construct the POD basis and POD-based reduced-order models,
and then recompute the solutions on the same time span [, tN ], which is actually belong
to repeating computations. Therefore, in this article, we thoroughly improve the existing
methods, namely we do only employ the first few given classical FD numerical solutions
with fully second-order accuracy for NSIBEs as snapshots on the very short time span
[, t] (t � tN ) to construct the POD basis and establish a POD-based reduced-order FD
extrapolating model with fully second-order accuracy for finding the numerical solutions
of NSIBEs on total time span [, tN ]. Thus, we sufficiently adopt the advantage of POD
method, namely utilize the given data (on the very short time span [, t]) to predict future
physic phenomena (on the time span [t, tN ]), which is why we name this reduced-order
method as the POD-based reduced-order FD extrapolating model. So, the idea here has a
very important guiding role if it is extended to numerical weather forecast.
Though a POD-based reduced-order extrapolating model with fully second-order FD

scheme for non-stationary Burgers equation (see []) and a POD-based reduced-order
FD extrapolating model with first-order time accuracy for the non-stationary Navier-
Stokes equations (see []) have been presented too, NSIBEs are different from the non-
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stationary Burgers equation and the non-stationary Navier-Stokes equations as is men-
tioned in []. Namely, they are more complex than the non-stationary Burgers equation
in [] and the non-stationary Navier-Stokes equations without energy equation in [].
They include a temperature field except for fluid velocity and pressure fields and there
is a nonlinear coupling for the temperature field and fluid velocity field. Thus, establish-
ing the POD-based reduced-order FD extrapolating model with fully second-order ac-
curacy for NSIBEs has far more difficulties, but, more important, it is more serviceable,
and more challenging than those for the non-stationary Burgers equation and the non-
stationaryNavier-Stokes equations. Though a POD-based reduced-order FD schemewith
first-order time accuracy without adopting the extrapolation technique has been devel-
oped for NSIBEs (see []), it is also to test and verify only the comparison of solutions
on the same time span [, tN ] and it belongs to repeating computations. The POD-based
reduced-order FD extrapolating model with fully second-order accuracy here utilizes the
given data (on the very short time span [, t] and t � tN ) to predict future physic phe-
nomena (on time span [t, tN ]) and has no repeating computations. Especially, based on
the error estimates, we give guidance on the choice of the number of POD basis func-
tions and a suggestion on when to renew the POD basis. This is a main improvement and
innovation for method in [].
This article is organized as follows. In Section  we derive a classical FD scheme with

fully second-order accuracy for NSIBEs and generate snapshots from the first few numer-
ical solutions obtained from the classical FD scheme with fully second-order accuracy.
In Section  we construct orthonormal POD bases from the elements of the snapshots
by means of the POD technique and establish the POD-based reduced-order FD extrap-
olating scheme with fully second-order accuracy and lower dimensions for NSIBEs. In
Section , the error estimates of the reduced-order FD solutions obtained from the POD
reduced-order FD extrapolating model are provided as guidance to choose the number of
POD basis functions and renew the POD basis, and the algorithm implementation for the
POD-based reduced-order FD extrapolating model. In Section , a numerical experiment
is used to show that the numerical results are consistent with the theoretical conclusions
and we validate that the POD-based reduced-order FD extrapolatingmodel is feasible and
efficient for solving NSIBEs. In Section  we provide the main conclusions and present
discussions.

2 A classical FD schemewith fully second-order accuracy
In this section, we establish a classical FD scheme with fully second-order accuracy for
Problem I. For the sake of convenience, without loss of generality, we may as well assume
that the computational field � = [,M]× [, M̃]. Let �x and �y be the spatial step incre-
ments in the x and y direction, respectively,�t be the time step increment, and un

j+ 
 ,k

, vn
j,k+ 


(or Tn

j,k+ 

) and pnj,k denote the value of functions u, v (or T ) and p at the points (xj+ 


, yk , tn),

(xj, yk+ 

, tn) and (xj, yk , tn) (≤ j ≤ J = [M/�x], ≤ k ≤ K = [M̃/�y], ≤ n ≤N = [tN /�t]),

respectively. Then the classical FD scheme with fully second-order accuracy for Problem I
is established as follows:

un+
j+ 

 ,k
– un+

j– 
 ,k

�x
+
vn+
j,k+ 


– vn+

j,k– 


�y
= , ()

un+j+ 
 ,k

= un–j+ 
 ,k

+ Fn
j+ 

 ,k
–
�t
�x

(
pnj+,k – pnj,k

)
, ()
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vn+j,k+ 

= vn–j,k+ 


+ Gn

j,k+ 

–
�t
�x

(
pnj,k+ – pnj,k

)
+�tTn

j,k+ 

, ()

Tn+
j,k+ 


= Tn–

j,k+ 

+ Hn

j,k+ 

, ()

where

Fn
j+ 

 ,k
= γ�t

[uj+ 
 ,k–

– uj+ 
 ,k

+ uj+ 
 ,k+

�y
+
uj– 

 ,k
– uj+ 

 ,k
+ uj+ 

 ,k

�x

]n

–
�t
�x

unj+ 
 ,k

(
unj+,k – unj,k

)
–

�t
�y

vnj+ 
 ,k

(
unj+ 

 ,k+


– unj+ 

 ,k–



)
;

Gn
j,k+ 


= γ�t

[vj–,k+ 

– vj,k+ 


+ vj+,k+ 



�x
+
vj,k– 


– vj,k+ 


+ vj,k+ 



�y

]n

–
�t
�x

unj,k+ 


(
vnj+ 

 ,k+


– vnj– 

 ,k+



)
–

�t
�y

vnj,k+ 


(
vnj,k+ – vnj,k

)
;

Hn
j,k+ 


=

�t
γ

(Tn
j–,k+ 


– Tn

j,k+ 

+ Tn

j+,k+ 


�x
+
Tn
j,k– 


– Tn

j,k+ 

+ Tn

j,k+ 


�y

)

–
�t
�x

unj,k+ 


(
Tn
j+ 

 ,k+


– Tn

j– 
 ,k+




)
–

�t
�y

vnj,k+ 


(
Tn
j,k+ – Tn

j,k
)
.

