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1 Introduction and preliminaries
Fixed point theory has fascinatedmanymathematicians since with the celebrated Ba-
nach’s fixed point theorem. Fixed point theory plays a major role within as well as outside
mathematics, so the attraction of fixed point theory to large numbers of researchers is un-
derstandable, and the problem of fixed point has been studied in several directions; see for
example, [–]. The study of metric fixed point theory has been researched extensively in
the past decades. Recently, some generalizations of the notion of a metric space have been
proposed by some authors. In , Matthews introduced a new notion of generalized
metric space called partial metric space (for short PMS) [, ], in which the distance of a
point from itself may not be zero. After the appearance of partial metric spaces, some au-
thors started to generalize Banach contraction mapping theorem to partial metric spaces
and focus on fixed point theory on partial metric spaces (see, e.g., [–]). A new category
of fixed point problems was addressed by Khan et al. []. In this study, they introduced
the concept of altering distance function. In [], Choudhury introduced the concept of
weakly C-contractive mapping as follows.

Definition . [] Let (X,d) be a metric space and T : X → X be a mapping. Then T is
said to be weakly C-contractive (or a weakly C-contraction) if for all x, y ∈ X, the following
inequality holds:

d(Tx,Ty) ≤ 

(
d(x,Ty) + d(Tx, y)

)
– φ

(
d(x,Ty),d(Tx, y)

)
,

where φ : [, +∞) × [, +∞) → [, +∞) is a continuous function such that φ(x, y) =  if
and only if x = y = .

© 2013 Chen and Zhu; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192851243?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.fixedpointtheoryandapplications.com/content/2013/1/107
mailto:chuanxizhu@126.com
http://creativecommons.org/licenses/by/2.0


Chen and Zhu Fixed Point Theory and Applications 2013, 2013:107 Page 2 of 16
http://www.fixedpointtheoryandapplications.com/content/2013/1/107

Shatanawi [] investigated some fixed point theorems and coupled fixed point theo-
rems for weakly C-contractive mapping by using an altering distance function in metric
and partially ordered metric spaces.
Recently, Haghi et al. [] pointed thatmany fixed point generalizations to partialmetric

spaces can be obtained from the corresponding results in metric spaces and considered
some cases to demonstrate this fact. The aim of this paper is to research fixed point and
common fixed point theorems for weakly C-contractive type mappings in partial metric
spaces. Our results extend and generalize some results of [] to partial metric spaces;
all of our results cannot be obtained from the corresponding results in metric spaces.
Moreover, even inmetric spaces, our results are the generalizations of some results of [].
Also, we give an example to illustrate our results.
Throughout this paper, the letters N and N+ denote the set of all nonnegative integer

numbers and the set of all positive integer numbers, respectively. Let us recall some defi-
nitions and properties of partial metric spaces.

Definition . [] Let X be a nonempty set. The mapping p : X ×X → [, +∞) is said to
be a partial metric on X if the following conditions hold:

(P) x = y⇔ p(x, y) = p(x,x) = p(y, y),
(P) p(x,x)≤ p(x, y),
(P) p(x, y) = p(y,x),
(P) p(x, y) ≤ p(x, z) + p(z, y) – p(z, z),

for any x, y, z ∈ X. The pair (X,p) is then called a partial metric space.

It is clear that, if p(x, y) = , then from (P) and (P), x = y. But if x = y, p(x, y) may not be .
For a partial metric p on X, the function dp : X ×X → [, +∞) given by

dp(x, y) = p(x, y) – p(x,x) – p(y, y)

is a (usual) metric on X. Each partial metric p on X generates a T-topology τp on X with a
base of the family of open p-balls {Bp(x, ε) : x ∈ X, ε > }, where Bp(x, ε) = {y ∈ X : p(x, y) <
p(x,x) + ε} for all x ∈ X and ε > .
Let (X,p) be a partial metric space. Then:
A sequence {xn} in a partial metric space (X,p) converges to a point x ∈ X if and only if

p(x,x) = limn→+∞ p(x,xn).
A sequence {xn} in a partial metric space (X,p) is called a Cauchy sequence if there exists

(and is finite) limn,m→+∞ p(xm,xn).
A partial metric space (X,p) is said to be complete if every Cauchy sequence {xn} in X

converges, with respect to τp, to a point x ∈ X such that p(x,x) = limn,m→+∞ p(xm,xn).
The following lemmas play a major role in proving our main results.

