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Scalable metagenomics alignment research
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complete search heuristic for the
classification of metagenomic sequences
from complex sequence populations
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Abstract

Background: Next generation sequencing technology has enabled characterization of metagenomics through
massively parallel genomic DNA sequencing. The complexity and diversity of environmental samples such as the
human gut microflora, combined with the sustained exponential growth in sequencing capacity, has led to the
challenge of identifying microbial organisms by DNA sequence. We sought to validate a Scalable Metagenomics
Alignment Research Tool (SMART), a novel searching heuristic for shotgun metagenomics sequencing results.

Results: After retrieving all genomic DNA sequences from the NCBI GenBank, over 1 × 1011 base pairs of 3.3 × 106

sequences from 9.25 × 105 species were indexed using 4 base pair hashtable shards. A MapReduce searching
strategy was used to distribute the search workload in a computing cluster environment. In addition, a one base
pair permutation algorithm was used to account for single nucleotide polymorphisms and sequencing errors.
Simulated datasets used to evaluate Kraken, a similar metagenomics classification tool, were used to measure and
compare precision and accuracy. Finally using a same set of training sequences we compared Kraken, CLARK, and
SMART within the same computing environment. Utilizing 12 computational nodes, we completed the classification
of all datasets in under 10 min each using exact matching with an average throughput of over 1.95 × 106 reads
classified per minute. With permutation matching, we achieved sensitivity greater than 83 % and precision greater
than 94 % with simulated datasets at the species classification level. We demonstrated the application of this
technique applied to conjunctival and gut microbiome metagenomics sequencing results. In our head to head
comparison, SMART and CLARK had similar accuracy gains over Kraken at the species classification level, but SMART
required approximately half the amount of RAM of CLARK.

Conclusions: SMART is the first scalable, efficient, and rapid metagenomics classification algorithm capable
of matching against all the species and sequences present in the NCBI GenBank and allows for a single step
classification of microorganisms as well as large plant, mammalian, or invertebrate genomes from which the
metagenomic sample may have been derived.
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Background
Next generation sequencing technology has enabled
characterization of metagenomics through massively
parallel genomic DNA sequencing. The complexity and
diversity of environmental samples such as the human
gut microflora, combined with the sustained exponential
growth in sequencing capacity, has led to the challenge
of identifying microbial organisms by DNA sequence [1, 2].
The library of sequenced DNA fragments mapped to an
identified taxonomy species has been growing in parallel;
the latest release of NCBI Genbank (v209) has catalogued
1.99 × 1011 basepairs of cDNA and genomic DNA from
1.87 × 108 records [3] (http://www.ncbi.nlm.nih.gov/news/
08-19-2015-genbank-release-209/). The computational
challenge has been to rapidly and accurately identify species
level DNA sequences from next generation metagenomic
shotgun sequencing data.
Currently the most widely used classification algorithm,

BLAST [4], relies on indexing unique fragments of DNA
that narrow the search space. While BLAST works well
for small numbers of sequences, the algorithm scales
poorly to the large number of reads generated by next
generation sequencing files [5]. Other sequence alignment
software has been created specifically adapted to next
generation sequencing output such as Bowtie2 [6],
Burrows-Wheeler Aligner [7], and Short Oligonucleotide
Analysis Package [8]. These alignment software work well
for the precise alignment of a large number of next
generation sequencing reads against single organism
genomes but scale poorly when attempting to align reads
against all known DNA sequences. MEGAN and Meta-
Phyler have been developed to work with BLAST specific-
ally for the use of metagenomic sequencing classification
[9, 10]. However even though these probabilistic ap-
proaches have high accuracy [11, 12], they remain limited
by the computational expensive nature of BLAST. In
addition, empirical approaches have also used machine
learning algorithms with both supervised [13–16] and
unsupervised methods [17–19].
Recently Kraken was developed to specifically address

the problem of classifying next generation sequencing
output from metagenomics projects [5]. Briefly, Kraken
works by creating a k-mer database mapped to the
lowest common ancestor, reducing the search space
significantly. By doing so, Kraken performs exact k-mer
matching and maps reads against its database with high
speed and throughput. Validation of Kraken suggested
processing of 4 million reads per minute at a rate over
900 times faster than MegaBlast [5]. The limitations of
Kraken includes the long execution time and memory
consumption during the database construction as well as
the current databases being limited to bacterial, archaeal,
and viral genomes, necessitating the elimination of host
genomic DNA prior to classification using Kraken.