Inserting () and () into () one could obtain the approximate FD scheme of the Poisson
equation for p as follows:

[
pj–,k – pj,k + pj+,k

�x
+
pj,k– – pj,k + pj,k+

�y

]n+

= R, ()

where R = 
�t�x [Fj+ 

 ,k
– Fj– 

 ,k
]n + 

�t�y [Gj,k+ 

–Gj,k– 


+�t(Tj,k+ 


– Tj,k– 


)]n.

Put s = u, v,p,T . Then the boundary values of the FD schemes ()-() are as follows:

sni, 
= ϕs(xi, y 


, tn), (xi, y 


) ∈ [,M]× {}, i = 


, ,  +



, . . . , J +



;

sni,K+ 

= ϕs(xi, yK+ 


, tn), (xi, yK+ 


) ∈ [,M]× {M̃}, i = 


, ,  +



, . . . , J +



;

sn
 ,i

= ϕs(x 

, yi, tn), (x 


, yi) ∈ {} × [, M̃], i =



, ,  +



, . . . ,K +



;

snJ+ 
 ,i

= ϕs(xJ+ 

, yi, tn), (xJ+ 


, yi) ∈ {M} × [, M̃], i =



, ,  +



, . . . ,K +



;

sni, = sni, 
– sni,, sni,K+ = sni,K+ 


– sni,K , i = ,



, ,  +



, . . . , J +



, J ;

sn,i = sn
 ,i

– sn,i, snJ+,i = snJ+ 
 ,i

– snJ ,i, i = ,


, ,  +



, . . . ,K +



,K .

If (|un
j+ 

 ,k
| + |vn

j,k+ 

|)�t ≤ γ and �t ≤ max{γ –�x,γ –�y,γ�x,γ�y}, by using

the same approaches as the proof of the convergence and local stability of the FD equa-
tions of the non-stationary Navier-Stokes equation in [], it is not difficult to prove the
convergence and local stability for the FD equations ()-(). We conclude with the follow-
ing result, whose proof is provided in the Appendix.
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Theorem  The classical FD scheme ()-() with fully second-order accuracy for NSIBEs
have following error estimates:

∥∥(
u(xj+ 


, yk , tn), v(xj, yk+ 


, tn),T(xj, yk+ 


, tn),p(xj, yk , tn)

)
–

(
unj+ 

 ,k
, vnj,k+ 


,Tn

j,k+ 

,pnj,k

)∥∥
=O

(
�t,�x,�y

)
, n = , , . . . ,N , ()

where ‖ · ‖ denotes usual norm of vector.

If only the Reynolds number Re; the Prandtl number Pr; the boundary value functions
ϕu(x, y, t), ϕv(x, y, t), and ϕT (x, y, t); the initial value functions u(x, y), v(x, y), and T(x, y),
and the time step increment �t and the spatial step increments �x and �y are given,
by solving the FD schemes ()-(), we can obtain the classical FD solutions un

j+ 
 ,k

, vn
j,k+ 


,

Tn
j,k+ 


, and pnj,k (≤ j ≤ J ,  ≤ k ≤ K , ≤ n≤N ) of Problem I.

Put uni = un
j+ 

 ,k
, vni = vn

j,k+ 

, Tn

i = Tn
j,k+ 


, and pni = pnj,k (i = kJ + j + ,  ≤ i ≤ m, m = JK ,

 ≤ j ≤ J – , ≤ k ≤ K – ), respectively. We may choose the first L group of solutions to
construct a set {uli, vli,Tl

i ,pli}Ll= ( ≤ i ≤ m, L � N ) including L×m elements from the set
{uni , vni ,Tn

i ,pni }Nn= (≤ i≤m) including N ×m elements, which are known as snapshots.

3 POD-based reduced-order FD extrapolatingmodel
In this section, we use snapshots extracted from the first fewer numerical solutions of
the classical FD schemes ()-() to reconstruct orthonormal POD bases and establish the
POD-based reduced-order FD extrapolating model with fully second-order accuracy and
lower dimensions.
The sets of snapshots {uli, vli,Tl

i ,pli}Ll= (≤ i≤m) in Section  can constitute fourm× L
matrices As = (sli)m×L (s = u, v,p,T ) denoted by

As =

⎛
⎜⎜⎜⎜⎝

s s · · · sL
s s · · · sL
...

...
. . .

...
sm sm · · · sLm

⎞
⎟⎟⎟⎟⎠ .

Since the orderm for matricesAsAT
s is far larger than the order L for matricesAT

s As, how-
ever, their positive eigenvalues are identical, therefore, we may first solve the eigenequa-
tion corresponding to matrices AT

s As to find the eigenvalues λs ≥ λs ≥ · · · ≥ λsM̃s > 
(M̃s = rankAs) and the corresponding eigenvectors ϕsj, and then by the relationship

φsj =Asϕsj/
√

λsj, j = , , . . . , M̃s, s = u, v,p,T ,

we may obtain the eigenvectors φsj (j = , , . . . ,M̃s, s = u, v,p,T ) corresponding to the
nonzero eigenvalues for the matrix AsAT

s .
Taking the first Ms ( <Ms ≤ M̃s ≤ L) columns from four eigenmatrices Us = (φs,φs,

. . . ,φsM̃s ), we construct the four orthonormal POD basis functions (see []) �s = (φs,φs,

. . . ,φsMs ) (s = u, v,p,T ).
Write

snm =
(
sn , s

n
, . . . , s

n
m
)T , n = , , . . . ,N , s = u, v,p,T . ()
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Then we have the following error estimates (see []):

∥∥slm –�s�
T
s s

l
m
∥∥ ≤ √

λs(Ms+), l = , , . . . ,L, s = u, v,p,T . ()

Thus, ()-() are written as the following vector scheme:

(
un+
m ,vn+m ,Tn+

m ,pn+
m

)T
=

(
un–
m ,vn–m ,Tn–

m ,pn–
m

)T + F̃
(
un
m,v

n
m,T

n
m,p

n
m
)
, n = , , . . . ,N – , ()

where F̃ is determined from ()-(). Put

(
u∗n
m ,v∗n

m ,T∗n
m ,p∗n

m
)T =

(
�uα

n
Mu ,�vβ

n
Mv ,�TδnMT

,�pε
n
Mp

)T , ()

where u∗n
m = (u∗n

 ,u∗n
 , . . . ,u∗n

m )T , v∗n
m = (v∗n

 , v∗n
 , . . . , v∗n

m )T , T∗n
m = (T∗n

 ,T∗n
 , . . . ,T∗n

m )T , and
p∗n
m = (p∗n

 ,p∗n
 , . . . ,p∗n

m )T are four column vectors corresponding to u, v, T , and p, respec-
tively. If un

m, vnm, Tn
m, and pn

m in () are approximately replaced with u∗n
m , v∗n

m , T∗n
m , and p∗n

m

in () (n = , , , . . . ,N ), by noting that four matrices �u, �v, �T , and �p are formed
with the orthonormal vectors, the POD-based reduced-order FD extrapolating model
with fully second-order accuracy for Problem I, which includes onlyMu +Mv +MT +Mp

(Mu,Mv,MT ,Mp � L �m) unknown values on each time level and has no repeating com-
putations, is denoted by

αn
Mu =�T

uu
n
m, βn

Mv =�T
v v

n
m, δnMT

=�T
TT

n
m,

εnMp =�T
p p

n
m, ≤ n≤ L;

()

(
αn+
Mu ,β

n+
Mv , δ

n+
MT

, εn+Mp

)T =
(
αn–
Mu ,β

n–
Mv , δ

n–
MT

, εn–Mp

)T +
(
�T

u ,�
T
v ,�

T
T ,�

T
p
)T

× F̃
(
�uα

n
Mu ,�vβ

n
Mv ,�TδnMT

,�pεMp

)
, L≤ n ≤N – . ()

If αn
Mu , β

n
Mv , δ

n
MT

, and εnMp are obtained from () and (), the solutions for the POD-
based reduced-order FD extrapolating model are given by

u∗n
m = �uα

n
Mu , v∗n

m =�vβ
n
Mv , T∗n

m =�TδnMT
,

p∗n
m =�pεMp , n = , , . . . ,N .

()

Further, the component forms of the solutions for the POD-based reduced-order FD ex-
trapolating model are denoted by u∗n

j+ 
 ,k

= u∗n
i , v∗n

j,k+ 

= v∗n

i , T∗n
j,k+ 


= T∗n

i , and p∗n
j,k = p∗n

i

(≤ j ≤ J – ,  ≤ k ≤ K – , i = k(J + ) + j + ,  ≤ i ≤m = KJ).

Remark  Since the classical FD schemes ()-() on each time level include m unknown
quantities, while the system of equations ()-() on each time level (when n > L) only in-
cludesMu +Mv +MT +Mp unknown quantities (Mu,Mv,MT ,Mp � L � m, for example,
in Section , L = , Mu = Mv = MT = Mp = , but m = ), so the system of equations
()-() is the POD-based reduced-order FD extrapolating model with very few degrees
of freedom but without repeating computations and is completely different from exist-
ing POD-based reduced-order models (for example, see [–]). Though we draw the
snapshots from the first L classical FD solutions with fully second-order accuracy in this

http://www.advancesindifferenceequations.com/content/2014/1/272
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article, in fact, if one computes actual problems, onemay obtain the ensemble of snapshots
by drawing samples from experiments of physical system trajectories.

4 Error analysis and algorithm implementation for the POD-based
reduced-order FD extrapolating algorithm

In this section, the error estimates of the solutions of the POD-based reduced-order FD
extrapolating model are first provided for guidance to choose the number of POD basis
functions and renew the POD basis, and then the algorithm implementation for the POD-
based reduced-order FD extrapolating model is given.

4.1 Error estimates and criterion of renewing POD basis
It is obvious that when n = L + ,L + , . . . ,N , by (), () can be written as the following
form like ()-():

u∗n+
j+ 

 ,k
– u∗n+

j– 
 ,k

�x
+
v∗n+
j,k+ 


– v∗n+

j,k– 


�y
= , ()

u∗n+
j+ 

 ,k
= u∗n–

j+ 
 ,k

+ F∗n
j+ 

 ,k
–
�t
�x

(
p∗n
j+,k – p∗n

j,k
)
, ()

v∗n+
j,k+ 


= v∗n–

j,k+ 

+ G∗n

j,k+ 

–
�t
�x

(
p∗n
j,k+ – p∗n

j,k
)
+�tT∗n

j,k+ 

, ()

T∗n+
j,k+ 


= T∗n–

j,k+ 

+H∗n

j,k+ 

, ()

where

F∗n
j+ 

 ,k
= γ�t

[uj+ 
 ,k–

– uj+ 
 ,k

+ uj+ 
 ,k+

�y
+
uj– 

 ,k
– uj+ 

 ,k
+ uj+ 

 ,k

�x

]∗n

–
�t
�x

u∗n
j+ 

 ,k

(
u∗n
j+,k – u∗n

j,k
)
–

�t
�y

v∗n
j+ 

 ,k

(
u∗n
j+ 

 ,k+


– u∗n

j+ 
 ,k–




)
;

G∗n
j,k+ 


= γ�t

[vj–,k+ 

– vj,k+ 


+ vj+,k+ 



�x
+
vj,k– 


– vj,k+ 


+ vj,k+ 



�y

]∗n

–
�t
�x

u∗n
j,k+ 



(
v∗n
j+ 

 ,k+


– v∗n

j– 
 ,k+




)
–

�t
�y

v∗n
j,k+ 



(
v∗n
j,k+ – v∗n

j,k
)
;

H∗n
j,k+ 


=

�t
γ

(T∗n
j–,k+ 


– T∗n

j,k+ 

+ T∗n

j+,k+ 


�x
+
T∗n
j,k– 


– T∗n

j,k+ 

+ T∗n

j,k+ 


�y

)

–
�t
�x

u∗n
j,k+ 



(
T∗n
j+ 

 ,k+


– T∗n

j– 
 ,k+




)
–

�t
�y

v∗n
j,k+ 



(
T∗n
j,k+ – T∗n

j,k
)
.