Lemma . [] Let (X,p) be a partial metric space.
(A) A sequence {xn} is a Cauchy sequence in (X,p) if and only if {xn} is a Cauchy

sequence in (X,dp).
(B) (X,p) is complete if and only if (X,dp) is complete.Moreover,

lim
n→+∞dp(xn,x) =  ⇔ p(x,x) = lim

n→+∞p(xn,x) = lim
n,m→+∞p(xn,xm). (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/107
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Lemma . [, ] Assume that xn → z as n→ +∞ in a PMS (X,p) such that p(z, z) = .
Then limn→+∞ p(xn, y) = p(z, y) for every y ∈ X.

Lemma . [] Let (X,p) be a partial metric space and let {xn} be a sequence in X such
that

lim
n→+∞p(xn+,xn) = .

If {xn} is not a Cauchy sequence in (X,p), then there exist ε >  and two sequences {m(k)}
and {n(k)} of positive integers such that n(k) > m(k) > k and the following four sequences
tend to ε when k → +∞:

p(xm(k),xn(k)), p(xm(k),xn(k)+),

p(xm(k)–,xn(k)), p(xm(k)–,xn(k)+).
(.)

2 Main results
We start this section with the following definition, which can be seen in [, , , ].

Definition . Let (x,P) be a partial metric space. A mapping T : X → X is said to be
continuous at x ∈ X if for every ε > , there exists δ >  such thatT(Bp(x, δ)) ⊂ Bp(Tx, ε).

Definition . [] The function ϕ : [, +∞) → [, +∞) is called an altering distance
function, if the following properties are satisfied:
() ϕ is continuous and nondecreasing;
() ϕ(t) =  if and only if t = .

Lemma . [] Let (X,p) be a partial metric space, T : X → X be a given mapping.
Suppose that T is continuous at x ∈ X. Then, for each sequence {xn} in X, xn → x in
τp ⇒ Txn → Tx in τp holds.

Theorem . Let (X,	) be a partially ordered set and suppose that there exists a partial
metric p on X such that (X,p) is complete. Let f : X → X be a continuous nondecreasing
mapping. Suppose that for comparable x, y ∈ X, we have

ψ
(
p(fx, fy)

) ≤ ϕ

(
p(x, fy) + p(fx, y)



)
– φ

(
p(x, fy),p(fx, y)

)
, (.)

where ψ and ϕ are altering distance functions with

ψ(t) – ϕ(t) ≥  (.)

for all t ≥ , and φ : [, +∞)× [, +∞)→ [, +∞) is a continuous function with φ(x, y) = 
if and only if x = y = . If there exists x ∈ X such that x 	 fx, then f has a fixed point.

Proof If x = fx, then x is a fixed point of f . Suppose that x ≺ fx, we can choose x ∈ X
such that fx = x. Since f is a nondecreasing function, we have

x ≺ x = fx 	 x = fx 	 x = fx.

http://www.fixedpointtheoryandapplications.com/content/2013/1/107
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Continuing this process, we can construct a sequence {xn} in X such that xn+ = fxn with

x ≺ x 	 x 	 · · · 	 xn 	 xn+ 	 · · · .

It is clear that if p(xn,xn+) =  for some n ∈ N , then f has a fixed point. Taking p(xn,xn+) >
 for all n ∈ N , now let us prove the following inequality:

p(xn,xn+) ≤ p(xn–,xn), n ∈ N+. (.)

Suppose this is not true, then p(xn,xn+) > p(xn–,xn) for some n, that is,

p(xn ,xn+) > p(xn–,xn ). (.)

From (.) and (.), we obtain that

ψ
(
p(xn ,xn+)

)
= ψ

(
p(fxn–, fxn )

)

≤ ϕ

(
p(xn–, fxn ) + p(fxn–,xn )



)
– φ

(
p(xn–, fxn ),p(fxn–,xn )

)

= ϕ

(
p(xn–,xn+) + p(xn ,xn )



)
– φ

(
p(xn–,xn+),p(xn ,xn )

)

≤ ϕ

(
p(xn–,xn ) + p(xn ,xn+)



)
– φ

(
p(xn–,xn+),p(xn ,xn )

)

≤ ϕ
(
max

{
p(xn–,xn ),p(xn ,xn+)

})
– φ

(
p(xn–,xn+),p(xn ,xn )

)
= ϕ

(
p(xn ,xn+)

)
– φ

(
p(xn–,xn+),p(xn ,xn )

)
,

this together with (.) shows that

φ
(
p(xn–,xn+),p(xn ,xn )

)
= .