In addition to Kraken, a number of other
approaches have been published. In particular CLARK
[20] and LMAT [21] have been shown to have similar
if not higher accuracy while maintaining the impres-
sive throughput of Kraken. LMAT, similar to Kraken,
attempts to utilize taxonomy information to reduce
the database of k-mers, but current implementations
are limited to microbial genomes and do not include
mammalian sequences. CLARK attempts to decrease
the k-mer search space by only indexing keys that
uniquely identify a given taxonomy level and offers
several modes of execution, including a version called
CLARK-L that is optimized for limited RAM environ-
ments by subsampling the database to smaller frac-
tion. All three techniques, Kraken, LMAT, and
CLARK, attempt to limit the k-mer search space by
either finding the least common ancestor (LCA) k-
mers or finding discriminatory k-mers that uniquely
identify an organism at a given taxonomy level.
Recently, the MapReduce programming model [22] has

caused a substantial shift in the way that large data sets
may be distributed in parallel within a computing cluster.
For example, Google used the MapReduce [23] framework
to regenerate their index of the Internet, and the MapRe-
duce framework has become popularized as a generic
framework to solve big data bioinformatics problems in
many-core cluster systems [24–27]. Database sharding has
been used in other fields to horizontally scale very large sets
of data and can reduce the each subset of the database into
a datastructure in memory limited environments [28, 29].
Unlike prior algorithms which limited the k-mer search
space, we sought to leverage parallel computing and a
MapReduce computational framework with a sharded data-
base to create a scalable complete search heuristic for next
generation sequencing files from metagenomics projects.

Implementation
Computational infrastructure
The University of Washington provides a shared high-
performance computing cluster known as Hyak.
Currently UW Hyak has 9,028 Intel Xeon processing
cores with 834 computational nodes. Each node used to
test computational scaling contained 16 CPU cores with
64 GB of memory.

Construction of database
The v209 release of NCBI Genbank was downloaded
(September 2015) and each Genbank accession was
linked using the NCBI Taxonomy database to a single
species and class. Using parallelization across 156 cores
and a MapReduce framework, the genomic DNA was
then virtually cut at every 30 basepairs, and each 30-mer
was linked to the corresponding species and class and
sorted. Finally merge sort was used to combine all the

Lee et al. BMC Bioinformatics  (2016) 17:292 Page 2 of 12

http://www.ncbi.nlm.nih.gov/news/08-19-2015-genbank-release-209/
http://www.ncbi.nlm.nih.gov/news/08-19-2015-genbank-release-209/


sorted 30-mers for classification. The dataset was then
split into shards based on the first four basepairs of each
30mer creating a 256 separate databases that could be
deterministically searched. The databases were saved in
a hashtable format that could be loaded at runtime into
memory by each search program.

Description of search heuristic
A total of 256 search programs are started asynchron-
ously in parallel with each program assigned a 4 basepair
shard as part of the mapping step. Each search program
then iterates through the list of sequences in FASTA or
FASTQ format and slides a 30 basepair window if the
first 4 basepairs match the assigned shard definition of
the executing program. The remaining 26 basepairs are
then used to execute an in-memory hash-table lookup
(Fig. 1). The reverse complement is also checked for
every read. Each successful match to a species, genus, or
class is kept and recorded. In addition, a 1-edit distance
permutation algorithm was created to generate every
possible one base-pair substitution permutation of the
30-mer search to account for sequencing errors and
single nucleotide polymorphisms, without accounting
for insertions or deletions. The results of each program
are sequentially reduced to create the final classification
results. Matching is performed at the species level and
multiple matches against different organisms are
collected. If any match is mammalian then the read is
classified as mammalian; the highest voted match at the
species, genus, and class taxonomy levels are calculated
for each read for the final classification. If the highest
classification for a read is a tie, then the read is labeled
as ambiguous for a given taxonomy level.