It is obvious that the stability condition of ()-() is also (|u∗n
j+ 

 ,k
|+ |v∗n

j,k+ 

|)�t ≤ γ and

�t ≤max{γ –�x,γ –�y,γ�x,γ�y}.
Equations () and () can also be rewritten as vector form denoted by

(
u∗n+
m ,v∗n+

m ,T∗n+
m ,p∗n+

m
)T =

(
u∗n–
m ,v∗n–

m ,T∗n–
m ,p∗n–

m
)T

+ F̃
(
u∗n
m ,v∗n

m ,T∗n
m ,p∗n

m
)
, n = L,L + ,L + , . . . ,N . ()

Let en = (un
m,vnm,Tn

m,pn
m)T – (u∗n

m ,v∗n
m ,T∗n

m ,p∗n
m )T . Subtracting () and () from () yields

en =
(
un,vn,Tn

m,p
n)T –

(
�u�

T
uu

n,�v�
T
v v

n,�T�T
TT

n,�p�
T
p p

n)T , ≤ n ≤ L. ()
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Subtracting () from () yields

en+ = en– + F̃
(
un
m,v

n
m,T

n
m,p

n
m
)
– F̃

(
u∗n
m ,v∗n

m ,T∗n
m ,p∗n

m
)
, L ≤ n≤N – . ()

By () and (), we have the following error estimates:

‖en‖ ≤ √
λu(Mu+) +

√
λv(Mv+) +

√
λT(MT+) +

√
λp(Mp+), ≤ n≤ L. ()

Let M = max{�t(|un
j+ 

 ,k
| + |vn

j,k+ 

|)/(γ ),�t(|u∗n

j+ 
 ,k

| + |v∗n
j,k+ 


|)/(γ ), �t/min{γ –�x,

γ –�y,γ�x,γ�y}}. Based on the stability conditions of ()-() and ()-(), we have
M ≤ /. Therefore, from ()-() and ()-(), we obtain

‖en+‖ ≤ ‖en–‖ +
∥∥F̃(

un
m,v

n
m,T

n
m,p

n
m
)
– F̃

(
u∗n
m ,v∗n

m ,T∗n
m ,p∗n

m
)∥∥

≤ ‖en–‖ +M‖en‖, L ≤ n≤N – . ()

Summing () from L to n –  yields

‖en‖ ≤ ‖eL–‖ + ‖eL‖ +M
n–∑
i=L

‖ei‖, L ≤ n≤N – . ()

Put ξn =M
∑n–

i=L ‖ei‖+ ‖eL–‖+ ‖eL‖. Then, from (), we obtain ‖en‖ ≤ ξn and ξn – ξn– =
M‖en–‖ (n≥ L ≥ ). Thus, we have from () that

‖en‖ ≤ ξn ≤ (M + )ξn– ≤ (M + )ξn– ≤ · · · ≤ (M + )n–LξL

= (M + )n–L
(‖eL–‖ + ‖eL‖

)

≤ (M + )n–L[
√

λu(Mu+) +
√

λv(Mv+) +
√

λT(MT+) +
√

λp(Mp+)],

L +  ≤ n≤N . ()

Since the absolute value of each component for vector is not more than its norm, by
combining Theorem  with () and (), we have the following result.

Theorem  Based on the stability conditions (|un
j+ 

 ,k
| + |vn

j,k+ 

|)�t ≤ γ , (|u∗n

j+ 
 ,k

| +
|v∗n

j,k+ 

|)�t ≤ γ , and �t ≤ max{γ –�x,γ –�y,γ�x,γ�y} of ()-() and ()-(),

the error estimates between the solution for NSIBEs and the solutions obtained from the
POD-based reduced-order FD extrapolating model ()-() are denoted by

∣∣u(xj+ 

, yk , tn) – u∗n

j+ 
 ,k

∣∣ + ∣∣v(xj, yk+ 

, tn) – v∗n

j,k+ 


∣∣
+

∣∣T(xj, yk+ 

, tn) – T∗n

j,k+ 


∣∣ + ∣∣p(xj, yk , tn) – p∗n
j,k

∣∣
=O

(
Cn(M),�t,�x,�y

)
, ≤ n≤N , ()

where Cn(M) =
√

λu(Mu+) +
√

λv(Mv+) +
√

λT(MT+) +
√

λp(Mp+) ( ≤ n ≤ L), Cn(M) =
( + M)n–L[

√
λu(Mu+) +

√
λv(Mv+) +

√
λT(MT+) +

√
λp(Mp+)] (L +  ≤ n ≤ N ), and M =

max{(|un
j+ 

 ,k
| + |vn

j,k+ 

|)�tγ –/, (|u∗n

j+ 
 ,k

| + |v∗n
j,k+ 


|)�tγ –/, �t/min{γ –�x,γ –�y,

γ�x,γ�y}}.
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Remark  The error estimates in Theorem  provide guidance for choosing the number
of PODbasis functions, namely, we should takeMu,Mv,MT , andMp such that

√
λu(Mu+) +√

λv(Mv+) +
√

λT(MT+) +
√

λp(Mp+) = O(�t,�x,�y). Cn(M) (L +  ≤ n ≤ N ) are caused
by extrapolating iteration andmay act as the criterion for renewing the PODbasis, namely,
if Cn(M) >max(�t,�x,�y), the old POD basis is substituted with the new POD basis
regenerated from new snapshots.