Using the property of φ, we have

p(xn–,xn+) = , p(xn ,xn ) = . (.)

Since

ψ
(
p(xn ,xn+)

)
= ψ

(
p(fxn–, fxn )

)

≤ ϕ

(
p(xn–, fxn ) + p(fxn–,xn )



)
– φ

(
p(xn–, fxn ),p(fxn–,xn )

)

= ϕ

(
p(xn–,xn+) + p(xn ,xn )



)
– φ

(
p(xn–,xn+),p(xn ,xn )

)
,

applying (.), we get

ψ
(
p(xn ,xn+)

)
= . (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/107
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From the property of ψ , we have p(xn ,xn+) = , which contradicts with p(xn,xn+) > 
for all n ∈ N ; hence (.) holds. Therefore, {p(xn,xn+)} is a nonincreasing sequence, and
thus there exists r ≥  such that

lim
n→+∞p(xn,xn+) = r.

Using (.), we obtain

ψ
(
p(xn+,xn+)

)
= ψ

(
p(fxn, fxn+)

)

≤ ϕ

(
p(xn, fxn+) + p(fxn,xn+)



)
– φ

(
p(xn, fxn+),p(fxn,xn+)

)

= ϕ

(
p(xn,xn+) + p(xn+,xn+)



)
– φ

(
p(xn,xn+),p(xn+,xn+)

)

≤ ϕ

(
p(xn,xn+) + p(xn+,xn+)



)
– φ

(
p(xn,xn+),p(xn+,xn+)

)
, (.)

it means that

φ
(
p(xn,xn+),p(xn+,xn+)

) ≤ ϕ

(
p(xn,xn+) + p(xn+,xn+)



)
–ψ

(
p(xn+,xn+)

)
.

Letting n → +∞ in the above inequality, we get

lim inf
n→+∞ φ

(
p(xn,xn+),p(xn+,xn+)

)
= ,

the continuity of φ guarantees that

φ
(
lim inf
n→+∞ p(xn,xn+), lim inf

n→+∞ p(xn+,xn+)
)
= ,

and the property of φ gives that

lim inf
n→+∞ p(xn,xn+) = , lim inf

n→+∞ p(xn+,xn+) = . (.)

Since

ψ
(
p(xn+,xn+)

)
= ψ

(
p(fxn, fxn+)

)

≤ ϕ

(
p(xn, fxn+) + p(fxn,xn+)



)
– φ

(
p(xn, fxn+),p(fxn,xn+)

)

= ϕ

(
p(xn,xn+) + p(xn+,xn+)



)
– φ

(
p(xn,xn+),p(xn+,xn+)

)
,

on taking inferior limit in the above inequalities and using (.), we obtain that ψ(r) = 
and so r = , therefore,

lim
n→+∞p(xn,xn+) = ,

http://www.fixedpointtheoryandapplications.com/content/2013/1/107
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moreover, we have

lim
n→+∞p(xn,xn) = .

Now, we claim that {xn} is a Cauchy sequence in the metric space (X,dp) (and so also
in the space (X,p) by Lemma .). For this, it is sufficient to show that {xn} is a Cauchy
sequence in (X,dp). Suppose that this is not the case, then using Lemma . we have that
{xn} is not a Cauchy sequence in (X,p). By Lemma ., we obtain that there exist ε > 
and two sequences {m(k)} and {n(k)} of positive integers such that n(k) > m(k) > k and
sequences in (.) tend to ε when k → +∞. For two comparable elements y = xn(k)+ and
x = xm(k), we can obtain, from (.), that

ψ
(
p(xn(k)+,xm(k))

)
= ψ

(
p(fxn(k), fxm(k)–)

)

≤ ϕ

(
p(xn(k), fxm(k)–) + p(fxn(k),xm(k)–)



)

– φ
(
p(xn(k), fxm(k)–),p(fxn(k),xm(k)–)

)

= ϕ

(
p(xn(k),xm(k)) + p(xn(k)+,xm(k)–)



)

– φ
(
p(xn(k),xm(k)),p(xn(k)+,xm(k)–)

)
. (.)

