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Flexible conducting polymer/reduced graphene
oxide films: synthesis, characterization, and
electrochemical performance
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Abstract

In this paper, we demonstrate the preparation of a flexible poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonate)/
reduced graphene oxide (PEDOT-PSS/RGO) film with a layered structure via a simple vacuum filtered method as a high
performance electrochemical electrode. The PEDOT-PSS/RGO films are characterized by scanning electron microscopy
(SEM), X-ray diffraction, Raman spectroscopy, and Fourier transform infrared (FT-IR) spectrometry. The results
indicate that a layer-ordered structure is constructed in this nanocomposite during the vacuum filtering process.
The electrochemical performances of the flexible films are characterized by electrochemical impedance spectroscopy,
cyclic voltammetry, and galvanostatic charge/discharge. The results reveal that a 193.7 F/g highly specific capacitance
of nanocomposite film is achieved at a current density of 500 mA/g. This flexible and self-supporting nanocomposite
film exhibits excellent cycling stability, and the capacity retention is 90.6 % after 1000 cycles, which shows promising
application as high-performance electrode materials for flexible energy-storage devices.
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Background
Supercapacitors, also called electrochemical capacitors,
are one of the important energy-storage devices with fast
charging/discharging, high power density, high energy
density, and long cycle life, which could fill the gap be-
tween the conventional capacitors and the batteries [1,
2]. Conductive polymers can store charges not only
through pseudocapacitances but also in the electrical
double-layer capacitances (EDLCs). The pseudocapaci-
tance is due to faradic charge transfer, while the EDLCs
could store energy by an ion adsorption-desorption
process in the double electrical layer at the electrode/
electrolyte interfaces [3, 4]. As a result, the conductive
polymer electrodes present higher specific capacitance
than that of pure carbon-based capacitors with EDLCs
[5]. One of the most significant problems is that pure
conducting polymers are usually mechanically weak or
brittle, leading to poor cycling stability during the long
cycle charge/discharge process [6, 7]. Coupling conductive
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polymers to a carbon material has been proven to be an
effective approach to overcome this problem [8, 9]. The
reduced graphene oxide (RGO), which exhibits high per-
formance of electrical and electrochemical activity com-
bined with favorable mechanical strength, can be obtained
by reducing graphene oxide (GO) through chemical treat-
ment [10, 11]. The nanocomposites, based on conduct-
ing polymer and RGO, exhibit chemical stability and
ideal capacitive behavior when they are used as elec-
trode materials [12–14].
Due to the fast development of flexible electronics, the

requirement for high-performance flexible energy-storage
devices is bursting. Furthermore, a self-supporting and
collector-free supercapacitor electrode with large energy
density and great mechanical strength is an important
component for a flexible energy-storage device. Recently,
much attention has been focused on the conducting
polymer poly (3,4-ethylenedioxythiophene)-poly (styre-
nesulfonate) (PEDOT-PSS), which was used as a flexible
electrode due to high conductivity and flexible process-
ability [15–17].
In this paper, we demonstrate the preparation of flex-

ible and self-supporting PEDOT-PSS/RGO films as an
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electrochemical electrode via a simple vacuum filtration
method. In the first step, the GO was prepared by a
modified Hummer’s method, and the RGO was obtained
by a following hydrazine reduction treatment. Then, the
PEDOT-PSS/RGO nanocomposites were prepared by an
in situ solution polymerization. The PEDOT-PSS was
polymerized on the surfaces of RGO sheets, and a
sandwich-like PEDOT-PSS/RGO structure was formed.
After that, the self-supporting nanocomposite films with
a layer-by-layer structure were prepared by vacuum- fil-
tered method. The PEDOT-PSS/RGO nanocomposite
films showed better electrochemical properties compared
with the pure RGO and PEDOT-PSS films. The combin-
ation of flexibility and electrochemical activity makes this
self-supporting nanocomposite film attractive for applica-
tions in organic and flexible electrode materials.

Methods
Materials
Three, 4-ethylenedioxythiophene (EDOT) was purchased
from Bayer Company (Leverkusen, Germany). Graphite
flakes (Grade 3061) and Polystyrenesulfonate (PSS 25 %)
were bought from Sigma-Aldrich (St. Louis., MO, USA).
Cation exchange resin (001 × 7) and anion exchange
resin (201 × 7) were purchased from Bohong Company
(Tianjin, China). Ammonium persulphate ((NH4)2S2O8,
98 %), Mohr’s salt ((NH4)2Fe(SO4)2 · 6H2O, 99 %) and
ethanol (C2H6O, 99.5 %) were purchased from Kelong
Chemicals (Chengdu, China).