4.2 Algorithm implementation for the POD-based reduced-order FD
extrapolating model

The algorithm implementation for the POD-based reduced-order FD extrapolatingmodel
()-() consists of the following five steps.
Step . For given the Reynolds number Re, the Prandtl number Pr, boundary value

functions ϕu(x, y, t), ϕv(x, y, t), and ϕT (x, y, t), initial value functions u(x, y), v(x, y), and
T(x, y), the time step increment �t, and the spatial step increments �x and �y, let
u(x, y) = u(x, y), v(x, y) = v(x, y), and T (x, y) = T(x, y), solving the following classical
FD scheme, for n = , , . . . ,L:

Fn
j+ 

 ,k
= γ�t

[uj+ 
 ,k–

– uj+ 
 ,k

+ uj+ 
 ,k+

�y
+
uj– 

 ,k
– uj+ 

 ,k
+ uj+ 

 ,k

�x

]n

–
�t
�x

unj+ 
 ,k

(
unj+,k – unj,k

)
–

�t
�y

vnj+ 
 ,k

(
unj+ 

 ,k+


– unj+ 

 ,k–



)
;

Gn
j,k+ 


= γ�t

[vj–,k+ 

– vj,k+ 


+ vj+,k+ 



�x
+
vj,k– 


– vj,k+ 


+ vj,k+ 



�y

]n

–
�t
�x

unj,k+ 


(
vnj+ 

 ,k+


– vnj– 

 ,k+



)
–

�t
�y

vnj,k+ 


(
vnj,k+ – vnj,k

)
;

Hn
j,k+ 


=

�t
γ

(Tn
j–,k+ 


– Tn

j,k+ 

+ Tn

j+,k+ 


�x
+
Tn
j,k– 


– Tn

j,k+ 

+ Tn

j,k+ 


�y

)

–
�t
�x

unj,k+ 


(
Tn
j+ 

 ,k+


– Tn

j– 
 ,k+




)
–

�t
�y

vnj,k+ 


(
Tn
j,k+ – Tn

j,k
)
,

R =
Fn
j+ 

 ,k
– Fn

j– 
 ,k

�t�x
+
Gn

j,k+ 

–Gn

j,k– 

+�t(Tn

j,k+ 

– Tn

j,k– 

)

�t�y
,

[
pj–,k – pj,k + pj+,k

�x
+
pj,k– – pj,k + pj,k+

�y

]n

= R,

un+j+ 
 ,k

= un–j+ 
 ,k

+ Fn
j+ 

 ,k
–
�t
�x

(
pnj+,k – pnj,k

)
,

vn+j,k+ 

= vn–j,k+ 


+ Gn

j,k+ 

–
�t
�x

(
pnj,k+ – pnj,k

)
+�tTn

j,k+ 

,

Tn+
j,k+ 


= Tn–

j,k+ 

+Hn

j,k+ 


yields L (with usually L = ) groups of classical FD solutions un
j+ 

 ,k
, vn

j,k+ 

, Tn

j,k+ 

, and pnj,k

( ≤ j ≤ J ,  ≤ k ≤ K ,  ≤ n ≤ L), further, constructing a set of snapshots {uli, vli,Tl
i ,pli}Ll=

( ≤ i≤m) with L×m elements (for actual engineering problems, the ensemble of snap-
shots is obtained fromphysical system trajectories by drawing samples fromexperiments),
where uni = un

j+ 
 ,k

, vni = vn
j,k+ 


, Tn

i = Tn
j,k+ 


, and pni = pnj,k (i = kJ + j + ,  ≤ i ≤ m, m = JK ,

 ≤ j ≤ J – ,  ≤ k ≤ K – ), respectively.
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Step . Form the snapshot matrices As = (sli)m×L (s = u, v,T ,p) and solve the linear
systems of equations (AT

s As – λsIL)ϕs =  obtaining the eigenvalues λs ≥ λs ≥ · · · ≥
λsM̃s >  (M̃s = rankAs, s = u, v,T ,p) and corresponding eigenvectors ϕsj (j = , , . . . , M̃s,
s = u, v,T ,p).
Step . For the error μ = O(�t,�x,�y) needed, determine the numbers Ms (Ms ≤

M̃s, s = u, v,T ,p) of POD basis functions such that
√

λu(Mu+) +
√

λv(Mv+) +
√

λT(MT+) +√
λp(Mp+) ≤ μ, and construct the POD basis �s = (φs,φs, . . . ,φsMs ) (where φsj = Asϕsj/√
λsj, j = , , . . . ,Ms, s = u, v,T ,p).
Step . Write un

m = (un ,un, . . . ,unm)T , vnm = (vn , vn, . . . , vnm)T , Tn
m = (Tn

 ,Tn
 , . . . ,Tn

m)T , and
pn
m = (pn ,pn, . . . ,pnm)T ( ≤ n ≤ N ). Solve the following POD-based reduced-order FD ex-

trapolating model with fully second-order accuracy:

αn
Mu =�T

uu
n
m, βn

Mv =�T
v v

n
m, δnMT

=�T
TT

n
m, εnMp =�T

p p
n
m, n = , , . . . ,L;

(
αn+
Mu ,β

n+
Mv , δ

n+
Mp , ε

n+
Mp

)T =
(
αn–
Mu ,β

n–
Mv , δ

n–
Mp , ε

n–
Mp

)T
+ G̃

(
αn
Mu ,β

n
Mv , δ

n
Mp , ε

n
Mp

)
, n = L,L + ,L + , . . . ,N ;

u∗n
m =�uα

n
Mu , v∗n

m =�vβ
n
Mv , T∗n

m =�TδMT ,

p∗n
m =�pεMp , n = , , . . . ,N ,

where G̃(αn
Mu ,β

n
Mv , δ

n
MT

, εnMp ) = (�T
u ,�

T
v ,�

T
T ,�

T
p )T F̃(�uα

n
Mu ,�vβ

n
Mv ,�TδMT ,�pεMp ) and

F̃(·, ·, ·) is decided by the classical FD equations ()-() writing as vector form, obtain-
ing the reduced-order solution vectors u∗n

m = (u∗n
 ,u∗n

 , . . . ,u∗n
m )T , v∗n

m = (v∗n
 , v∗n

 , . . . , v∗n
m )T ,

T∗n
m = (T∗n

 ,T∗n
 , . . . ,T∗n

m )T , and p∗n
m = (p∗n

 ,p∗n
 , . . . ,p∗n

m )T , further, obtaining the compo-
nent forms u∗n

j+ 
 ,k

= u∗n
i , v∗n

j,k+ 

= v∗n

i , T∗n
j,k+ 


= T∗n

i , and p∗n
j,k+ 


= p∗n

i ( ≤ j ≤ J ,  ≤ k ≤ K ,
i = k(J + ) + j + ,  ≤ i ≤m = KJ).
Step . Put

M =max
{
�t/min

{
γ –�x,γ –�y,γ�x,γ�y

}
,
(|u∗n

j+ 
 ,k

| + |v∗n
j,k+ 


|)�tγ –/

}
.

