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Abstract
In this paper, we construct a new hybrid projection method for approximating a
common element of the set of zeroes of a finite family of maximal monotone
operators and the set of common solutions to a system of generalized equilibrium
problems in a uniformly smooth and strictly convex Banach space. We prove strong
convergence theorems of the algorithm to a common element of these two sets. As
application, we also apply our results to find common solutions of variational
inequalities and zeroes of maximal monotone operators.
MSC: 47H05; 47H09; 47H10

Keywords: maximal monotone operators; hybrid projection method; system of
generalized equilibrium problems

1 Introduction
Let E be a Banach space with the norm ‖ · ‖ and let E* denote the dual space of E. Let
S = {x ∈ E : ‖x‖ = } be the unit sphere of E. A Banach space E is said to be smooth if the
limit

lim
t→

‖x + ty‖ – ‖x‖
t

(.)

exists for any x, y ∈ S. E is said to be uniformly smooth if the limit (.) is attained uniformly
for (x, y) in S × S. A Banach space E is said to be strictly convex if ‖ x+y

 ‖ <  for all x, y ∈ E
with ‖x‖ = ‖y‖ =  and x �= y (see [] for more details).
One of the major problems in the theory of monotone operators is as follows.
Find a point z ∈ E such that

 ∈ Bz, (.)

where B is an operator from E into E*. Such z ∈ E is called a zero point of B. We denote
the set of zeroes of the operator B by B–.
An operator B⊂ E × E* is said to bemonotone if

〈
x – y,x* – y*

〉 ≥ , ∀(
x,x*

)
,
(
y, y*

) ∈ B.
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A monotone B is said to bemaximal if its graph G(B) = {(x, y*) : y* ∈ Bx} is not properly
contained in the graph of any other monotone operator. If B is maximal monotone, then
the solution set B– is closed and convex. The resolvent of a monotone operator B is
defined by

Jλ = (J + λB)–J , ∀λ > .

Let C be a closed convex subset of a Banach space E, a mapping T : C → C is said to be
nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

Recall that a point x ∈ C is a fixed point of T provided Tx = x. Let E be a Banach space
with dual E* and let 〈·, ·〉 be the pairing between E and E*. The normalized dualitymapping
J : E → E* is defined by

J(x) =
{
x* ∈ E* :

〈
x,x*

〉
= ‖x‖,∥∥x*∥∥ = ‖x‖}, ∀x ∈ E.

The Lyapunov functional is defined by

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖ for x, y ∈ E. (.)

It is obvious that

(‖y‖ – ‖x‖) ≤ φ(y,x)≤ (‖y‖ + ‖x‖), ∀x, y ∈ E. (.)

If E is a Hilbert space, then φ(x, y) = ‖x – y‖ for all x, y ∈ E.
A point p in C is said to be a strongly asymptotic fixed point of T [] if C contains a

sequence {xn} which converges strongly to p such that limn→∞ ‖xn – Txn‖ = . The set of
strong asymptotic fixed points of T will be denoted by F̃(T).
A mapping T from C into itself is said to be a weak relatively nonexpansive mapping if
. F(T) is nonempty;
. φ(p,Tx)≤ φ(p,x) for all x ∈ C and p ∈ F(T);
. F̃(T) = F(T).
Kohasaka and Takahashi [] proved that if E is a smooth strictly convex and reflexive

Banach space and B is a continuous monotone operator with B– �= ∅, then Jλ is a weak
relatively nonexpansive mapping. By Takahashi [], we know that F(Jλ) is closed and con-
vex, where F(Jλ) is the set of fixed points of Jλ.
Let B be a maximal monotone operator in a Hilbert space H . The proximal point algo-

rithm generates, for starting x = x ∈ H , a sequence {xn} in H by

xn+ = Jλnxn, ∀n≥ , (.)

where {λn} ⊂ (,∞) and Jλn = (I + λnB)–.
Also, Rockafellar [] proved that the sequence {xn} defined by (.) converges weakly to

an element of B–.

http://www.journalofinequalitiesandapplications.com/content/2013/1/247
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Let C be a nonempty closed convex subset of E and let R be the set of real numbers. Let
fi : C×C →R be a bifunction and Ai : C → E* be a nonlinear mapping for i = , , , . . . ,N .
The system of generalized equilibrium problems is as follows.
Find u ∈ C such that for all y ∈ C,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f(u, y) + 〈y – u,Au〉 ≥ ,
f(u, y) + 〈y – u,Au〉 ≥ ,
· · ·
fN (u, y) + 〈y – u,ANu〉 ≥ .

(.)

If fi = f andAi = A in (.), then from the problem (.) we have the following generalized
equilibrium problem denoted by GEP(f ,A).
Find u ∈ C such that

f (u, y) + 〈y – u,Au〉 ≥ , ∀y ∈ C. (.)