Taking k → +∞ in (.), we get

ψ(ε) ≤ ϕ(ε) – φ(ε, ε),

which implies that φ(ε, ε) = , hence ε = , a contradiction. Thus, {xn} is a Cauchy se-
quence in (X,dp) and so {xn} is a Cauchy sequence both in (X,dp) and in (X,p). Since
(X,p) is complete then the sequence {xn} converges to some z ∈ X, that is

p(z, z) = lim
n→+∞p(xn, z) = lim

n,m→+∞p(xn,xm). (.)

Moreover, since {xn} is a Cauchy sequence in (X,dp), we have limn→+∞ dp(xn,xm) = .
By dp(xn,xm) = p(xn,xm) – p(xn,xn) – p(xm,xm) and limn→+∞ p(xn,xn) = , we have
limn→+∞ p(xn,xm) = . Then (.) yields that

p(z, z) = lim
n→+∞p(xn, z) = . (.)

Applying the triangular inequality, we have

p(z, fz) ≤ p(z,xn) + p(xn, fz) – p(xn,xn) ≤ p(z,xn) + p(xn, fz) = p(z,xn) + p(fxn–, fz),

taking n→ +∞ in the above inequalities, then the continuity of f and Lemma . give that

p(z, fz) ≤ p(fz, fz),

http://www.fixedpointtheoryandapplications.com/content/2013/1/107
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hence

p(z, fz) = p(fz, fz). (.)

By combining (.) and (.), we have

ψ
(
p(z, fz)

)
= ψ

(
p(fz, fz)

)

≤ ϕ

(
p(z, fz) + p(fz, z)



)
– φ

(
p(z, fz),p(fz, z)

)

= ϕ
(
p(z, fz)

)
– φ

(
p(z, fz),p(fz, z)

)
,

which yields that φ(p(z, fz),p(fz, z)) = , and thus p(z, fz) = , that is z = fz. Therefore, z is a
fixed point of f . �

Theorem . Suppose that X, f , ψ , ϕ, and φ are the same as in Theorem . except the
continuity of f . Suppose that for a nondecreasing sequence {xn} in X with xn → x ∈ X, we
have xn 	 x for all n ∈N . If there exists x ∈ X such that x 	 fx, then f has a fixed point.

Proof As in the proof of Theorem ., we have a Cauchy sequence {xn} in X. Since (X,p)
is complete, there exists z ∈ X such that xn → z, that is,

p(z, z) = lim
n→+∞p(xn, z) = lim

n,m→+∞p(xn,xm),

due to the hypothesis, we get xn 	 z. Similar to the proof of Theorem ., we have that

p(z, z) = lim
n→+∞p(xn, z) = .

From (.), we obtain that

ψ
(
p(xn, fz)

)
= ψ

(
p(fxn–, fz)

)

≤ ϕ

(
p(xn–, fz) + p(fxn–, z)



)
– φ

(
p(xn–, fz),p(xn, z)

)

= ϕ

(
p(xn–, fz) + p(xn, z)



)
– φ

(
p(xn–, fz),p(xn, z)

)
.

Letting n → +∞ in the above inequalities, and by Lemma ., we have

ψ
(
p(z, fz)

) ≤ ϕ
(
p(z, fz)

)
– φ

(
p(z, fz), 

)
,

which implies, from (.), that φ(p(z, fz), ) = , hence p(z, fz) = , and thus z = fz. There-
fore, f has a fixed point. �

Theorem . Let (X,p) be a complete partial metric space, f and g be self-mappings on X.
Suppose that for all x, y ∈ X

ψ
(
p(fx, gy)

) ≤ ϕ

(
p(x, gy) + p(fx, y)



)
– φ

(
p(x, gy),p(fx, y)

)
, (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/107


Chen and Zhu Fixed Point Theory and Applications 2013, 2013:107 Page 8 of 16
http://www.fixedpointtheoryandapplications.com/content/2013/1/107

where ψ and ϕ are altering distance functions with

ψ(t) – ϕ(t) ≥  (.)

for all t ≥ , and φ : [, +∞)× [, +∞)→ [, +∞) is a continuous function with φ(x, y) = 
if and only if x = y = .
Then f and g have a unique common fixed point.