If ( +M)n–L[
√

λu(Mu+) +
√

λv(Mv+) +
√

λT(MT+) +
√

λp(Mp+)] ≤ μ (L +  ≤ n ≤ N ), then
u∗n
m = (u∗n

 ,u∗n
 , . . . ,u∗n

m )T , v∗n
m = (v∗n

 , v∗n
 , . . . , v∗n

m )T , T∗n
m = (T∗n

 ,T∗n
 , . . . ,T∗n

m )T , and p∗n
m =

(p∗n
 ,p∗n

 , . . . ,p∗n
m )T (n = , , . . . ,N ) are just solutions satisfying accuracy needed. Else,

namely, if ( +M)n–L[
√

λu(Mu+) +
√

λv(Mv+) +
√

λT(MT+) +
√

λp(Mp+)] > μ (L+  ≤ n≤N ),
put (ul,ul, . . . ,ulm) = (u∗l

 ,u∗l
 , . . . ,u∗l

m), (vl, vl, . . . , vlm) = (v∗l
 , v∗l

 , . . . , v∗l
m), (Tl

,Tl
, . . . ,Tl

m) =
(T∗l

 ,T∗l
 , . . . ,T∗l

m ), and (pl,pl, . . . ,plm) = (p∗l
 ,p∗l

 , . . . ,p∗l
m) (l = n – L,n – L – , . . . ,n – ), re-

turn to Step .

Remark  If the classical FD equations ()-() are used to solveNSIBEs, since it includes a
large number of degrees of freedomand the truncation error is accumulated in the compu-
tational process, it may appear to have no convergence after some computing steps; while
if the POD-based reduced-order FD extrapolating model ()-() is used to find the nu-
merical solutions for NSIBEs, since it includes fewer degrees of freedom, it can lessen the
truncation error accumulation in the computational process and continuously simulate
the development of the fluid flow.
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5 A numerical example
In this section, we present a numerical example with a physical model of square cavity
non-stationary flow to validate the feasibility and efficiency of the POD-based reduced-
order FD extrapolating model with fully second-order accuracy.
Let the computational field � = (, ) × (, ), Re = , Pr = ., �x = �y = ., �t =

., u = v = ϕu = ϕv = , and ϕT =  on �̄ except that T = ϕT = y(. – y) (if x = ) and
T = ϕT = x (if y = ) (see Figure ). We find the numerical solutions (un

j+ 
 ,k
, vn

j,k+ 

), Tn

j,k+ 

,

and pnj,k by the classical FD scheme ()-() when n =  (for example, t = ), which are
depicted graphically on the left charts in Figures , , and , respectively.
When we take L =  and use Step  in Section . of the algorithm implemen-

tation for the POD-based reduced-order FD extrapolating model ()-(), we obtain
from computing that

√
λu +

√
λv +

√
λT +

√
λp ≤  × –. It is shown that it is

only necessary to choose the first six POD basis functions. But when n = , the er-
ror ( +M)n–L[

√
λu(Mu+) +

√
λv(Mv+) +

√
λT(MT+) +

√
λp(Mp+)] exceeds  × –, and it

is necessary to renew the POD basis once at t =  (n = ). The reduced-order solu-
tions (u∗n

j+ 
 ,k
, v∗n

j,k+ 

), T∗n

j,k+ 

, and p∗n

j,k+ 

obtained by the POD reduced-order FD extrapo-

lating model at t =  (n = ) do not exceed  × – and are depicted graphically on
the right charts in Figures , , and . Every two charts in Figures , , and  exhibit a

Figure 1 Physics model of the cavity flows.

Figure 2 Classical FD solution (left chart) and reduced-order FD solution (right chart) of the velocity
U at the time level t = 3 and when Re = 103 and Pr = 0.1.

http://www.advancesindifferenceequations.com/content/2014/1/272
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Figure 3 Classical FD solution (left chart) and reduced-order FD solution (right chart) of the
temperature field T at the time level t = 3 and when Re = 103 and Pr = 0.1.

Figure 4 Classical FD solution (left chart) and reduced-order FD solution (right chart) of the pressure
field p at the time level t = 3 and when Re = 103 and Pr = 0.1.

quasi-identical similarity, respectively. The errors of the POD-based reduced-order FD
solutions on the starting time span are slightly larger than those of the classical FD so-
lutions, since the POD-based reduced-order FD extrapolation model on each time level
includes only  degrees of freedom and the classical FD scheme has  ×  degrees of
freedom. Namely, the degrees of freedom for the POD-based reduced-order FD extrap-
olation model are far fewer than those for classical FD scheme, so that the POD-based
reduced-order FD extrapolation model could greatly lessen the truncation error accumu-
lation in the computational process. It could also alleviate the calculating load, save time-
consuming of calculations, and improve actual computational accuracy. Therefore, after
some time span, the numerical errors of the POD-based reduced-order FD extrapolation
model are fewer than those of the classical FD scheme (see Figures , , and ). In fact,
Figures , , and  show the cases of truncation error accumulation on  ≤ t ≤ . It has
been shown that the relation errors of classical FD solutions are far larger than those of
reduced-order solutions obtained from the POD-based reduced-order FD extrapolating
model. From the grow trends of relation errors of the classical FD solutions, in the clas-
sical FD scheme with fully second-order accuracy will appear no convergence after some
computing steps, while the error accumulation of the POD-based reduced-order FD ex-
trapolating model is very slow such that it can continuously simulate the development of

http://www.advancesindifferenceequations.com/content/2014/1/272
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Figure 5 Change charts of relation errors of
reduced-order solution (red) and classical FD
solution (green) of the velocityUwith Re = 103

and Pr = 0.1 on 0 ≤ t ≤ 6.

Figure 6 Change charts of relation errors of
reduced-order solution (red) and classical FD
solution (green) of the pressure pwith Re = 103

and Pr = 0.1 on 0 ≤ t ≤ 6.

Figure 7 Change charts of relation errors of
reduced-order solution (red) and classical FD
solution (green) of the temperature T with
Re = 103 and Pr = 0.1 on 0≤ t ≤ 6.