The generalized equilibriumproblems include fixed point problems, optimization prob-
lem, monotone inclusion problems, saddle point problems, variational inequality prob-
lems, minimization problems, vector equilibrium problems, Nash equilibria in noncoop-
erative games and equilibriumproblems as special cases (see, for example, []). Also, some
solution methods have been proposed to solve the equilibrium problem (see, for example,
[–]) and numerous problems in physics, optimization and economics reduce to finding
a solution of problem (.).
Recently, Li and Su [] introduced the hybrid iterative scheme for approximating a com-

mon solution of the equilibrium problems and the variational inequality problems in a
-uniformly convex real Banach space which is also uniformly smooth. In , Zegeye
and Shahzad [] introduced the iterative process which converges strongly to a common
solution of the variational inequality problems for two monotone mappings in Banach
spaces.
Quite recently, Shehu [] introduced an iterative scheme by the hybrid method for ap-

proximating a common element of the set of zeroes of a finite family of α-inverse-strongly
monotone operators and the set of common solutions of a system of generalized mixed
equilibrium problems in a -uniformly convex real Banach space which is also uniformly
smooth.
Motivated by the results of Shehu [], we prove some strong convergence theorems

for finding a common zero of a finite family of continuous monotone mappings and a
solution of the system of generalized equilibrium problems in a uniformly smooth and
strictly convex real Banach space with the Kadec-Klee property.

2 Preliminaries
Throughout this paper, let E be a Banach space with its dual space E*. For a sequence {xn}
of E and a point x ∈ E, the weak convergence of {xn} to x is denoted by xn ⇀ x and the
strong convergence of {xn} to x is denoted by xn → x.
The normalized duality mapping J : E → E* is defined by

J(x) =
{
x* ∈ E* :

〈
x,x*

〉
= ‖x‖,∥∥x*∥∥ = ‖x‖}, ∀x ∈ E,

where 〈·, ·〉 denotes the duality pairing.

http://www.journalofinequalitiesandapplications.com/content/2013/1/247
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Cioranescu [] proved the following properties:
() If E is an arbitrary Banach space, then J is monotone and bounded;
() If E is a strictly convex, then J is strictly monotone;
() If E is a smooth, then J is single-valued and semi-continuous;
() If E is uniformly smooth, then J is uniformly norm-to-norm continuous on each

bounded subset of E;
() If E is reflexive, smooth and strictly convex, then the normalized duality mapping J

is single-valued, one-to-one and onto;
() If E is a reflexive, strictly convex and smooth Banach space and J is the duality

mapping from E into E*, then J– is also single-valued, bijective and is also the
duality mapping from E* into E and thus JJ– = IE* and J–J = IE ;

() If E is uniformly smooth, then E is smooth and reflexive;
() E is uniformly smooth if and only if E* is uniformly convex.
A Banach space E has the Kadec-Klee property [, ] if, for any sequence {xn} ⊂ E and

x ∈ E with xn ⇀ x and ‖xn‖ → ‖x‖, then ‖xn – x‖ →  as n→ ∞.
Consider the functional φ : E × E → R defined by

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖, ∀x, y ∈ E, (.)

where J is the normalized duality mapping from E to E* .
It is obvious from the definition of the function φ that

(‖y‖ – ‖x‖) ≤ φ(y,x)≤ (‖y‖ + ‖x‖), ∀x, y ∈ E. (.)

If E is a Hilbert space, then φ(y,x) = ‖y – x‖.

Remark . If E is a reflexive, strictly convex and smooth Banach space, then, for any
x, y ∈ E, φ(x, y) =  if and only if x = y. It is sufficient to show that if φ(x, y) = , then x = y.
From (.) we have ‖x‖ = ‖y‖. This implies that 〈x, Jy〉 = ‖x‖ = ‖Jy‖. From the definition
of J , one has Jx = Jy. Therefore, we have x = y (see [, ] for more details).

Let C be a nonempty closed convex subset of a reflexive, strictly convex and smooth
Banach space E. The generalized projection �C : E → C is a mapping that assigns to an
arbitrary point x ∈ E the minimum point of the functional φ(x, y), that is, �Cx = x̄, where
x̄ is the solution to the minimization problem

φ(x̄,x) = inf
y∈C φ(y,x). (.)

The existence and uniqueness of the operator �C follows from the properties of the
functional φ(y,x) and the strict monotonicity of the mapping J (see, for example, [, –
]). If E is a Hilbert space, then �C becomes the metric projection of E onto C.

Example . (Qin et al. []) Let �C be the generalized projection from a smooth strictly
convex and reflexive Banach space E onto a nonempty closed convex subset C of E. Then
�C is a closed relatively quasi-nonexpansive mapping from E onto C with F(�C) = C.

We also need the following lemmas for the proof of our main results.

http://www.journalofinequalitiesandapplications.com/content/2013/1/247
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Lemma . (Alber []) Let C be a nonempty closed convex subset of a smooth Banach
space E and let x ∈ E. Then x = �Cx if and only if

〈x – y, Jx – Jx〉 ≥ , ∀y ∈ C.

Lemma . (Alber []) Let E be a reflexive, strictly convex and smooth Banach space, let
C be a nonempty closed convex subset of E and let x ∈ E. Then

φ(y,�Cx) + φ(�Cx,x)≤ φ(y,x), ∀y ∈ C.

Let E be a smooth strictly convex and reflexive Banach space, C be a nonempty closed
convex subset of E and B ⊂ E × E* be a monotone operator satisfying the following:

D(B)⊂ C ⊂ J–
(⋂

λ>

R(J + λB)
)
.