Proof Let x be an arbitrary point in X. One can choose x ∈ X such that fx = x. Also,
one can choose x ∈ X such that gx = x. Continuing this process, one can construct a
sequence {xn} in X such that

xn+ = fxn, xn+ = gxn+, n ∈N . (.)

Now, we discuss the following two cases.
Case . If p(xn,xn+) =  for some n ∈ N , then f and g have at least one common fixed

point. In fact, if p(xn,xn+) =  for some n ∈N , that is p(xn ,xn+) = , which implies that
xn = xn+. If n = k (k ∈N ), then xk = xk+. Using (.), we have

ψ
(
p(xk+,xk+)

)
= ψ

(
p(fxk , gxk+)

)

≤ ϕ

(
p(xk , gxk+) + p(fxk ,xk+)



)
– φ

(
p(xk , gxk+),p(fxk ,xk+)

)

= ϕ

(
p(xk ,xk+) + p(xk+,xk+)



)
– φ

(
p(xk ,xk+),p(xk+,xk+)

)

≤ ϕ

(
p(xk ,xk+) + p(xk+,xk+)



)
– φ

(
p(xk ,xk+),p(xk+,xk+)

)

≤ ϕ
(
max

{
p(xk ,xk+),p(xk+,xk+)

})
– φ

(
p(xk ,xk+),p(xk+,xk+)

)
= ϕ

(
max

{
p(xk+,xk+),p(xk+,xk+)

})
– φ

(
p(xk+,xk+),p(xk+,xk+)

)
= ϕ

(
p(xk+,xk+)

)
– φ

(
p(xk+,xk+),p(xk+,xk+)

)
. (.)

With the help of (.) and (.), we conclude that φ(p(xk+,xk+),p(xk+,xk+)) = ,
hence, using the property of φ, we get p(xk+,xk+) = , that is xk+ = xk+. By similar
arguments, we obtain xk+ = xk+, xk+ = xk+ and so on. Thus, {xn} becomes a constant
from n = k, that is,

xk = xk+ = xk+ = · · · . (.)

Equations (.) and (.) yield that

xk = gxk = fxk , (.)

which implies that xk is the common fixed point of f and g . Similarly, one can show that
if n = k +  (k ∈ N ), then f and g have at least one common fixed point. Therefore, we

http://www.fixedpointtheoryandapplications.com/content/2013/1/107
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have proved that if p(xn,xn+) =  for some n ∈N , then f and g have at least one common
fixed point.
Case . If p(xn,xn+) =  for some n ∈ N , then f and g have at least one common fixed

point. Indeed, if n = k (k ∈ N ), then p(xk ,xk+) = . Hence, xk = xk+, due to (.),
we have

ψ
(
p(xk+,xk+)

)
= ψ

(
p(fxk , gxk+)

)

≤ ϕ

(
p(xk , gxk+) + p(fxk ,xk+)



)
– φ

(
p(xk , gxk+),p(fxk ,xk+)

)

= ϕ

(
p(xk ,xk+) + p(xk+,xk+)



)
– φ

(
p(xk ,xk+),p(xk+,xk+)

)

≤ ϕ

(
p(xk ,xk+) + p(xk+,xk+)



)
– φ

(
p(xk ,xk+),p(xk+,xk+)

)

= ϕ

(
p(xk+,xk+) + p(xk+,xk+)



)
– φ

(
p(xk ,xk+),p(xk+,xk+)

)

= ϕ
(
p(xk+,xk+)

)
– φ

(
p(xk ,xk+),p(xk+,xk+)

)
. (.)

Applying (.) and (.), we obtain φ(p(xk ,xk+),p(xk+,xk+)) = . Using the property
of φ, we have

p(xk+,xk+) = . (.)