Datasets tested
Simulated datasets (HiSeq, MiSeq, and simBA5) were
taken from the publicly available datasets that were used
to evaluate Kraken [5].
In a previous clinical trial of acute conjunctivitis/epi-

demic keratoconjunctivitis (NV-422 Phase IIB/III, NovaBay,
clinicaltrials.gov: NCT01532336), a total 500 patients
with clinical signs and symptoms of epidemic kerato-
conjunctivitis were recruited worldwide. Institutional
review board approval was obtained through Goodwyn
IRB (Cincinnati, OH, approval number: CL1104) Clin-
ical research adhered to the tenets of the Declaration of
Helsinki and was conducted in accordance with Health
Insurance Portability and Accountability Act regula-
tions. Written informed consent was obtained before
participation for all participants in the study. Conjunc-
tival samples from the upper/lower tarsal conjunctiva
and fornix were collected using sterile dry swabs
(Copan diagnostics inc., Murrieta, CA). Genomic DNA
was isolated from conjunctival swabs using Qiagen
Blood & Tissue DNA Kit (Qiagen, Inc., Venlo, the
Netherlands) as per protocol. Three samples were ran-
domly selected for whole genome sequencing (WGS).
One nanogram of genomic DNA from each sample was
used to prepare libraries for WGS according to the
manufacturer’s instruction using Illumina Nextera XT
Sample Prep Kit (Illumina, Inc, San Diego, CA). The
DNA libraries were sequenced using MiSeq System fol-
lowing the manufacturer’s standard protocols (Illumina,
Inc, San Diego, CA). Three conjunctival samples were
used from this clinical trial collected from patients on
the day of enrollment prior to the initiation of either
placebo or the investigative drug. The FASTQ files for

Fig. 1 Sketch of search strategy in pseudocode
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these samples have been uploaded to the NCBI SRA
archive (SRR3033169, SRR3033245, and SRR3033274).
Flash was used to preprocess the paired end libraries
and Sickle was used for quality trimming [30].
In addition, data from the Human Microbiome Project

[31] was downloaded as an additional metagenomic
dataset. Specifically, three gut microbiome datasets
(SRS019120, SRS014468 and SRS015055) were down-
loaded from the NCBI Sequence Read Archive, and
Sickle again was applied prior to analysis of the samples.

Evaluation of accuracy and speed
To allow for direct comparison of performance statis-
tics, the same definition of sensitivity and precision
were used as described by Wood et al. [5]. Briefly
sensitivity was defined as the number of correct
classifications of reads divided by the total number in
each dataset. Precision was defined as the number of
correct classifications divided by the total number of
reads attempted to be classified.

Comparison of SMART to Kraken and CLARK
In order to compare the accuracy and performance of
the three tools, DNA sequence files from all the bac-
terial, viral, and archaeal sections of RefSeq were
downloaded. For Kraken, CLARK, and SMART, the

same sequences were used to build a database in each
tool respectively following the documentation pro-
vided. The simulated datasets were then analyzed by
each tool on the same computational node (16 CPU
cores with 64 GB of RAM) in the UW Hyak with
multithreading enabled to the maximum number of
CPUs. For Kraken, the database was preloaded into
memory for maximal performance as suggested by the
creators of Kraken for users with NFS filesystems. For
CLARK, the standard mode (−m 1) was used to
analyze the simulated files as the program failed to
start with other modes due to the RAM limitation. In
order to calculate throughput, each program was run
sequentially three times and the lowest execution time
was utilized to calculate throughput.

Software and statistics
Custom software was written in C++ and Ruby. Statis-
tics were performed using R (http://r-project.org).
Conjunctival classification results from Kraken were
obtained using Illumina BaseSpace and NCBI Blast was
run with the database downloaded on November 2015.
Software depends on Google SparseHash (https://
github.com/sparsehash/sparsehash) and GNU parallel
(http://www.gnu.org/software/parallel/). Software used
to run SMART, prebuilt libraries, and training of

Table 1 Twenty most abundantly represented classes by 30 basepair fragments in Genbank