Then the resolvent Jλ : C →D(B) of B is defined by

Jλx =
{
z ∈D(B) : Jx ∈ Jz + λBz,∀x ∈ C

}
.

Jλ is a single-valued mapping from E to D(B). For any λ > , the Yosida approximation
Bλ : C → E* of B is defined by Bλx = Jx–JJλx

λ
for all x ∈ C. We know that Bλx ∈ B(Jλx) for all

λ >  and x ∈ E.

Lemma . (Kohsaka and Takahashi []) Let E be a smooth strictly convex and reflexive
Banach space, let C be a nonempty closed convex subset of E and let B⊂ E×E* be a mono-
tone operator satisfying D(B)⊂ C ⊂ J–(

⋂
λ> R(J + λB)). For any λ > , let Jλ and Bλ be the

resolvent and the Yosida approximation of B, respectively. Then the following hold:
() φ(p, Jλx) + φ(Jλx,x)≤ φ(p,x) for all x ∈ C and p ∈ B–;
() (Jλx,Bλx) ∈ B for all x ∈ C;
() F(Jλ) = B–.

Lemma . (Rockafellar []) Let E be a reflexive strictly convex and smooth Banach
space. Then an operator B ⊂ E × E* is maximal monotone if and only if R(J + λB) = E*

for all λ > .

For solving the equilibrium problem for a bifunction f : C × C → R, assume that f sat-
isfies the following conditions:
(A) f (x,x) =  for all x ∈ C;
(A) f is monotone, i.e., f (x, y) + f (y,x)≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C,

lim
t↓ f

(
tz + ( – t)x, y

) ≤ f (x, y);

(A) for each x ∈ C, y �→ f (x, y) is convex and lower semi-continuous.
The following result is given in Blum and Oettli [].

Lemma . Let C be a closed convex subset of a smooth strictly convex and reflexive
Banach space E and let f be a bifunction from C × C to R satisfying the conditions (A)-

http://www.journalofinequalitiesandapplications.com/content/2013/1/247
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(A). Then, for any r >  and x ∈ E, there exists z ∈ C such that

f (z, y) +

r
〈y – z, Jz – Jx〉 ≥ , ∀y ∈ C.

Lemma . (Takahashi and Zembayashi []) Let C be a closed convex subset of a uni-
formly smooth strictly convex and reflexive Banach space E and let f be a bifunction from
C × C to R satisfying the conditions (A)-(A). For any r >  and x ∈ E, define a mapping
Tr : E → C as follows:

Trx =
{
z ∈ C : f (z, y) +


r
〈y – z, Jz – Jx〉 ≥ ,∀y ∈ C

}
, ∀x ∈ C.

Then the following hold:
() Tr is single-valued;
() Tr is a firmly nonexpansive-type mapping for all x, y ∈ E, that is,

〈Trx – Try, JTrx – JTry〉 ≤ 〈Trx – Try, Jx – Jy〉;

() F(Tr) = EP(f );
() EP(f ) is closed and convex.

Lemma . (Takahashi and Zembayashi []) Let C be a closed convex subset of a smooth,
strictly convex and reflexive Banach space E, f be a bifunction from C × C to R satisfying
the conditions (A)-(A) and let r > . Then, for any x ∈ E and p ∈ F(Tr),

φ(p,Trx) + φ(Trx,x)≤ φ(p,x).

Lemma . Let C be a nonempty closed convex subset of a smooth, strictly convex and
reflexive Banach space E. Let A : C → E* be a continuous monotone mapping and f be a
bifunction from C × C to R satisfying the conditions (A)-(A). Then, for any r >  and
x ∈ E, there exists z ∈ C such that

f (z, y) + 〈y – z,Az〉 + 
r
〈y – z, Jz – Jx〉 ≥ , ∀y ∈ C.

Proof Define a bifunction � : C × C → R by �(x, y) = f (x, y) + 〈y – x,Ax〉 for all x, y ∈ C.
We show that � satisfies the conditions (A)-(A).
First, we show that � satisfies the condition (A). Since

�(x,x) = f (x,x) + 〈x – x,Ax〉 = , ∀x ∈ C,

the condition (A) is satisfied.
Next, we show that � satisfies the condition (A). Since A is a continuous monotone

mapping and f satisfies the condition (A), for any x, y ∈ C, we have

�(x, y) +�(y,x) = f (x, y) + f (y,x) + 〈y – x,Ax〉 + 〈x – y,Ay〉
≤  + 〈y – x,Ax –Ay〉 ≤ .

So, the condition (A) is satisfied.

http://www.journalofinequalitiesandapplications.com/content/2013/1/247
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Thirdly, we show that � satisfies the condition (A). Since f satisfies the condition (A)
and A is a continuous monotone mapping, for any x, y, z ∈ C, we have

lim sup
t↓

�
(
x + t(z – x), y

)
= lim sup

t↓
f
(
x + t(z – x), y

)
+

〈
y –

(
x + t(z – x)

)
,A

(
x + t(z – x)

)〉
≤ lim sup

t↓
f
(
x + t(z – x), y

)
+ lim sup

t↓

〈
y –

(
x + t(z – x)

)
,A

(
x + t(z – x)

)〉
≤ f (x, y) + lim sup

t↓

〈
y –

(
x + t(z – x)

)
,A

(
x + t(z – x)

)〉
= f (x, y) + 〈y – x,Ax〉
= �(x, y).