From (.) and using p(xk ,xk+) = , we get that

ψ
(
p(xk+,xk+)

)
= ψ

(
p(fxk , gxk+)

)

≤ ϕ

(
p(xk , gxk+) + p(fxk ,xk+)



)
– φ

(
p(xk , gxk+),p(fxk ,xk+)

)

= ϕ

(
p(xk ,xk+) + p(xk+,xk+)



)
– φ

(
p(xk ,xk+),p(xk+,xk+)

)

= ϕ() – φ(, )

= , (.)

which implies that ψ(p(xk+,xk+)) = , and thus p(xk+,xk+) = . Hence we obtain that
f and g have at least one common fixed point from case . Similarly, it is easy to show that
if p(xn,xn+) =  for some n = k +  (k ∈N ), then f and g have at least one common fixed
point, this completes the proof of case .
Taking p(xn,xn+) >  and p(xn,xn+) >  for all n ∈N . Nowwe prove that for every k ∈N ,

we have

p(xk+,xk+)≤ p(xk+,xk). (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/107
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Suppose this is not true, then p(xk+,xk+) > p(xk+,xk) for some k = k, that is,

p(xk+,xk+) > p(xk+,xk ).

Using (.) and (.), we obtain that

ψ
(
p(xk+,xk+)

)
= ψ

(
p(fxk , gxk+)

)

≤ ϕ

(
p(xk , gxk+) + p(fxk ,xk+)



)
– φ

(
p(xk , gxk+),p(fxk ,xk+)

)

= ϕ

(
p(xk ,xk+) + p(xk+,xk+)



)
– φ

(
p(xk ,xk+),p(xk+,xk+)

)

≤ ϕ

(
p(xk ,xk+) + p(xk+,xk+)



)
– φ

(
p(xk ,xk+),p(xk+,xk+)

)

≤ ϕ
(
max

{
p(xk ,xk+),p(xk+,xk+)

})
– φ

(
p(xk ,xk+),p(xk+,xk+)

)
= ϕ

(
p(xk+,xk+)

)
– φ

(
p(xk ,xk+),p(xk+,xk+)

)
. (.)

Equations (.) and (.) give that φ(p(xk ,xk+),p(xk+,xk+)) = . Using the
property of φ, we get p(xk ,xk+) = , which contradicts with p(xn,xn+) >  for n ∈ N ,
hence (.) holds.
Similarly, one can show that for every k ∈N+, the following inequality holds.

p(xk+,xk) ≤ p(xk ,xk–). (.)

Equations (.) and (.) imply that the sequence {p(xn,xn+)} is nonincreasing, and
consequently there exists some r ≥  such that

lim
n→+∞p(xn,xn+) = r. (.)

By (.) and the following inequalities,

p(xn,xn+) ≤ p(xn,xn+) + p(xn+,xn+) – p(xn+,xn+)

≤ p(xn,xn+) + p(xn+,xn+),

we get that {p(xn,xn+)} is bounded, and hence it has some subsequence {p(xn(k),
xn(k)+)} converging to some r, that is,

lim
k→+∞

p(xn(k),xn(k)+) = r. (.)

Taking (P) into account, we have

p(xn(k)+,xn(k)+) ≤ p(xn(k)+,xn(k)),
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which combiningwith (.) shows that p(xn(k)+,xn(k)+) is bounded, and hence there ex-
ists subsequence p(xn(ki)+,xn(ki)+) of p(xn(k)+,xn(k)+) such that p(xn(ki)+,xn(ki)+) con-
verges to some r, that is,

lim
i→+∞p(xn(ki)+,xn(ki)+) = r. (.)

By (.), we have

ψ
(
p(xn(ki)+,xn(ki)+)

)
= ψ

(
p(fxn(ki), gxn(ki)+)

)

≤ ϕ

(
p(xn(ki), gxn(ki)+) + p(fxn(ki),xn(ki)+)



)

– φ
(
p(xn(ki), gxn(ki)+),p(fxn(ki),xn(ki)+)

)

= ϕ

(
p(xn(ki),xn(ki)+) + p(xn(ki)+,xn(ki)+)



)

– φ
(
p(xn(ki),xn(ki)+),p(xn(ki)+,xn(ki)+)

)

≤ ϕ

(
p(xn(ki),xn(ki)+) + p(xn(ki)+,xn(ki)+)



)

– φ
(
p(xn(ki),xn(ki)+),p(xn(ki)+,xn(ki)+)

)
. (.)