Figure 8 Absolute errors for Re = 103 and
Pr = 0.1 when the POD basis is different and at
the time level t = 3.

the fluid flow. It is also shown that the POD-based reduced-order FD extrapolating model
with fully second-order accuracy is computationally very effective for finding the numer-
ical solutions of NSIBEs.
Figure  shows the errors between the classical FD solution and the reduced-order so-

lutions obtained by the POD-based reduced-order FD extrapolating model with different
number of POD basis functions when t = , Re = ,, and Pr = .. The numerical er-

http://www.advancesindifferenceequations.com/content/2014/1/272
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rors do not exceed × – ifMu,Mv,MT , andMp > . Thus, the results for the numerical
experiment are consistent with those obtained for the theoretical case.
In addition, if one uses the POD-based reduced-order FD scheme with first-order time

accuracy in [], it is necessary to take the time step as k = – and implement ,
steps in order to obtain the same as accuracy here. Thus, its computing load is by a fac-
tor of  times larger than that in this article and its truncation error accumulation in
the computational process is increased greatly; as well we have repeating computations
of the classical FD scheme with first-order time accuracy on [, tN ]. Therefore, the POD-
based reduced-order FD extrapolating model with fully second-order accuracy here is an
improvement and innovation for the existing POD-based reduced-order methods (for ex-
ample, see [–]).

6 Conclusions and discussions
In this article, we have established the POD-based reduced-order FD extrapolating model
with second-order time accuracy for NSIBEs and provided the error estimates between
the classical FD solutions and the reduced-order solutions obtained from the POD-based
reduced-order FD extrapolating model for guidance to choose the number of POD basis
functions and renew the POD basis. We have also given the algorithm implementation
for the POD-based reduced-order FD extrapolatingmodel and a numerical experiment to
show that the numerical errors are consistent with those obtained for the theoretical case.
In particular, in this article, we have completely improved the existing POD-based

reduced-order methods (for example, see [–]), namely we do only use the first fewer
given classical FD numerical solutions on the very short time span [, t] (t � tN ) as
snapshots to construct the POD basis and establish the POD-based reduced-order FD ex-
trapolatingmodel with fully second-order accuracy for finding the numerical solutions on
total time span [, tN ]. Thus, we adopt the PODmethod, being sufficiently advantageous,
namely we utilize the given data (on the very short time span [, t]) to predict future
physic phenomena (on time span [t, tN ]). Its idea has very important guiding role if it
is extended to weather forecast. The POD-based reduced-order FD extrapolating model
with fully second-order accuracy and error estimates here are different from those of the
existing POD-based reduced-order methods (for example, see [–]). Especially, if one
uses the classical FD schemes ()-() including a large number of degrees of freedom to
solve NSIBEs, there may appear no convergence after some computing steps due to the
truncation error accumulation in the computational process; while if one uses the POD-
based reduced-order FD extrapolating model ()-(), due to its fewer degrees of free-
dom, it can reduce the truncation error accumulation in the computational process and
continuously simulate the development of the fluid flow.
Future work in this area will aim to extend the POD reduced-order FD extrapolating

model with fully second-order accuracy, implementing it for a realistic atmosphere quality
forecast system and more complicated PDEs.

Appendix
Proof of Theorem  First, by using a Taylor expansion to expand two terms of () at the
point (xj, yk , tn+), we have

un+j+ 
 ,k

– un+j– 
 ,k

= un+j+ 
 ,k

– un+j,k + un+j,k – un+j– 
 ,k

=
�x


(
∂u
∂x

)n+

j,k
+


!

(
�x


)(
∂u
∂x

)n+

j,k
+


!

(
�x


)(
∂u
∂x

)n+

j,k
+ · · ·
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+
�x


(
∂u
∂x

)n+

j,k
–


!

(
�x


)(
∂u
∂x

)n+

j,k
+


!

(
�x


)(
∂u
∂x

)n+

j,k
– · · ·

=�x
(

∂u
∂x

)n+

j,k
+
(�x)



(
∂u
∂x

)n+

j,k
+ · · · , ()

vn+j,k+ 

– vn+j,k– 


= vn+j,k+ 


– vn+j,k + vn+j,k – vn+j,k– 



=
�y


(
∂v
∂y

)n+

j,k
+


!

(
�y


)(
∂v
∂y

)n+

j,k
+


!

(
�y


)(
∂v
∂y

)n+

j,k
+ · · ·

+
�y


(
∂v
∂y

)n+

j,k
–


!

(
�y


)(
∂v
∂y

)n+

j,k
+


!

(
�y


)(
∂v
∂y

)n+

j,k
– · · ·

=�y
(

∂v
∂y

)n+

j,k
+
(�y)



(
∂v
∂y

)n+

j,k
+ · · · . ()

Inserting () and () into () yields

[
∂v
∂y

+
∂v
∂y

]n+

j,k
= –

(�x)



(
∂u
∂x

)n+

j,k
–
(�y)



(
∂v
∂y

)n+

j,k
+ · · · . ()

Thus, the truncation error TE for () approximating ∂u
∂x +

∂v
∂y =  is

TE =O
(
(�x), (�y)

)
. ()

Second, by using a Taylor expansion to expand all terms of () at the point (xj+ 

, yk , tn),

we have

un+j+ 
 ,k

– un–j+ 
 ,k

= un+j+ 
 ,k

– unj+ 
 ,k

+ unj+ 
 ,k

– un–j+ 
 ,k

=�t
(

∂u
∂t

)n

j+ 
 ,k

+
(�t)

!

(
∂u
∂t

)n

j+ 
 ,k

+
(�t)

!

(
∂u
∂t

)n

j+ 
 ,k

+ · · ·

+�t
(

∂u
∂t

)n

j+ 
 ,k

–
(�t)

!

(
∂u
∂t

)n

j+ 
 ,k

+
(�t)

!

(
∂u
∂t

)n

j+ 
 ,k

– · · ·

= �t
(

∂u
∂t

)n

j+ 
 ,k

+
(�t)

!

(
∂u
∂t

)n

j+ 
 ,k

+ · · · , ()

unj– 
 ,k

– unj+ 
 ,k

+ unj+ 
 ,k

=
[
unj+ 

 ,k
– unj+ 

 ,k

]
+

[
unj– 

 ,k
– unj+ 

 ,k

]

=�x
(

∂u
∂x

)n

j+ 
 ,k

+
(�x)

!