The condition (A) is satisfied.
Finally, we show that � satisfies the condition (A) since y �→ 〈y – x,Ax〉 is convex and

continuous; that is, y �→ 〈y–x,Ax〉 is convex and lower semi-continuous. Since y �→ f (x, y)
is convex and lower semi-continuous, y �→ �(x, y) is convex and lower semi-continuous.
Therefore, �(x, y) satisfies the conditions (A)-(A). From Lemma ., we can conclude

that there exists z ∈ C such that

f (z, y) + 〈y – z,Az〉 + 
r
〈y – z, Jz – Jx〉 ≥ , ∀y ∈ C.

This completes the proof. �

Lemma . Let C be a nonempty closed convex subset of a smooth, strictly convex and
reflexive Banach space E. Let A : C → E* be a continuous and monotone mapping and f be
a bifunction from C × C to R satisfying the conditions (A)-(A). Then, for any r >  and
x ∈ E, there exists z ∈ C such that

f (z, y) + 〈y – z,Az〉 + 
r
〈y – z, Jz – Jx〉 ≥ , ∀y ∈ C.

Define a mapping Kr : C → C as follows:

Kr(x) =
{
z ∈ C : f (z, y) + 〈y – z,Az〉 + 

r
〈y – z, Jz – Jx〉 ≥ ,∀y ∈ C

}
, ∀x ∈ C. (.)

Then we have the following:
() Kr is single-valued;
() Kr is firmly nonexpansive, i.e., for all x, y ∈ E,

〈Krx –Kry, JKrx – JKry〉 ≤ 〈Krx –Kry, Jx – Jy〉;

() F(Kr) =GEP(f ,A);
() GEP(f ,A) is closed and convex;
() φ(p,Krz) + φ(Krz, z) ≤ φ(p, z) for all p ∈ F(Kr) and z ∈ E.

http://www.journalofinequalitiesandapplications.com/content/2013/1/247
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Proof Define a bifunction � : C × C → R by �(u, y) = f (u, y) + 〈y – u,Au〉 for all u, y ∈ C.
From Lemma ., it follows that � satisfies the conditions (A)-(A). Now, we can rewrite
the mapping Kr : C → C given in (.) as follows:

Kr(x) =
{
z ∈ C :�(z, y) +


r
〈y – z, Jz – Jx〉 ≥ ,∀y ∈ C

}
, ∀x ∈ C. (.)

Thus, from Lemmas . and ., we obtain the conclusion. This completes the proof. �

Throughout this paper, we define a mapping K�i
ri (x) : C → C by

K�i
ri (x) =

{
z ∈ C :�i(z, y) +


ri

〈y – z, Jz – Jx〉 ≥ ,∀y ∈ C
}
, ∀x ∈ C, (.)

where �i(z, y) = fi(z, y) + 〈y – z,Aiz〉 for all z, y ∈ C and i = , , , . . . ,m.

3 Main results
Theorem . Let C be a nonempty closed and convex subset of a uniformly smooth and
strictly convex Banach space E with the Kadec-Klee property. For any i = , , , . . . ,m, let fi
be a bifunction from C ×C to R satisfying the conditions (A)-(A) and let {Ai} be a finite
family of continuous and monotone mappings from C to E*. Let Bj ⊂ E × E* be maximal
monotone operators satisfying D(Bj) ⊂ C and JBjλj,n

= (J + λj,nBj)–J for all λj,n >  and j =
, , . . . , l. Assume that F := (

⋂m
i=GEP(fi,Ai)) ∩ (

⋂l
j= B–

j ) �= ∅. For arbitrary x ∈ C and
C = C, generate a sequence {xn} by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

zn = JBlλl,n
◦ JBl–λl–,n

◦ · · · ◦ JBλ,n
xn,

un = K�m
rm,n ◦K�m–

rm–,n ◦ · · · ◦K�
r,nzn,

Cn+ = {z ∈ Cn : φ(z,un) ≤ φ(z,xn)},
xn+ = �Cn+x, ∀n≥ ,

(.)

where {ri,n} ⊂ [a,∞) for some a >  for all i = , , . . . ,m and lim infn→∞ λj,n >  for all j =
, , . . . , l. Then the sequence {xn} converges strongly to a point p ∈ F , where p = �Fx.

Proof We split the proof into five steps as follows.
Step .We first show that Cn+ is closed and convex for all n≥ . Clearly, C = C is closed

and convex. Suppose that Cn is closed and convex for all n ≥ . Since, for any z ∈ Cn, we
know that φ(z,un) ≤ φ(z,xn) is equivalent to the following:

〈z, Jxn – Jun〉 ≤ ‖xn‖ – ‖un‖.