Total Unique

Class Sequences Base Pairs % Sequences Base Pairs %

Mammalia 1.13 × 109 3.38 × 1010 33.59 1.12 × 109 3.37 × 1010 33.76

Liliopsida 3.23 × 108 9.68 × 109 9.62 3.22 × 108 9.66 × 109 9.69

Chromadorea 1.67 × 108 5.00 × 109 4.97 1.66 × 108 4.99 × 109 5.01

Actinopteri 1.57 × 108 4.72 × 109 4.69 1.57 × 108 4.71 × 109 4.72

Gammaproteobacteria 1.54 ×108 4.62 × 109 4.59 1.52 × 108 4.56 × 109 4.57

Solanaceae 1.19 × 108 3.57 ×109 3.55 1.19 × 108 3.56 × 109 3.57

Trematoda 1.10 × 108 3.30 × 109 3.28 1.10 × 108 3.29 × 109 3.31

Cestoda 9.06 × 107 2.72 × 109 2.70 9.06 × 107 2.72 × 109 2.73

Fabaceae 8.95 × 107 2.69 × 109 2.67 8.93 × 107 2.68 × 109 2.69

Bacilli 7.66 × 107 2.30 × 109 2.28 7.59 × 107 2.28 × 109 2.28

Actinobacteria 6.66 × 107 2.00 × 109 1.99 6.60 × 107 1.98 × 109 1.99

Aves 6.39 × 107 1.92 × 109 1.91 6.37 × 107 1.91 × 109 1.92

Betaproteobacteria 4.97 × 107 1.49 × 109 1.48 4.94 × 107 1.48 × 109 1.49

Brassicaceae 4.78 × 107 1.43 × 109 1.42 4.75 × 107 1.43 × 109 1.43

Insecta 4.66 × 107 1.40 × 109 1.39 4.64 × 107 1.39 × 109 1.40

Alphaproteobacteria 4.54 × 107 1.36 × 109 1.35 4.48 × 107 1.34 × 109 1.35

Echinoidea 3.79 × 107 1.14 × 109 1.13 3.77 × 107 1.13 × 109 1.13

Saccharomycetes 2.99 × 107 8.98 × 108 0.89 2.95 × 107 8.86 × 108 0.89

Clostridia 2.34 × 107 7.02 × 108 0.70 2.29 × 107 6.87 × 108 0.69

Vitaceae 2.24 × 107 6.72 × 108 0.67 2.23 × 107 6.70 × 108 0.67
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custom libraries is available at a public repository
(https://bitbucket.org/ayl/smart).

Results
After transferring all genomic DNA reads from the latest
release of the NCBI GenBank (version 209), a total of over
1 × 1011 bp of 3.34 × 109 sequences from 9.26 × 105

species of 1.49 × 103 classes were indexed. The number of
sequences indexed and the total number of uniquely iden-
tifying sequences from the 20 most abundantly represented
classes and species are shown in Tables 1 and 2 respect-
ively. Over 3.28 × 109 sequences (98.3 %) and 3.32 × 109

sequences (99.6 %) were uniquely identifying of a single
species and class respectively. With a 4 basepair shards,
256 separate hashtables were created and indexed using a
quadratic probing hashtable structure. The uncompressed
sharded files used 137 GB of hard disk space to store, with
each shard on average consuming 0.53GB of space. Total
database construction was completed within 1.5 h and
each thread consumed less than 1GB of memory.
Using the same simulated datasets that were used to

evaluate Kraken [5], we measured the sensitivity and
precision at the species, genus, and class taxonomy
levels (Fig. 2). On a single node with 12 search programs
executing in parallel, each of the simulated datasets took
a total of 30 min to finish. The maximum memory

consumed by a single search program was 7.45 GB with
an average of 3.78 GB used by each program. A 100 %
utilization of each CPU core was noted during the
execution of each search program. Using multiple nodes
to further parallelize the computation, we achieved linear
scaling in throughput with inversely proportional de-
creases in total computational time (Fig. 3). By increasing
the number of nodes to 12, we achieved a maximum
throughput of over 2.3 million reads per minute and the
ability to classify each of the simulated datasets in under
5 min. Performance of classifying a “real-world” human
conjunctival derived metagenomic next generation se-
quencing result did not show any difference in computa-
tional scaling (Fig. 3g and h). When the cost of 1 bp
permutations was measured, there was on average a 12.17
times increase in execution time (Fig. 3i and j). However
an average of 6.83 × 105 additional reads (6.9 %) was clas-
sified in the three simulated datasets.
Because many metagenomic projects come from a

single host organism, a major bioinformatic challenge is
to effectively filter the host organism genomic DNA
from the DNA of the microbial organisms. Indexing the
totality of known DNA from the NCBI GenBank and
using the NCBI taxonomy classes allows for simultan-
eous classification of all reads to both mammalian
genomes and non-mammalian genomes without a need

