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Correction
In this note we correct some errors that appeared in the article (Huang and Xu in Fixed
Point Theory Appl. :, ) by modifying some conditions in the main theorems
and examples.
After examining the proofs of the main results in [], we can find that there is something

wrongwith the proof of the Cauchy sequence in [, Theorem .]. This leads to subsequent
errors in Theorem . and related examples in []. We also find that it is not rigorous to
use the corresponding lemmas, and so the proof is inaccurate. The detailed reasons are
given in the following.
On p. in [], we conclude that

spλm+

s – λ
d(x,x) + sp–λmd(x,x) → θ

asm → ∞ for any p ≥ . This is incorrect. Indeed, note that taking λ = √
s >


s and p =m+

leads to

spλm+

s – λ
d(x,x) + sp–λmd(x,x) =

sm+


s  – 
d(x,x) + s

m
 d(x,x)� θ

as m → ∞. Therefore, it is impossible to utilize [, Lemma ., .] and demonstrate that
{xn} is a Cauchy sequence.
In this note, we would like to slightly modify only one of the used conditions to achieve

our claim.
The following theorem is a modification to [, Theorem .]. The proof is the same as

that in [] except the proof of the Cauchy sequence.Wewill attain the desired goal by using
the new modified condition λ ∈ [, s ) instead of λ ∈ [, ).

Theorem . Let (X,d) be a complete cone b-metric space with the coefficient s ≥ . Sup-
pose that the mapping T : X → X satisfies the contractive condition

d(Tx,Ty) ≤ λd(x, y) for x, y ∈ X,
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where λ ∈ [, s ) is a constant. Then T has a unique fixed point in X. Furthermore, the
iterative sequence {Tnx} converges to the fixed point.

Proof In order to show that {xn} is a Cauchy sequence, we only need the following calcu-
lations. For anym≥ , p≥ , it follows that

d(xm,xm+p) ≤ s
[
d(xm,xm+) + d(xm+,xm+p)

]
≤ sd(xm,xm+) + s

[
d(xm+,xm+) + d(xm+,xm+p)

]
≤ sd(xm,xm+) + sd(xm+,xm+) + sd(xm+,xm+)

+ · · · + sp–d(xm+p–,xm+p–) + sp–d(xm+p–,xm+p)

≤ sλmd(x,x) + sλm+d(x,x) + sλm+d(x,x)

+ · · · + sp–λm+p–d(x,x) + spλm+p–d(x,x)

= sλm[
 + sλ + sλ + · · · + (sλ)p–

]
d(x,x) ≤ sλm

 – sλ
d(x,x).

Let θ � c be given. Notice that sλm
–sλd(x,x) → θ as m → ∞ for any p. Making full use of

[, Lemma .], we findm ∈N such that

sλm

 – sλ
d(x,x) � c

for eachm >m. Thus,

d(xm,xm+p) ≤ sλm

 – sλ
d(x,x) � c

for all m ≥ , p ≥ . So, by [, Lemma .], {xn} is a Cauchy sequence in (X,d). The proof
is completed. �

As is indicated in the reviewer’s comments, [, Example .] is too trivial. Therefore, [,
Example .] is withdrawn. Now we give another example as follows.

Example . Let X = [, .], E = R
 and let  ≤ p ≤  be a constant. Take P = {(x, y) ∈

E : x, y≥ }. We define d : X ×X → E as

d(x, y) =
(|x – y|p, |x – y|p) for all x, y ∈ X.

Then (X,d) is a complete cone b-metric space with s = p–. Let us define T : X → X as

Tx =



(
cos

x

–

∣∣∣∣x – 


∣∣∣∣
)

for all x ∈ X.

Thus, for all x, y ∈ X, we have

d(Tx,Ty) =
(|Tx – Ty|p, |Tx – Ty|p)

=

p

(∣∣∣∣
(
cos

x

– cos

y


)
–

(∣∣∣∣x – 


∣∣∣∣ –
∣∣∣∣y – 



∣∣∣∣
)∣∣∣∣

p

,
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∣∣∣∣
(
cos

x

– cos

y


)
–

(∣∣∣∣x – 


∣∣∣∣ –
∣∣∣∣y – 



∣∣∣∣
)∣∣∣∣

p)

≤ 
p

((∣∣∣∣cos x – cos
y


∣∣∣∣ + |x – y|
)p

,
(∣∣∣∣cos x – cos

y


∣∣∣∣ + |x – y|
)p)

≤ 
p

(( |x + y|


|x – y| + |x – y|
)p

,
( |x + y|


|x – y| + |x – y|

)p)

≤ .p
(|x – y|p, |x – y|p) < 

p–
(|x – y|p, |x – y|p).

Hence, by Theorem ., there exists x ∈ X (in fact, it satisfies . < x <
.) such that x is the unique fixed point of T .