Preparation of PEDOT-PSS/RGO self-supporting films
The RGO was synthesized from graphite flakes by the
modified Hummer’s method and hydrazine reduction
method [18, 19]. Deionized water and ethanol-mixed so-
lution (volume ratio 1:1) was used to improve the solu-
bility of EDOT. 100 mg RGO was dispersed in 200-mL
mixture solution by sonicating for at least 2 h. In situ
polymerization solution of PEDOT-PSS/RGO was pre-
pared by introducing 1.4 mmol PSS and 0.7 mmol
EDOT into the 200-mL RGO dispersion. This in situ
polymerization solution was vigorously stirred and kept
at 5 °C. Then, 1.4 mmol ammonium persulphate and
0.0014 mmol Mohr’s salt dissolved in 100 mL deionized
water were added slowly while stirring overnight. Finally,
the inorganic impurities in the final PEDOT-PSS/RGO
dispersion were removed by 001 × 7 cation-exchange
resin and 201 × 7 anion- exchange resin.
The PEDOT-PSS/RGO dispersion was sonicated for

2 h and vacuum filtered by PTFE filter membranes (pore
size 0.22 μm, diam. 47 mm). Then the films were washed
with ethanol and dried at 60 °C for 24 h in vacuum.
After that, the dried films were stabilized at 235 °C in
vacuum for 30 min and then peeled off from the filter to
form self-supporting films.
The PEDOT-PSS/RGO self-supporting films synthe-
sized from different mass ratios were labeled as PS/RG
ratio. The PS/RG 1:1 indicates that the mass ratio of
EDOT and RGO was 1:1. Meanwhile, the pure PEDOT-
PSS and pure RGO self-supporting films were synthe-
sized by a similar synthesis method mentioned above.

Characterization and electrochemical measurements
The morphologies of PEDOT-PSS/RGO films were in-
vestigated with S-4800 scanning electron microscopy
(SEM). X-ray diffraction (XRD) patterns were performed
on an X’Pert PRO diffractometer with Cu Ka radiation
(λ = 0.154 nm). Raman spectra were characterized with a
Horiba LabRAM HR system (633 nm laser). Fourier
transform infrared (FT-IR) spectra were characterized
with a ThermoElectron Nicolet 6700 spectrophotometer.
A CHI660D electrochemistry workstation was used to
characterize the electrochemical performance of the sam-
ples at ambient temperature. Electrochemical impedance
spectroscopy (EIS), cyclic voltammetry (CV), and galvano-
static charge/discharge (GCD) were performed with a 1-
mol/L Na2SO4 aqueous electrolyte. The platinum foils and
an Ag/AgCl electrode were used as counter and reference
electrodes, respectively. All the measurements were per-
formed at ambient temperature.

Results and discussion
The SEM images of pure RGO and PEDOT-PSS/RGO
nanocomposite films are shown in Fig. 1. The changes of
the microstructures of the films provide important infor-
mation to reveal the strengthening mechanism of the
nanocomposite films. The SEM image in Fig. 1a indicates
that the pure RGO film is composed of a large quantity of
curved nanosheets. As PEDOT-PSS/RGO nanocomposite
films (shown in Fig. 1b), a porous 3D network structure
with a few folds is presented. It is clear that the RGO
nanosheets are homogeneously coated by PEDOT-PSS,
indicating that PEDOT-PSS was successfully polymerized
on the surfaces of RGO nanosheets to form sandwich-
like structures. The cross-section of PEDOT-PSS/RGO
nanocomposite film (shown in Fig. 1c and d) present a
layer-by-layer formation, which is probably caused by
the flow-assembly effect of RGO sheets during filtra-
tion [20–22].
Raman and FT-IR spectroscopy provide powerful tools

to further investigate the microstructure of composites.
Fig. 2a shows the Raman spectra of pure RGO and
PEDOT-PSS/RGO composite films. The Raman spectrum
of RGO displays two typical bands centered at 1347 and
1579 cm−1, corresponding to the D-band and G-band, re-
spectively. The D-band indicates the increasing of the sp3

domains and the decrease of the in-plane sp2 domains.
The G-band, due to the E2g mode, is closely related to the
vibration of sp2-bonded carbon atoms in a 2D graphene