Table 2 Twenty most abundantly represented species by 30 basepair fragments in Genbank

Total Unique

Species Sequences Base Pairs % Sequences Base Pairs %

Homo sapiens 2.76 × 108 8.29 × 109 7.99 2.67 × 108 8.00 × 109 8.13

Mus musculus 2.03 × 108 6.10 × 109 5.88 2.02 × 108 6.05 × 109 6.14

Rattus norvegicus 1.55 × 108 4.66 × 109 4.49 1.54 × 108 4.62 × 109 4.69

Bos Taurus 1.26 × 108 3.78 × 109 3.65 1.24 × 108 3.72 × 109 3.78

Sus scrofa 1.23 × 108 3.70 × 109 3.56 1.23 × 108 3.68 × 109 3.74

Zea mays 1.02 × 108 3.07 × 109 2.96 1.02 × 108 3.06 × 109 3.11

Danio rerio 6.56 × 107 1.97 × 109 1.90 6.54 × 107 1.96 × 109 1.99

Hordeum vulgare 6.45 × 107 1.93 × 109 1.86 6.40 × 107 1.92 × 109 1.95

Ovis canadensis 5.80 × 107 1.74 × 109 1.68 5.62 × 107 1.68 × 109 1.71

Cyprinus carpio 5.50 × 107 1.65 × 109 1.59 5.49 × 107 1.65 × 109 1.67

Solanum lycopersicum 4.59 × 107 1.38 × 109 1.33 4.47 × 107 1.34 × 109 1.36

Apteryx australis 4.51 × 107 1.35 × 109 1.30 4.50 × 107 1.35 × 109 1.37

Strongylocentrotus purpuratus 3.76 × 107 1.13 × 109 1.09 3.74 × 107 1.12 × 109 1.14

Spirometra erinaceieuropaei 3.57 × 107 1.07 × 109 1.03 3.56 × 107 1.07 × 109 1.09

Pan troglodytes 3.55 × 107 1.07 × 109 1.03 3.20 × 107 9.59 × 108 0.97

Oryza sativa 3.09 × 107 9.26 × 108 0.89 2.90 × 107 8.71 × 108 0.89

Nicotiana tabacum 3.06 × 107 9.17 × 108 0.88 3.05 × 107 9.14 × 108 0.93

Solanum pennellii 2.72 × 107 8.16 × 108 0.79 2.60 × 107 7.80 × 108 0.79

Echinostoma caproni 2.50 × 107 7.50 × 108 0.72 2.50 × 107 7.50 × 108 0.76

Triticum aestivum 2.33 × 107 7.00 × 108 0.67 2.27 × 107 6.80 × 108 0.69
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for a pre-filtering stage. To prevent false positive match
for microbial DNA, a conservative approach was used in
that if a read was classified even once as mammalian
then it was considered to be mammalian in origin. Of
note, in GenBank only 11.1 % and 0.4 % of all known
30-mers have perfect matches for bacterial and viral
DNA, respectively, at the class taxonomy level.
Using this strategy, the whole genome sequencing

results from three separate conjunctival samples and three
gut microbiome samples from the Human Microbiome
Project (SRS019120, SRS014468 and SRS015055) were
analyzed with 1 basepair permutations (Table 3). In the
human gut samples, on average 42.44 % of all reads were
classified with 38.62 % matching non-mammalian DNA.
On average, in the paucibacterial conjunctival samples
98.6 % of all the reads were classified; of these, 0.02 %
matched non-mammalian DNA. The total reads by classi-
fied genus were normalized by the depth of coverage of
the human genome in each sample to account for sequen-
cing depth variability. The top twenty organisms from
each sample are shown in Fig. 4.
To compare the three methods, one conjunctival