Thus Cn+ is closed and convex for all n≥ .
Step . We show that F ⊂ Cn for all n≥  and {xn} is well defined. Since F ⊂ C=C, sup-

pose that F ⊂ Cn for some n ≥ . Let q ∈ F , from Lemma . and Lemma ., we have that

φ(q,un) = φ
(
q,K�m

rm,n ◦K�m–
rm–,n ◦ · · · ◦K�

r,nzn
)

≤ φ
(
q,K�m–

rm–,n ◦ · · · ◦K�
r,nzn

)
· · ·

http://www.journalofinequalitiesandapplications.com/content/2013/1/247
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≤ φ
(
q,K�

r,nzn
)

≤ φ(q, zn)

= φ
(
q, J lλl,n ◦ J l–λl–,n

◦ · · · ◦ Jλ,nxn
)

≤ φ
(
q, J l–λl–,n

◦ · · · ◦ Jλ,nxn
)

· · ·
≤ φ

(
q, Jλ,nxn

)
≤ φ(q,xn). (.)

This shows that q ∈ Cn+, which implies that F ⊂ Cn+. Hence F ⊂ Cn for all n ≥ . This
implies that the sequence {xn} is well defined.
Step .We show that limn→∞ ‖un –xn‖ =  and limn→∞ ‖Jun – Jxn‖ = . By the definition

of Cn+ with xn = �Cnx and xn+ = �Cn+x ∈ Cn+ ⊂ Cn, it follows that

φ(xn,x)≤ φ(xn+,x), ∀n≥ , (.)

that is, {φ(xn,x)} is nondecreasing. By Lemma ., we get

φ(xn,x) = φ(�Cnx,x)

≤ φ(q,x) – φ(q,xn)

≤ φ(q,x), ∀q ∈ F . (.)

This implies that {φ(xn,x)} is bounded and so limn→∞ φ(xn,x) exists. In particular, by
(.), the sequence {(‖xn‖– ‖x‖)} is bounded. This implies {xn} is also bounded. So, {zn}
and {un} are also bounded. Since E is reflexive and Cn is closed and convex, without loss
of generality, we may assume that there exists p ∈ Cn such that xn ⇀ p.
Since xn = �Cnx, we have

φ(xn,x)≤ φ(p,x), ∀p ∈ Cn.

On the other hand, since

lim inf
n→∞ φ(xn,x) = lim inf

n→∞
{‖xn‖ – 〈xn, Jx〉 + ‖x‖

}
≥ ‖p‖ – 〈p, Jx〉 + ‖x‖

= φ(p,x),

it follows that

φ(p,x)≤ lim inf
n→∞ φ(xn,x) ≤ lim sup

n→∞
φ(xn,x) ≤ φ(p,x).

This implies that limn→∞ φ(xn,x) = φ(p,x). Hence we get ‖xn‖ → ‖p‖ as n→ ∞. In view
of the Kadec-Klee property of E, we obtain

lim
n→∞xn = p. (.)
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Now, we claim that ‖Jun – Jxn‖ →  as n→ ∞. By the definition of �Cnx, it follows that

φ(xn+,xn) = φ(xn+,�Cnx)

≤ φ(xn+,x) – φ(�Cnx,x)

= φ(xn+,x) – φ(xn,x).

Since limn→∞ φ(xn,x) exists, we obtain

lim
n→∞φ(xn+,xn) = . (.)

Since xn+ = �Cn+x ∈ Cn+ ⊂ Cn and the definition of Cn+, we have φ(xn+,un) ≤
φ(xn+,xn). By (.) we also have

lim
n→∞φ(xn+,un) = . (.)

From (.) it follows that

‖un‖ → ‖p‖ (n→ ∞). (.)

Since J is uniformly norm-to-norm continuous on bounded subsets of E, it follows
that

‖Jun‖ → ‖Jp‖ (n→ ∞). (.)

This implies that {‖Jun‖} is bounded in E*. Note that E is reflexive and E* is also reflexive,
we can assume that Jun ⇀ x* ∈ E*. Since E is reflexive, we see that J(E) = E*. Hence there
exists x ∈ E such that Jx = x*, and we have

φ(xn+,un) = ‖xn+‖ – 〈xn+, Jun〉 + ‖un‖

= ‖xn+‖ – 〈xn+, Jun〉 + ‖Jun‖.

Taking lim infn→∞ on both sides of the equation above, in view of the weak lower semi-
continuity of the norm ‖ · ‖, it follows that

 ≥ ‖p‖ – 
〈
p,x*

〉
+

∥∥x*∥∥

= ‖p‖ – 〈p, Jx〉 + ‖Jx‖

= ‖p‖ – 〈p, Jx〉 + ‖x‖

= φ(p,x).

From Remark . we have p = x, which implies that x* = Jp, and so Jun ⇀ Jp ∈ E*. From the
Kadec-Klee property, we have that

Jun ⇀ Jp as n→ ∞.
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Note that J– : E* → E is norm-weak*-continuous, that is,

un ⇀ p as n→ ∞. (.)

From (.), (.) and the Kadec-Klee property of E, it follows that

lim
n→∞un = p. (.)

Since ‖xn – un‖ ≤ ‖xn – p‖ + ‖p – un‖, it follows that

lim
n→∞‖xn – un‖ = . (.)

Since J is uniformly norm-to-norm continuous on bounded subsets of E, we obtain

lim
n→∞‖Jun – Jxn‖ = . (.)

Step . We show that p ∈ F := (
⋂m

i=GEP(fi,Ai)) ∩ (
⋂l

j= B–
j ). First, we show that p ∈⋂m

i=GEP(fi,Ai). From (.), (.) and (.), it follows that for any q ∈ F ,

lim
n→∞φ(q, zn) = φ(q,p). (.)