Fig. 2 (a) Raman spectra of pure RGO and PS/RG 1:1 films; (b) FT-IR
spectra of RGO, and PS/RG 1:1 films

Fig. 1 SEM images of flexible films as follows: (a) pure RGO, (b) PS/RG 1:1 and (c, d) cross-section images of PS/RG 1:1
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layer [23, 24]. The Raman band of PEDOT-PSS/RGO
composite films (shown in Fig. 2b) at 985 cm−1 is assigned
to oxyethylene ring deformation. The band at 1123 cm−1

is originated from C-O-C deformation. The bands at
1281 and 1363 cm−1 are originated from the Cα-Cα

inter-ring and Cβ-Cβ stretch, respectively. The bands at
1432 and 1501 cm−1 are attributed to C = C symmetric
stretch. The asymmetric Cα-Cβ bond is evidenced by
the presence of band at 1561 cm−1 [23, 25]. The series
of bands indicates the successful formation of PEDOT-
PSS/RGO nanocomposites.
Figure 2b presents the FT-IR spectra of pure RGO and

PS/RG 1:1 composite films. The spectrum of RGO film
displays two peaks about at 1629 and 1089 cm−1, attrib-
uting to the aromatic C = C and oxygenated bond C-C-
O, respectively [26]. We conclude that the oxygenated
bond C-C-O arises from residual oxygen containing
function groups in the RGO sheets, which improves the
solubility of RGO. From the FT-IR spectrum of PS/RG
1:1, the spectrum contains peaks of C = C, C-C and C-
O-C bonds in the thiophene ring at 1514, 1321, and
1188 cm−1 [8]. The C-S bond in the thiophene ring is ev-
idenced by the presence of bands at about 977, 919 and
833 cm−1 [27]. Additionally, the bands at 1142 and
1052 cm−1 are attributed to the S-O bond and S-phenyl
bond in PSS [28]. Moreover, the above-mentioned char-
acteristic peaks of RGO are reflected in the spectrum of
the PS/RG 1:1 film. However, the peak corresponding to
the aromatic C = C and oxygenated bonds C-C-O are
blue-shifted to 1628 and 1080 cm−1, suggesting interac-
tions between PEDOT-PSS backbone and RGO sheets
[29]. Therefore, the series of bands in FT-IR spectra in-
dicates the successful formation of PEDOT-PSS coatings
on the surfaces of the RGO.



Fig. 4 Nyquist plots of varied films. Inset shows plots with enlarged scale
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Figure 3 shows the XRD patterns of pure PEDOT-PSS,
pure RGO, and PEDOT-PSS/RGO nanocomposite films
with different RGO contents. The broad peak of PEDOT-
PSS pattern ranging from 16.4 to 30.9 ° is attributed to
PEDOT-PSS [30]. The pure RGO, PS/RG 1:9, and PS/RG
1:1 exhibits a small peak centered at 10.9 °. We conclude
that this small peak arises from residual oxygen containing
function groups in the RGO sheets, which improves the
solubility of RGO. However, this small peak disappears in
PS/RG 9:1 probably due to the low mass ratio of RGO.
Compared with pure RGO, the XRD pattern of the
PEDOT-PSS/RGO nanocomposites exhibits a broad peak
ranging from 15 to 30 °, which is similar with RGO. The
intensity of the peaks increases a little, which is ascribed
to the reflection of PEDOT-PSS. Therefore, the XRD pat-
tern further confirms the formation of PEDOT-PSS coat-
ings on the surfaces of the RGO, which is consistent with
that of the Raman investigations [31].
The electrochemical performances of PEDOT-PSS/