Letting i → +∞ in (.), and using (.)-(.), we obtain that

ψ(r)≤ ϕ(r) – φ(r, r), (.)

which means that φ(r, r) = , hence r =  and r = .
Since

ψ
(
p(xn(ki)+,xn(ki)+)

)
= ψ

(
p(fxn(ki), gxn(ki)+)

)

≤ ϕ

(
p(xn(ki), gxn(ki)+) + p(fxn(ki),xn(ki)+)



)

– φ
(
p(xn(ki), gxn(ki)+),p(fxn(ki),xn(ki)+)

)

= ϕ

(
p(xn(ki),xn(ki)+) + p(xn(ki)+,xn(ki)+)



)

– φ
(
p(xn(ki),xn(ki)+),p(xn(ki)+,xn(ki)+)

)
,

taking the limit as i→ +∞, we have ψ(r) = , which implies that r = , that is,

lim
n→+∞p(xn,xn+) = . (.)

Now, we claim that {xn} is a Cauchy sequence in the metric space (X,dp) (and so also
in the space (X,p) by Lemma .). For this, it is sufficient to show that {xn} is a Cauchy
sequence in (X,dp). Suppose that this is not the case, then using Lemma ., we have that
{xn} is not a Cauchy sequence in (X,p). By Lemma ., we obtain that there exist ε > 
and two sequences {m(k)} and {n(k)} of positive integers such that n(k) > m(k) > k and
sequences in (.) tend to ε when k → +∞.

http://www.fixedpointtheoryandapplications.com/content/2013/1/107
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From (.), we get that

ψ
(
p(xn(k)+,xm(k))

)
= ψ

(
p(fxn(k), gxm(k)–)

)

≤ ϕ

(
p(xn(k), gxm(k)–) + p(fxn(k),xm(k)–)



)

– φ
(
p(xn(k), gxm(k)–),p(fxn(k),xm(k)–)

)

= ϕ

(
p(xn(k),xm(k)) + p(xn(k)+,xm(k)–)



)

– φ
(
p(xn(k),xm(k)),p(xn(k)+,xm(k)–)

)
.

Letting k → +∞ in the above inequalities and using the continuity of ψ , ϕ and φ, we get
that

ψ(ε) ≤ ϕ(ε) – φ(ε, ε),

therefore, we get that φ(ε, ε) = . Hence, ε =  which is a contradiction. Thus, {xn} is a
Cauchy sequence in (X,dp), and {xn} is also a Cauchy sequence in (X,p). Since (X,p) is
complete, then the sequence {xn} converges to some z ∈ X, that is,

p(z, z) = lim
n→+∞p(xn, z) = lim

n,m→+∞p(xn,xm).

Moreover, the sequence {xn} and {xn+} converge to z ∈ X, that is,

p(z, z) = lim
n→+∞p(xn, z) = lim

n,m→+∞p(xn,xm)

and

p(z, z) = lim
n→+∞p(xn+, z) = lim

n,m→+∞p(xn+,xm+).

Using the fact that {xn} is a Cauchy sequence in (X,dp), we have limn→+∞ dp(xn,xm) = ,
which together with dp(xn,xm) = p(xn,xm)–p(xn,xn)–p(xm,xm) yields that limn→+∞ p(xn,
xm) = . Hence, we have

p(z, z) = lim
n→+∞p(xn, z) = lim

n→+∞p(xn, z) = lim
n→+∞p(xn+, z) = .

By substituting x = xn(k)+, y = z in (.), we get that

ψ
(
p(xn(k)+, gz)

)
= ψ

(
p(fxn(k), gz)

)

≤ ϕ

(
p(xn(k), gz) + p(fxn(k), z)



)

– φ
(
p(xn(k), gz),p(fxn(k), z)

)

= ϕ

(
p(xn(k), gz) + p(xn(k)+, z)



)

– φ
(
p(xn(k), gz),p(xn(k)+, z)

)
,
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letting k → +∞ and applying Lemma ., we conclude that

ψ
(
p(z, gz)

) ≤ ϕ

(
p(z, gz) + p(z, z)



)
– φ

(
p(z, gz),p(z, z)

)

≤ ϕ
(
p(z, gz)

)
– φ

(
p(z, gz), 

)
,

which yields that φ(p(z, gz), ) = ; hence, p(z, gz) = , and thus z = gz. Similarly, one can
easily show that z = fz, therefore, z is the common fixed point of f and g .
Now we prove the uniqueness of common fixed point. Let us suppose that u is also the

common fixed point of f and g . Since

ψ
(
p(u, z)

)
= ψ

(
p(fu, gz)

)

≤ ϕ

(
p(u, gz) + p(fu, z)



)
– φ

(
p(u, gz),p(fu, z)

)

= ϕ
(
p(u, z)

)
– φ

(
p(u, z),p(u, z)

)
,

which means that φ(p(u, z),p(u, z)) = ; hence, p(u, z) = , and so u = z. Thus, the unique-
ness of the common fixed point is proved. �

By taking ϕ = ψ in Theorems .-., respectively, we have the following results.