For the same reason, we need to use the new condition λ + λ + s(λ + λ) < 
+s instead

of the original condition λ + λ + s(λ + λ) < min{, s } in [, Theorem .]. The correct
statement is as follows.

Theorem . Let (X,d) be a complete cone b-metric space with the coefficient s ≥ . Sup-
pose that the mapping T : X → X satisfies the contractive condition

d(Tx,Ty) ≤ λd(x,Tx) + λd(y,Ty) + λd(x,Ty) + λd(y,Tx) for x, y ∈ X,

where the constant λi ∈ [, ) and λ +λ + s(λ +λ) < 
+s , i = , , , .Then T has a unique

fixed point in X.Moreover, the iterative sequence {Tnx} converges to the fixed point.

Proof Following an identical argument that is given in [, Theorem.] except substituting
 ≤ λ ≤  for ≤ λ ≤ 

s in line  of p. in [], we obtain the proof of Theorem .. �

In addition, based on the changes of Theorem ., we need to change the condition h <
min{ δ

M , 
L } into h <min{ δ

M , 
L } for [, Example .]. Let us give the corrected example.

We now apply Theorem . to the first-order periodic boundary problem

⎧⎨
⎩

dx
dt = F(t,x(t)),

x() = ξ ,
(.)

where F : [–h,h]× [ξ – δ, ξ + δ] is a continuous function.

Example . Consider boundary problem (.) with the continuous function F , and sup-
pose that F(x, y) satisfies the local Lipschitz condition, i.e., if |x| ≤ h, y, y ∈ [ξ – δ, ξ + δ],
it induces

∣∣F(x, y) – F(x, y)
∣∣ ≤ L|y – y|.

Set M = max[–h,h]×[ξ–δ,ξ+δ] |F(x, y)| such that h < min{ δ

M , 
L }, then there exists a unique

solution of (.).

Proof Let X = E = C([–h,h]) and P = {u ∈ E : u ≥ }. Put d : X × X → E as d(x, y) =
f (t)max–h≤t≤h |x(t) – y(t)| with f : [–h,h] → R such that f (t) = et . It is clear that (X,d)
is a complete cone b-metric space with s = .
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Note that (.) is equivalent to the integral equation

x(t) = ξ +
∫ t


F
(
τ ,x(τ )

)
dτ .

Define a mapping T : C([–h,h]) →R by Tx(t) = ξ +
∫ t
 F(τ ,x(τ )) dτ . If

x(t), y(t) ∈ B(ξ , δf )�
{
ϕ(t) ∈ C

(
[–h,h]

)
: d(ξ ,ϕ) ≤ δf

}
,

then from

d(Tx,Ty) = f (t) max
–h≤t≤h

∣∣∣∣
∫ t


F
(
τ ,x(τ )

)
dτ –

∫ t


F
(
τ , y(τ )

)
dτ

∣∣∣∣


= f (t) max
–h≤t≤h

∣∣∣∣
∫ t



[
F
(
τ ,x(τ )

)
– F

(
τ , y(τ )

)]
dτ

∣∣∣∣


≤ hf (t) max
–h≤τ≤h

∣∣F(
τ ,x(τ )

)
– F

(
τ , y(τ )

)∣∣

≤ hLf (t) max
–h≤τ≤h

∣∣x(τ ) – y(τ )
∣∣

= hLd(x, y),

and

d(Tx, ξ ) = f (t) max
–h≤t≤h

∣∣∣∣
∫ t


F
(
τ ,x(τ )

)
dτ

∣∣∣∣


≤ hf max
–h≤τ≤h

∣∣F(
τ ,x(τ )

)∣∣ ≤ hMf ≤ δf ,

we speculate that T : B(ξ , δf ) → B(ξ , δf ) is a contractive mapping.
Finally, we prove that (B(ξ , δf ),d) is complete. In fact, suppose that {xn} is a Cauchy

sequence in B(ξ , δf ). Then {xn} is also a Cauchy sequence in X. Since (X,d) is complete,
there is x ∈ X such that xn → x (n → ∞). So, for each c ∈ intP, there exists N , whenever
n >N , we obtain d(xn,x)� c. Thus, it follows from

d(ξ ,x)≤ d(xn, ξ ) + d(xn,x)≤ δf + c

and Lemma . in [] that d(ξ ,x) ≤ δf , which means x ∈ B(ξ , δf ), that is, (B(ξ , δf ),d) is
complete. �

Owing to the above statement, all conditions of Theorem . are satisfied. Hence T has
a unique fixed point x(t) ∈ B(ξ , δf ). That is to say, there exists a unique solution of (.).

Remark . Theorem . and Theorem . generalize and improve the corresponding
results in [–].
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