RGO films were analyzed by using EIS, CV, GCD, and
cycle-life tests. The Nyquist plots of pure PEDOT-PSS,
pure RGO, and PEDOT-PSS/RGO nanocomposite films
with different RGO contents are showed in Fig. 4. It can
be seen that all the plots exhibit the capacitive-type be-
haviors. It is well known that the first interception of the
plots at the Z’ axis represents the equivalent series resist-
ance (ESR), and the diameter of the semicircle is as-
cribed to the charge transfer resistance at the electrode/
electrolyte interface [26]. As shown in Fig. 4, the ESR of
the PEDOT-PSS, PS/RG 9:1, PS/RG 1:1, PS/RG 1:9, and
RGO films are 2.56, 2.15, 1.62, 1.87, and 1.35 Ω, re-
spectively. For the pure PEDOT-PSS and PS/RG 9:1
films, the radii of the semicircles in the Nyquist plot
are larger than PS/RG 1:1, displaying a small semicircle
characterization in high frequency range. This result in-
dicates that the charge transfer resistance of PS/RG 1:1
film was lower than that of pure PEDOT-PSS and PS/
Fig. 3 XRD patterns of RGO, PEDOT-PSS, and composite films
RG 9:1 films. This might be due to the fact that the ag-
glomeration of PEDOT-PSS films during the charge/
discharge process decreased the effective surface area
between the electrolyte and electrodes. Meanwhile, the
inconspicuous semicircles at high frequency of PS/GR
1:9 and RGO films suggest that the interfacial charge
transfer resistance is significantly low due to the high
electrical conductivity of RGO [10]. The sloped portion
closed to 45 ° in these plots at low frequency is typical
of Warburg resistance, which is the result of the fre-
quency dependence of ion transport or diffusion in the
electrolyte [32, 33]. The Warburg region of RGO, PS/
RG1:9, and PS/RG1:1 films are smaller than that of
PEDOT-PSS or PS/RG 9:1 films, indicating that the
shorter ion diffusion paths are formed during the
charge/discharge process. Hence, we deduce that the
more contents of RGO in nanocompoistes, the lower
Warburg resistance is achieved in electrode materials.
At the low frequency, all plots exhibit almost vertical
straight lines, especially those films with a high mass
ratio of RGO, indicating that these nanocomposite films
exhibited an ideal capacitive behavior during the energy
storage process. This result also reveals that a low-
resistance interface was formed between the PEDOT-PSS
and RGO, which is suitable for fast adsorption and de-
sorption of solution ions.
Figure 5a shows the CV curves of composite films

within potential range from −0.2 to 0.8 V in a 1-M
Na2SO4 electrolyte at a scan rate of 20 mV/s. It can be
seen that the CV curves of all the films displayed an al-
most rectangular shape, indicating the good capacitive
properties of RGO and PEDOT-PSS nanocomposites. It
is clear that PEDOT-PSS/RGO films exhibit larger CV
area than that of pure PEDOT-PSS and pure RGO films,
revealing higher charge-storage capability of nanocom-
posites. It is well known that as an electrochemical cap-
acitor electrode, the PEDOT-PSS/RGO nanocomposite



Fig. 5 (a) Cyclic voltammograms curves of varied films at a scanning
speed of 20 mV/s; (b) Galvanostatic charge to discharge curves of varied
films at a current density of 500 mA/g
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films can afford both pseudo capacitance and EDLCs
during the electrochemical energy storage process. The
enhanced-charge storage capability is attributed to the
well dispersion of RGO in PEDOT-PSS, providing a
three-dimensional net work for charge transmission.
The highly specific surface area of RGO and high pseudo
capacitance of conducting polymer lead to excellent cap-
acitance performance of nanocomposite electrode. As
shown in Fig. 5a, the PS/RG 1:1 film shows the largest
CV area corresponding to the highest specific capaci-
tance, indicating the optimum contents of conducting
polymer in nanocomposites. Accordingly, the decreasing
of conducting polymer contents in nanocomposites causes
lesser contribution of pseudo capacitance, leading to
smaller CV area and specific capacitance. It needs to be
mentioned that the lower contents of RGO in a composite
film will not hinder the conductive polymer from agglom-
erating effectively during the charge/discharge process,
leading to smaller specific capacitance. It has been found
that a mass ratio of EDOT to RGO, about 1:1, was the
optimum proportion to prepare PEDOT-PSS/RGO nano-
composites with excellent capacity performance. More-
over, the Fig. 5a also suggests that the PEDOT-PSS/RGO
film exhibits an excellent electrical synergistic effect, and
low contact resistance is formed between electrolyte and
electrodes.
A comparison of capacitive performance was performed