sample was analyzed. Human reads were filtered using
Illumina Basespace, and was run through Kraken and
CLARK with libraries built using all the bacterial, viral,
and archaeal sequences from RefSeq. Kraken attempted to

classify 6.4 × 105 non-human reads but 98 % were unable
to be identified. Comparison of the same read results with
SMART revealed that 83 % of unclassified reads by Kra-
ken were mammalian DNA in origin. In addition, 69.8 %
of microbial classified reads by Kraken also matched
mammalian DNA by SMART. A comparison of the mi-
crobial matched reads by Kraken against BLAST revealed
a similar trend (Table 4). In addition, a similar comparison
was made with the results from CLARK; the majority of
the reads classified by CLARK as microbial were identified
by SMART as having mammalian origin and this was con-
firmed independently using BLAST (Table 5).
When comparing SMART to Kraken and CLARK

directly, a separate database for SMART was developed
with all the bacterial, viral, and archaeal sequences from
RefSeq. A total of 11,061 sequences were indexed by each
tool. During execution each tool utilized all 16 CPUs for
multithreading. Sensitivity, precision, throughput, and
memory utilization are shown in Fig. 5. SMART utilized
on average 2.24 GB of RAM per search program. Disk
space of databases for Kraken, CLARK, and SMART were
151 GB, 113 GB, and 29 GB respectively.

Discussion
By indexing every 30-mer in the NCBI GenBank with a
multiplexed, parallel searching strategy, we were able to

Fig. 2 Accuracy results of deep search on simulated datasets using the Genbank library. a Sensitivity with exact matching at species, genus, and
class levels for simulated datasets (HiSeq, MiSeq, and simBA5). b Sensitivity with 1 basepair permutations during search. c Precision with exact
matching. d Precision with 1 basepair permutations during search. Error bars represent 95 % confidence intervals
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achieve an unsurpassed ability to classify reads against
all currently catalogued DNA simultaneously while
maintaining similar throughput, sensitivity and precision
to Kraken and CLARK on simulated datasets. To the
authors’ knowledge, this is the first metagenomic

classification algorithm capable of efficiently matching
against all the species and sequences present in the NCBI
GenBank, allowing for a single step classification of micro-
organisms as well as large plant, mammalian, or inver-
tebrate genomes from which the metagenomic sample

Fig. 3 Computational scalability of SMART on a computing cluster using the Genbank library. a, c, e, g Overall execution time to complete processing
of datasets with increasing number of computing nodes utilized. b, d, f, h Throughput measured in reads per minute processed with increasing
number of computing nodes utilized. i Execution time of datasets with 12 nodes utilized and 1 basepair permutations during search. j Throughput
of datasets with 12 nodes utilized and 1 basepair permutations during search
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may have been derived and allows for identification of
novel sequences without pre- or post- filtering steps.
Kraken represented an improvement in throughput

and accuracy in classification algorithms when released
in 2014 [5]. During the construction of the Kraken-GB
database, Wood et al. noted that there were several draft
genomes that had included mislabeled DNA or included
adapter sequences and cautioned against the interpret-
ation of Kraken’s matches [5]. Our approach of search-
ing the entire GenBank genomic DNA catalogue would
protect against these false-positive matches as erroneous
sequences would be present in multiple organisms and
these results would label the read as ambiguous. How-
ever, this highlights the limitation and potential biases
introduced by selective over-representation of certain
species in the NCBI GenBank. For example, many of the
animal models used in the biomedical science are

overrepresented in the genomic DNA catalogued, as sci-
entists are most interested in these organisms (Table 2).
Hence false-positive matching may occur against these
organisms if the true organism has not been sequenced
yet. Statistical modeling could be used to generate
matching likelihoods to each organism based on relative
database representation.
With integration into Illumina BaseSpace, Kraken has

rapidly become the bioinformatics pipeline used to analyze
metagenomics next generation sequencing results. How-
ever, SMART has a number of advantages over Kraken.
SMART employs a scalable infrastructure that is not
dependent on a common database and can distribute the
workload across many computational nodes. In addition,
many metagenomics samples come from host-rich environ-
ments and Kraken suffers from false positive identification
of microbial organisms. In our study, when comparing the