Denote �
j
n := JBjλj,n

◦ JBj–λj–,n
◦ · · · ◦ JBλ,n

xn for each j = , , . . . , l and �
n = I . We have that zn =

�l
nxn for all n≥ . From Lemma .(), it follows that

φ(zn,xn) = φ
(
�l

nxn,xn
)

≤ φ(q,xn) – φ
(
q,�l

nxn
)

= φ(q,xn) – φ(q, zn).

Taking limit as n→ ∞ on both sides of the inequality, we have

lim
n→∞φ(zn,xn) = .

From (.) it follows that (‖xn‖ – ‖zn‖) → . Since ‖xn‖ → ‖p‖, we have

‖zn‖ → ‖p‖ (n→ ∞). (.)

Since J is uniformly norm-to-norm continuous on bounded subsets of E, it follows that

‖Jzn‖ → ‖Jp‖ (n→ ∞). (.)

This implies that {‖Jzn‖} is bounded in E* and E* is reflexive, we can assume that Jzn ⇀

z* ∈ E*. In view of J(E) = E*, there exists z ∈ E such that Jz = z*, and so

φ(xn, zn) = ‖xn‖ – 〈xn, Jzn〉 + ‖zn‖

= ‖xn‖ – 〈xn, Jzn〉 + ‖Jzn‖.
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Taking lim infn→∞ on both sides of the equality above and in view of the weak lower semi-
continuity of the norm ‖ · ‖, it follows that

 ≥ ‖p‖ – 
〈
p, z*

〉
+

∥∥z*∥∥

= ‖p‖ – 〈p, Jz〉 + ‖Jz‖

= ‖p‖ – 〈p, Jz〉 + ‖z‖

= φ(p, z).

From Remark ., we have p = z, which implies that z* = Jp and so Jzn ⇀ Jp ∈ E*. From
(.) and the Kadec-Klee property of E*, we have Jzn → Jp as n → ∞. Note that J– is
norm-weak*-continuous, that is, zn ⇀ p. From (.) and the Kadec-Klee property of E,
we have

lim
n→∞ zn = p. (.)

For any q ∈ F , we note that

φ(q,xn) – φ(q,un) = ‖xn‖ – ‖un‖ – 〈q, Jxn – Jun〉
≤ ‖xn – un‖

(‖xn‖ + ‖un‖
)
+ ‖q‖‖Jxn – Jun‖.

Thus it follows from ‖xn – un‖ →  and ‖Jxn – Jun‖ →  that

φ(q,xn) – φ(q,un) →  (n→ ∞). (.)

Denote 	i
n := K�i

ri,n ◦K�i–
ri–,n ◦ · · · ◦K�

r,n for each i = , , . . . ,m and 	
n = I . We can rewrite un

as un = 	m
n zn. It follows that for each i = , , . . . ,m, we have

φ(q,un) = φ
(
q,	m

n zn
)

≤ φ
(
q,	m–

n zn
)

≤ φ
(
q,	m–

n zn
)

· · ·
≤ φ

(
q,	i

nzn
)
. (.)

From Lemma .(), for each i = , , . . . ,m, we have

φ
(
	i

nzn, zn
) ≤ φ(q, zn) – φ

(
q,	i

nzn
)

≤ φ(q,xn) – φ
(
q,	i

nzn
)

≤ φ(q,xn) – φ(q,un). (.)

From (.) it follows that φ(	i
nzn, zn) →  as n → ∞ for each i = , , . . . ,m, and so from

(.), that

(∥∥	i
nzn

∥∥ – ‖zn‖
) → .
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Since ‖zn‖ → ‖p‖, we also have, for each i = , , . . . ,m,

∥∥	i
nzn

∥∥ → ‖p‖ (n→ ∞). (.)

Since {	i
nzn} is bounded for each i = , , . . . ,m and E is reflexive, without loss of generality,

we may assume that 	i
nzn ⇀ h for all i = , , . . . ,m. From the first step, since Cn is closed

and convex for each n≥ , it is obvious that h ∈ Cn. Again, since

φ
(
	i

nzn, zn
)
=

∥∥	i
nzn

∥∥ – 
〈
	i

nzn, Jzn
〉
+ ‖zn‖,

taking lim infn→∞ on both sides of the equality above, we have

 ≥ ‖h‖ – 〈h, Jp〉 + ‖p‖ = φ(h,p).

This implies that h = p for each i = , , . . . ,m, and so

	i
nzn ⇀ p. (.)

From (.), (.) and the Kadec-Klee property, for each i = , , . . . ,m, we have

lim
n→∞	i

nzn = p. (.)

By using the triangle inequality, for each i = , , . . . ,m, we obtain

∥∥	i
nzn –	i–

n zn
∥∥ ≤ ∥∥	i

nzn – p
∥∥ +

∥∥p –	i–
n zn

∥∥.
Hence, for each i = , , . . . ,m, we have

lim
n→∞

∥∥	i
nzn –	i–

n zn
∥∥ = . (.)