using galvanostatic charge/discharge curves at a constant
current density of 500 mA/g, which is shown in Fig. 5b. It
is clearly seen that the shape of the charge/discharge
curves of varied films are closely triangular in shape, indi-
cating a good reversibility during the charge/discharge
processes. The discharge times of the PEDOT-PSS/RGO
nanocomposite films are longer than that of the pure
PEDOT-PSS and pure RGO films, suggesting the coating
of the PEDOT-PSS on the RGO surface greatly extending
the discharge time. Moreover, the PS/RG 1:1 film shows
the longest charge/discharge time, indicating the largest
specific capacitance of these electrode films. The spe-
cific capacitance can be calculated from the capacitance
equation:

Cm ¼ iΔt
mΔV

Where the Cm, i, Δt, ΔV and m represent the specific
capacitance, discharge current, discharge time, discharge
potential window, and mass of nanocomposite films, re-
spectively. According to the capacitance equation evalu-
ated from the slopes of the discharge curves, the specific
capacitance of pure PEDOT-PSS, PS/RG 9:1, PS/RG 1:1,
PS/RG 1:9, and pure RGO films are 106.3, 143.4, 193.7,
129.2, and 81.8 F/g, respectively. The highly specific cap-
acitance in PEDOT-PSS/RGO films results from the
synergetic effect between PEDOT-PSS and RGO, which
was constructed with a layer-by-layer and porous struc-
ture. This special structure also results in improving
electrolyte-ion transfer efficiency and better frequency
performance of electrode films during the charge/dis-
charge process.
The stability of different films as energy storage elec-

trodes was evaluated by charge/discharge cycling tests at
a current density of 500 mA/g (Fig. 6). The pristine spe-
cific capacitance of RGO is 81.8 F/g, and decreases
slightly to 79.5 F/g (97.2 % retention) after 1000 cycles.
The specific capacitance loss of RGO film is small, and the
carbon nanomaterial shows excellent capacity-retention
capability. In contrast, the PEDOT-PSS film shows higher
specific-capacitance loss than RGO film with poor cycling
performance. The capacitance value of PEDOT-PSS film
decreases from 106.3 to 98.4 F/g in the first 150 cycles
(7.4 % loss) and decreases slightly to 96.8 F/g during the
next 150 cycles (1.5 % loss). An obvious decrease of spe-
cific capacitance is observed after the 1000 cycles (40.5 %



Fig. 6 Cycling performances of varied films at a current density of
500 mA/g
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loss), which is attributed to the poor mechanical cap-
ability of conducting polymer during the charge/dis-
charge process, especially at high current density. The
specific capacitance of PS/RG 1:1 film can maintained
90.6 % of initial capacitance (175.4 F/g) after 1000 cy-
cles. Obviously, the addition of RGO into PEDOT-PSS
improves the mechanical performance of PEDOT-PSS,
which results in a better cycling stability of conducting
polymer. The PS/RG 9:1 and PS/RG 1:9 films also present
better capacity retention performance than PEDOT-PSS
film and keep 74.5 % (106.8 F/g) and 93.1 % (120.3 F/g) of
initial specific capacitance over 1000 cycles, respectively. It
can be estimated that, under the proper mass ratio of
RGO, more RGO in nanocomposites results in better cyc-
lic stability of composite films. This result reveals that the
RGO sheets provide a robust mechanical support for
PEDOT-PSS, preventing conductive polymer from swell-
ing and shrinking during the long-time charge/discharge
process. Therefore, it has been found that an optimum
proportion of EDOT to RGO with 1:1 is better to prepare
composite electrode with excellent cycling performance,
which is consistent with that of CV curves.
Conclusions
We demonstrated preparation of flexible and self-
supporting PEDOT-PSS/RGO nanocomposite films with a
layered structure through a simple vacuum-filtered
method. The superior capacitive performance of the
PEDOT-PSS/RGO nanocomposites was confirmed by
the tests of electrochemical properties. The mass ratio
of PS/RG showed distinct influence on electrochemical
performance of as-prepared composite electrodes. A
193.7 F/g highly specific capacitance was achieved at a
current density of 500 mA/g. Furthermore, compared
with pure PEDOT-PSS film, this nanocomposite film
exhibited better energy-storage stability and can keep
90.6 % of the original specific capacitance after 1000 cycles.
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