(
∂u
∂x

)n

j+ 
 ,k

+
(�x)

!

(
∂u
∂x

)n

j+ 
 ,k

+
(�x)

!

(
∂u
∂x

)n

j+ 
 ,k

+ · · · –�x
(

∂u
∂x

)n

j+ 
 ,k

+
(�x)

!

(
∂u
∂x

)n

j+ 
 ,k

–
(�x)

!

(
∂u
∂x

)n

j+ 
 ,k

+
(�x)

!

(
∂u
∂x

)n

j+ 
 ,k

– · · ·

= (�x)
(

∂u
∂x

)n

j+ 
 ,k

+
(�x)



(
∂u
∂x

)n

j+ 
 ,k

+ · · · , ()
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unj+ 
 ,k–

– unj+ 
 ,k

+ unj+ 
 ,k+

=
[
unj+ 

 ,k+
– unj+ 

 ,k

]
+

[
unj+ 

 ,k
– unj+ 

 ,k–

]

=�y
(

∂u
∂y

)n

j+ 
 ,k

+
(�y)

!

(
∂u
∂y

)n

j+ 
 ,k

+
(�y)

!

(
∂u
∂y

)n

j+ 
 ,k

+
(�y)

!

(
∂u
∂y

)n

j+ 
 ,k

+ · · ·

–�y
(

∂u
∂y

)n

j+ 
 ,k

+
(�y)

!

(
∂u
∂y

)n

j+ 
 ,k

–
(�y)

!

(
∂u
∂y

)n

j+ 
 ,k

+
(�y)

!

(
∂u
∂y

)n

j+ 
 ,k

– · · ·

= (�y)
(

∂u
∂y

)n

j+ 
 ,k

+
(�y)



(
∂u
∂y

)n

j+ 
 ,k

+ · · · , ()

unj+,k – unj,k =
[
unj+,k – unj+ 

 ,k

]
+

[
unj+ 

 ,k
– unj,k

]

=
�x


(
∂u
∂x

)n

j+ 
 ,k

+

!

(
�x


)(
∂u
∂x

)n

j+ 
 ,k

+

!

(
�x


)(
∂u
∂x

)n

j+ 
 ,k

+ · · ·

+
�x


(
∂u
∂x

)n

j+ 
 ,k

–

!

(
�x


)(
∂u
∂x

)n

j+ 
 ,k

+

!

(
�x


)(
∂u
∂x

)n

j+ 
 ,k

– · · ·

= �x
(

∂u
∂x

)n

j+ 
 ,k

+
(�x)



(
∂u
∂x

)n

j+ 
 ,k

+ · · · , ()

unj+ 
 ,k+



– unj+ 

 ,k–



=
[
unj+ 

 ,k+


– unj+ 

 ,k

]
+

[
unj+ 

 ,k
– unj+ 

 ,k–



]

=
�y


(
∂u
∂y

)n

j+ 
 ,k

+

!

(
�y


)(
∂u
∂y

)n

j+ 
 ,k

+

!

(
�y


)(
∂u
∂y

)n

j+ 
 ,k

+ · · ·

+
�y


(
∂u
∂y

)n

j+ 
 ,k

–

!

(
�y


)(
∂u
∂y

)n

j+ 
 ,k

+

!

(
�y


)(
∂u
∂y

)n

j+ 
 ,k

– · · ·

=�y
(

∂u
∂y

)n

j+ 
 ,k

+
(�y)



(
∂u
∂y

)n

j+ 
 ,k

+ · · · , ()

pnj+,k – pnj,k =
[
pnj+,k – pnj+ 

 ,k

]
+

[
pnj+ 

 ,k
– pnj,k

]

=
�x


(
∂p
∂x

)n

j+ 
 ,k

+

!

(
�x


)(
∂p
∂x

)n

j+ 
 ,k

+

!

(
�x


)(
∂p
∂x

)n

j+ 
 ,k

+ · · ·

+
�x


(
∂p
∂x

)n

j+ 
 ,k

–

!

(
�x


)(
∂p
∂x

)n

j+ 
 ,k

+

!

(
�x


)(
∂p
∂x

)n

j+ 
 ,k

– · · ·

=�x
(

∂p
∂x

)n

j+ 
 ,k

+
(�x)



(
∂p
∂x

)n

j+ 
 ,k

+ · · · . ()
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Inserting ()-() into () yields

[
∂u
∂t

+
u∂u
∂x

+
v∂u
∂y

+
∂p
∂x

– γ

(
∂u
∂x

+
∂u
∂y

)]n

j+ 
 ,k

= –
(�t)

!

(
∂u
∂t

)n

j+ 
 ,k

+
γ (�x)



(
∂u
∂x

)n

j+ 
 ,k

+
γ (�y)



(
∂u
∂y

)n

j+ 
 ,k

–
(�x)



(
u∂u
∂x

)n

j+ 
 ,k

–
(�y)



(
v∂u
∂y

)n

j+ 
 ,k

–
(�x)



(
∂p
∂x

)n

j+ 
 ,k

+ · · · . ()

Therefore, the truncation error TE for () approximating ∂u
∂t +

u∂u
∂x + v∂u

∂y = – ∂p
∂x + γ ( ∂u

∂x +
∂u
∂y ) is

TE =O
(
(�t), (�x), (�y)

)
. ()

Next, using the same approach as in (), the truncation errors TE and TE for () and
(), respectively, approximating the third and fourth equations for Problem I are given by

TE =O
(
(�t), (�x), (�y)

)
, ()

TE =O
(
(�t), (�x), (�y)

)
. ()

Since () is developed from (), (), (), and (), the numerical solutions for Problem I
obtained from (), (), (), and () have the following errors:

∥∥(
u(xj+ 


, yk , tn), v(xj, yk+ 


, tn),T(xj, yk+ 


, tn),p(xj, yk , tn)

)
–

(
unj+ 

 ,k
, vnj,k+ 


,Tn

j,k+ 

,pnj,k

)∥∥
=O

(
�t,�x,�y

)
, n = , , . . . ,N , ()

which completes the proof of Theorem . �
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