Since {ri,n} ⊂ [a,∞) and J is uniformly norm-to-norm continuous on bounded subsets of
E, for each i = , , , . . . ,m, we have

lim
n→∞

‖J	i
nzn – J	i–

n zn‖
ri,n

= . (.)

From Lemma . we have, for each i = , , . . . ,m,

�i
(
	i

nzn, y
)
+


ri,n

〈
y –	i

nzn, J	
i
nzn – J	i–

n zn
〉 ≥ , ∀y ∈ C,

where �i(un, y) = fi(un, y) + 〈y – un,Aiun〉 for all un, y ∈ C. From the condition (A), it fol-
lows that for each i = , , . . . ,m,


ri,n

〈
y –	i

nzn, J	
i
nzn – J	i–

n zn
〉 ≥ �i

(
y,	i

nzn
)
, ∀y ∈ C.

From (.) and (.), for each i = , , . . . ,m, we have

 ≥ �i(y,p), ∀y ∈ C. (.)
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For any t ∈ [, ] and y ∈ C, let yt = ty + ( – t)p. Then we get yt ∈ C. From (.) it follows
that for each i = , , . . . ,m,

�i(yt ,p) ≤ , ∀yt ∈ C. (.)

By the conditions (A) and (A), for each i = , , . . . ,m, we have

 = �i(yt , yt)

≤ t�i(yt , y) + ( – t)�i(yt ,p)

≤ t�i(yt , y)

≤ �i(yt , y). (.)

From the condition (A), we get

 ≤ �i(yt , y) = �i
(
ty + ( – t)p, y

)
.

Taking t →  in the equality above, for each i = , , . . . ,m, we have

 = lim
t→

≤ lim
t→

�i
(
ty + ( – t)p, y

)
= �i(p, y), ∀y ∈ C,

that is, fi(p, y) + 〈y – p,Aip〉 ≥  for all y ∈ C and i = , , . . . ,m. This implies that p ∈
GEP(fi,Ai) for each i = , , . . . ,m. Therefore, p ∈ ⋂m

i=GEP(fi,Ai).
Next, we show that p ∈ ⋂l

j= B–
j . Let zn = �l

nxn for each n≥ . For any q ∈ F , it follows
that for each j = , , . . . , l,

φ(q, zn) = φ
(
q,�l

nxn
)

≤ φ
(
q,�l–

n xn
)

≤ φ
(
q,�l–

n xn
)

· · ·
≤ φ

(
q,�j

nxn
)
. (.)

By Lemma . we have, for j = , , , . . . ,m,

φ
(
�j

nxn,xn
) ≤ φ(q,xn) – φ

(
q,�j

nxn
)

≤ φ(q,xn) – φ(q, zn). (.)

Since xn → p and zn → p as n → ∞, we get φ(�j
nxn,xn) →  as n → ∞ for j = , , , . . . ,m.

From (.) it follows that

(∥∥�j
nxn

∥∥ – ‖xn‖
) → .

Since ‖xn‖ → ‖p‖, we also have

∥∥�j
nxn

∥∥ → ‖p‖ as n→ ∞,∀j = , , , . . . ,m. (.)
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This implies that for each j = , , , . . . ,m, {�j
nxn} is bounded and E is reflexive, without

loss of generality, we assume that �
j
nxn ⇀ k. We know that Cn is closed and convex for

each n≥ , it is obvious that k ∈ Cn. Again, since

φ
(
�j

nxn,xn
)
=

∥∥�j
nxn

∥∥ – 
〈
�j

nxn, Jxn
〉
+ ‖xn‖,

taking lim infn→∞ on both sides of equality above, we have

 ≥ ‖k‖ – 〈k, Jp〉 + ‖p‖

= φ(k,p).

That is, k = p, ∀j = , , , . . . , l, it follows that

�j
nxn ⇀ p. (.)

From (.), (.) and the Kadec-Klee property, it follows that

lim
n→∞�j

nxn = p, ∀j = , , , . . . ,m. (.)

We also have

lim
n→∞�j–

n xn = p, ∀j = , , , . . . ,m. (.)

It follows that

lim
n→∞

∥∥�j
nxn –�j–

n xn
∥∥ = , ∀j = , , , . . . ,m. (.)

Since J is uniformly norm-to-norm continuous on bounded subsets of E and

lim inf
n→∞ λj,n > 

for each j = , , . . . , l, we have

lim
n→∞


λj,n

∥∥J�j
nxn – J�j–

n xn
∥∥ = .

Let �
j
nxn = J jλj,n�

j–
n xn for each j = , , . . . , l. Then we have

lim
n→∞

∥∥Bλj,n�
j–
n xn

∥∥ = lim
n→∞


λj,n

∥∥J�j
nxn – J�j–

n xn
∥∥ = .

For any (w,w*) ∈ G(Bj) and (�
j
nxn,Aλj,n�

j–
n xn) ∈G(Bj) for each j = , , . . . , l, it follows from

the monotonicity of Bj that for all n≥ ,

〈
w –�j

nxn,w
* – Bλj,n�

j–
n xn

〉 ≥ .
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Letting n→ ∞ in the inequality above, we get 〈w– p,w*〉 ≥ . Since Bj is maximal mono-
tone for each j = , , . . . , l, we obtain p ∈ ⋂l

j= B–
j .