Table 3 Classification results of metagenomics samples using SMART with the Genbank library

Sample Total
reads

Mammalian Non-Mammalian Unmatched

Ambiguous Unique

N n % n % n % n %

Conjunctival 1 4,731,317 4,660,011 98.49 310 0.0066 1,627 0.034 69,369 1.50

Conjunctival 2 1,135,916 1,119,975 98.60 32 0.0028 173 0.015 15,736 1.38

Conjunctival 3 4,540,162 4,483,966 98.76 338 0.0074 1,332 0.029 54,476 1.20

Gut 1 2,439,314 102,982 4.22 176,810 7.25 661,399 27.11 1,498,123 61.42

Gut 2 760,562 37,461 4.93 65,144 8.57 218,409 28.72 439,548 57.79

Gut 3 2,326,530 54,012 2.32 160,774 6.91 868,078 37.31 1,243,666 53.46

Fig. 4 Twenty most common genera in metagenomics samples. a Human conjunctival metagenomics whole genome sequencing samples and
b Human gut metagenomics whole genome sequencing samples with total reads normalized by coverage of human genome
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human gut microbiome samples, Kraken could not classify
68.2 % of the reads compared to 57.6 % with our search
strategy. With the conjunctival samples, Kraken identified
numerous reads matching Mycoplasma, Pandoravirus
dulcis, Pandoravirus salinus, and Human endogenous
Retrovirus K113. By SMART and BLAST, all of these reads
were of mammalian origin (Table 4).
In a direct comparison among Kraken, CLARK, and

SMART using the same training RefSeq sequences and
the same computing environment, CLARK and SMART
were noted to have higher sensitivity and precision
compared to Kraken at the species classification level.
Without 1 basepair permutations, SMART was noted to
have similar throughput to CLARK and with 1 basepair
permutations, SMART was noted to have similar
throughput to Kraken. SMART was noted to use signifi-
cantly lower RAM compared to Kraken and CLARK.
The main advantage of SMART appears to be utilizing a
many-shard database approach to achieve horizontal

scaling of a very large training set. While Kraken and
CLARK have similar throughput and accuracy, they are
unable to index a large training set that includes many
mammalian, plant, fungal, and other protozoan organ-
isms, both in the database construction phase and in
analysis due to limitations in RAM. Since the sharded
database can be loaded asynchronously in pieces,
SMART can work in limited RAM environments with-
out any changes to the algorithm by lowering the num-
ber of threads.
The exact k-mer matching approach has been used in

several prior classification algorithms. SMART is similar
to Kraken, CLARK, and LMAT in using exact k-mer
matching for classification. However, SMART utilizes
substantially lower RAM usage in the database construc-
tion phase by avoiding linking k-mers to a taxonomy tree
and determining LCA. Unlike CLARK, SMART keeps all
k-mers in the database and does not limit the search space
by only keeping discriminatory k-mers. By using a

Table 4 Comparison of Kraken results to SMART using the Genbank library and BLAST for Conjunctival Sample 1

Kraken Genus Kraken
reads

SMART BLAST

Mammalian Same Genus Other Genus Unknown Mammalian Same Genus Other Genus Unknown

Top 10 classified

Altermonas 1,545 1,249 0 283 13 1,227 45 238 35

Propionibacterium 323 90 232 0 1 8 314 0 1

Mycoplasma 100 100 0 0 0 77 0 0 23

Pseudomonas 93 5 86 0 2 6 85 0 2

Pandoravirus dulcis 88 88 0 0 0 44 0 0 44

Pandoravirus salinus 46 46 0 0 0 11 0 0 35

Staphylococcus 46 4 42 0 0 0 46 0 0

Human Endogenous
Retrovirus K113

31 30 0 0 1 30 0 0 1

Delftia 30 7 23 0 0 2 28 0 0

Corynebacterium 28 3 24 0 1 0 28 0 0

Table 5 Comparison of CLARK results to SMART using the Genbank library and BLAST for Conjunctival Sample 1