Corollary . Let (X,	) be a partially ordered set and suppose that there exists a partial
metric p on X such that (X,p) is complete. Let f : X → X be a continuous nondecreasing
mapping. Suppose that for comparable x, y ∈ X, we have

ψ
(
p(fx, fy)

) ≤ ψ

(
p(x, fy) + p(fx, y)



)
– φ

(
p(x, fy),p(fx, y)

)
,

whereψ is an altering distance function and φ : [, +∞)× [, +∞)→ [, +∞) is a continu-
ous function with φ(x, y) =  if and only if x = y = . If there exists x ∈ X such that x 	 fx,
then f has a fixed point.

Corollary . Suppose that X, f , ψ , and φ are the same as in Corollary . except the
continuity of f . Suppose that for a nondecreasing sequence {xn} in X with xn → x ∈ X, we
have xn 	 x for all n ∈N . If there exists x ∈ X such that x 	 fx, then f has a fixed point.

Corollary . Let (X,p) be a complete partial metric space, f and g be self-mappings on X.
Suppose that there exist functions ψ and φ such that for all x, y ∈ X

ψ
(
p(fx, gy)

) ≤ ψ

(
p(x, gy) + p(fx, y)



)
– φ

(
p(x, gy),p(fx, y)

)
,

where ψ is an altering distance function and φ : [, +∞)× [, +∞)→ [, +∞) is a contin-
uous function with φ(x, y) =  if and only if x = y = .
Then f and g have a unique common fixed point.

Remark . If we replace the partial metric p by (usual) metric d in Corollaries .-.,
then we get Theorems .-. of [].
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Now, we introduce an example to support the usability of our results.

Example . Let X = [, ] be endowed with the usual partial metric p : X ×X → [, +∞)
defined by p(x, y) =max{x, y}. It is easy to show that the partial metric space (X,p) is com-
plete. Also, define the mappings f , g : X → X by fx = x

 and gx = x
 , respectively. Let us

take ψ ,ϕ : [, +∞) → [, +∞) such that ψ(t) = t and ϕ(t) = t
 , respectively, and take

φ : [, +∞)× [, +∞)→ [, +∞) such that φ(t, s) = (t+s)
 . If x≥ y, then

p(fx, gy) =max

{
x


,
y



}
=
x


,

and

p(x, gy) + p(fx, y) = p
(
x,
y



)
+ p

(
x


, y

)
=max

{
x,
y



}
+ p

(
x


, y

)
= x + p

(
x


, y

)
.

So, we have

ψ
(
p(fx, gy)

)
=

x


≤ x



≤ (x + p( x , y))




=
(x + p( x , y))




–
(x + p( x , y))





= ϕ

(
p(x, gy) + p(fx, y)



)
– φ

(
p(x, gy),p(fx, y)

)
.

If x ≤ y, then

p(fx, gy) =max

{
x


,
y



}
≤ y



and

p(x, gy) + p(fx, y) = p
(
x,
y



)
+ p

(
x


, y

)
= p

(
x,
y



)
+max

{
x


, y

}
= p

(
x,
y



)
+ y.

So, we have

ψ
(
p(fx, gy)

)
=

y


≤ y



≤ (y + p(x, y


 ))




=
(y + p(x, y



 ))



–
(y + p(x, y



 ))




= ϕ

(
p(x, gy) + p(fx, y)



)
– φ

(
p(x, gy),p(fx, y)

)
.
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From the above arguments, we conclude that (.) holds; hence, all the required hy-
potheses of Theorem . are satisfied. Thus, we deduce the existence and uniqueness of a
common fixed point of f and g . Here,  is the unique common fixed point.
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