Step . We show that p = �Fx. From xn = �Cnx, we have 〈Jx – Jxn,xn – z〉 ≥  for all
z ∈ Cn. Since F ⊂ Cn, we also have

〈Jx – Jxn,xn – y〉 ≥ , ∀y ∈ F ,

and so, taking limit n→ ∞, we get

〈Jx – Jp,p – y〉 ≥ , ∀y ∈ F .

Therefore, by Lemma ., we can conclude that p = �Fx and xn → p as n → ∞. The proof
is completed. �

If i =  and j = , we have the following.

Corollary . Let C be a nonempty closed and convex subset of a uniformly smooth and
strictly convex Banach space E with the Kadec-Klee property. Let f be a bifunction from
C × C to R satisfying the conditions (A)-(A) and let A : C → E* be a continuous and
monotone mapping. Let B ⊂ E × E* be a maximal monotone operator satisfying D(B) ⊂ C
and Jλn = (J + λnB)–J for all λn > . Assume that F := GEP(f ,A) ∩ B– �= ∅. For arbitrary
x ∈ C and C = C, generate a sequence {xn} by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
zn = Jλnxn,
un = Krnzn,
Cn+ = {z ∈ Cn : φ(z,un) ≤ φ(z,xn)},
xn+ = �Cn+x, ∀n≥ ,

(.)

where {rn} ⊂ [a,∞) for some a >  and lim infn→∞ λn > . Then the sequence {xn} converges
strongly to a point p ∈ F , where p = �Fx.

4 Applications
In this section, we apply our result to find a common solution of the variational inequality
problems and zeros of the maximal operators.
We need the following lemma for our result, which is a special case of Lemmas . and

. of [].

Lemma . (Zegeye and Shahzad []) Let C be a closed convex subset of a uniformly
smooth, strictly convex real Banach space E. Let A : C → E* be a continuous monotone
mapping. For any r >  and x ∈ E, define a mapping Tr : E → C as follows:

Trx =
{
z ∈ C : 〈y – z,Az〉 + 

r
〈y – z, Jz – Jx〉 ≥ ,∀y ∈ C

}
, ∀x ∈ E.

Then we have the following:
() Tr is single-valued;
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() Tr is a firmly nonexpansive-type mapping, i.e., for any x, y ∈ E,

〈Trx – Try, JTrx – JTry〉 ≤ 〈Trx – Try, Jx – Jy〉;

() F(Tr) =VI(C,A);
() VI(C,A) is closed and convex;
() φ(p,Trx) + φ(Trx,x)≤ φ(p,x) for any p ∈ F(Tr).

Theorem . Let C be a nonempty closed and convex subset of a uniformly smooth and
strictly convex Banach space E with the Kadec-Klee property. For each i = , , . . . ,m, let
{Ai} be a finite family of continuous and monotone mappings C → E*. For rn >  and x ∈ E,
define a mapping Tri,n : E → C by

Tri,nx :=
{
z ∈ C : 〈y – z,Aiz〉 + 

rn
〈y – z, Jz – Jx〉 ≥ ,∀y ∈ C

}
.

Let B ⊂ E × E* be a maximal monotone operator satisfying D(B) ⊂ C and JBjλj,n
= (J +

λj,nBj)–J for all λ >  and j = , , . . . , l. Assume that F := (
⋂m

i=VI(C,Ai))∩ (
⋂l

j= B–
j ) �= ∅.

For an initial point x ∈ E with C = C, define the sequence {xn} in C as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
zn = JBlλl,n

◦ JBl–λl–,n
◦ · · · ◦ JBλ,n

xn,
un = Trm,n ◦ Trm–,n ◦ · · · ◦ Tr,nzn,
Cn+ = {z ∈ Cn : φ(z,un) ≤ φ(z,xn)},
xn+ = �Cn+x, ∀n≥ ,

(.)

where {ri,n} ⊂ [a,∞) for some a >  for all i = , , . . . ,m and lim infn→∞ λj,n >  for all j =
, , . . . , l. Then the sequence {xn} converges strongly to a point p ∈ F , where p = �Fx.

Proof Taking fi(un, y) =  for all i = , , . . . ,m in Theorem ., we can get the desired con-
clusion. �

By Theorem ., if we set Bj ≡  for each j = , , . . . , l, we obtain the following.

Corollary . Let C be a nonempty closed and convex subset of a uniformly smooth and
strictly convex Banach space E with the Kadec-Klee property. For any i = , , . . . ,m, let
{Ai} be a finite family of continuous and monotone mappings C → E*. Assume that F :=⋂m

i=VI(C,Ai) �= ∅. For an initial point x ∈ E with C = C, define the sequence {xn} in C as
follows:

⎧⎪⎨
⎪⎩
un = Trm,n ◦ Trm–,n ◦ · · · ◦ Tr,nxn,
Cn+ = {z ∈ Cn : φ(z,un) ≤ φ(z,xn)},
xn+ = �Cn+x, ∀n≥ ,

(.)

where {ri,n} ⊂ [a,∞) for some a >  for each i = , , . . . ,m.Then the sequence {xn} converges
strongly to a point p ∈ F , where p = �Fx.

Remark . Corollary . extends and improves the result of Zegeye and Shahzad []
to a common solution of the variational inequality problems.
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