CLARK Genus CLARK
reads

SMART BLAST

Mammalian Same Genus Other Genus Unknown Mammalian Same Genus Other Genus Unknown

Top 10 classified

Alteromonas 1,722 1,400 300 0 22 1,283 201 36 202

Mycoplasma 637 637 0 0 0 386 2 0 249

Propionibacterium 366 94 1 268 3 10 0 353 3

Pandoravirus dulcis 337 337 0 0 0 82 0 0 255

Pandoravirus salinus 275 273 0 0 2 89 0 0 186

Bracovirus 228 226 0 0 2 117 0 0 111

Ichnovirus 163 162 0 0 1 34 0 0 129

Yersinia 162 161 0 0 1 15 0 0 147

Pseudomonas 128 8 0 117 3 5 0 103 20

Hepacivirus 128 128 0 0 0 84 0 0 44
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deterministic sharding scheme, SMART is able to handle
the expanded search space by asynchronously loading
shards of database and allows for scalability. While the
matching approach is similar to prior algorithms, SMART
scales efficiently in a many-CPU, many-node environment
and allows for accessing the entire NCBI GenBank in a
single classification step.
Despite filtering human sequences in the conjunctival

sample using BaseSpace prior to classification, Kraken
(Table 4) and CLARK (Table 5) had many reads classified
as bacterial or viral which were classified as mammalian
by SMART. BLAST verified that the majority of these se-
quences were indeed mammalian. If an improved filtering
step were implemented, or if Kraken or CLARK included
mammalian genomes in their databases, their perform-
ance in host-rich metagenomics samples would have likely
been improved. Unfortunately due to memory constraints
on the database construction steps of both Kraken and
CLARK, it was not possible for us to construct a database
to include mammalian genomes in the evaluation data-
bases for Kraken and CLARK. Inclusion of human and
mammalian sequence filtering as an intrinsic component

of the SMART protocol resulted in higher specificity of
sequences assigned to non-host sources.
As the number of species sequenced grows, the NCBI

GenBank will continue to expand, and the database shards
used in this approach will also grow and consume more
memory. At a certain point in the future each shard may
consume too much memory and the database may need
to be split with larger barcodes. However, computational
infrastructure have also been growing in accordance to
Moore’s law [32] and with cheaper costs in computer
memory, this tipping point may be further away.
While we only benchmarked this approach in a

cluster-computing environment, this deep search tech-
nique could be easily translated to a cloud computing
infrastructure [33, 34]. These on-demand high-memory
instances could be elastically created in parallel to handle
each workload and destroyed after their use, allowing an-
other layer of parallelization to occur. One limitation of
the UW Hyak computing cluster that we faced was the
relatively slow Input and Output (IO) performance of the
network filesystem. In contrast, many of the cloud com-
puting infrastructures are optimized for IO performance

Fig. 5 Comparison of accuracy, throughput, and memory utilization among Kraken, CLARK, and SMART built from the same RefSeq sequences.
a, b, c Sensitivity at the level of species, genus, and class for simulated datasets (HiSeq, MiSeq, and simBA5). d, e, f Precision at the level of
species, genus, and class. Throughput (g) and memory utilization (h) of datasets with 16 parallel threads in the same computing environment
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and this approach may benefit from implementation and
tuning in a cloud environment.
Further improvements in this approach are possible to

increase the throughput. In particular, the generation of
1 basepair permutations of the query may benefit from
further optimization and from another MapReduce step.
In addition, higher throughput would be achieved with
the recruitment of more computational nodes in the
cluster. This approach would also be applicable to RNA-
Seq data in identifying gene transcripts and pathogen
RNA by using a similar approach to index all the cDNA
data in the NCBI GenBank. In particular viral transcripts
may be proportionally enriched both in the GenBank
catalogue as well as in the biological samples.

Conclusions
We present the first scalable complete search approach
to effectively classify metagenomics sequencing data
using both exact 30-mer matching and 1 basepair
permutations using the entirety of the NCBI GenBank.
We anticipate this approach will be useful in identifying
pathogens, characterizing complex microbiomes, and be
extendable into labeling transcripts in RNASeq data.
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