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Abstract
This paper deals with approximating properties and convergence results of the
complex q-Balázs-Szabados operators attached to analytic functions on compact
disks. The order of convergence and the Voronovskaja-type theorem with
quantitative estimate of these operators and the exact degree of their approximation
are given. Our study extends the approximation properties of the complex
q-Balázs-Szabados operators from real intervals to compact disks in the complex
plane with quantitative estimate.
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1 Introduction
In the recent years, applications of q-calculus in the area of approximation theory and
number theory have been an active area of research. Details on q-calculus can be found
in [–]. Several researchers have purposed the q-analogue of Stancu, Kantorovich and
Durrmeyer type operators. Gal [] studied some approximation properties of the complex
q-Bernstein polynomials attached to analytic functions on compact disks.
Also very recently, some authors [–] have studied the approximation properties of

some complex operators on complex disks. Balázs [] defined the Bernstein-type rational
functions and gave some convergence theorems for them. In [], Balázs and Szabados ob-
tained an estimate that had several advantages with respect to that given in []. These esti-
mates were obtained by the usualmodulus of continuity. The q-form of these operator was
given byDoğru.He investigated statistical approximation properties of q-Balázs-Szabados
operators [].
The rational complex Balázs-Szabados operators were defined by Gal [] as follows:

Rn(f ; z) =


( + anz)n

n∑
j=

f
(

j
bn

)(
n
j

)
(anz)j,

whereDR = {z ∈C : |z| < R}withR > 
 , f :DR∪[R,∞)→C is a function, an = nβ–, bn = nβ ,

 < β ≤ 
 , n ∈N, z ∈C and z �= – 

an .
He obtained the uniform convergence ofRn(f ; z) to f (z) on compact disks and proved the

upper estimate in approximation of these operators. Also, he obtained the Voronovskaja-
type result and the exact degree of its approximation.
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The goal of this paper is to obtain convergence results for the complex q-Balázs-
Szabados operators given by

Rn(f ;q, z) =
∏n–

s=( + qsanz)

n∑
j=

qj(j–)/f
(
[j]q
bn

)[
n
j

]
q

(anz)j,

where f : DR ∪ [R,∞) → C is uniformly continuous and bounded on [,∞), an = [n]β–q ,
bn = [n]βq , q ∈ (, ],  < β ≤ 

 , n ∈N, z ∈C and z �= – 
qsan for s = , , , . . . .

These operators are obtained simply replacing x by z in the real form of the q-Balázs-
Szabados operators introduced in Doğru [].
The complex q-Balázs-Szabados operators Rn(f ;q, z) are well defined, linear, and these

operators are analytic for all n ≥ n and |z| ≤ r < [n]–β
q since |– 

an | ≤ |– 
qan | ≤ · · · ≤

|– 
qn–an

|.
In this paper, we obtain the following results:
- the order of convergence for the operators Rn(f ;q, z),
- the Voronovskaja-type theorem with quantitative estimate,
- the exact degree of the approximation for the operators Rn(f ;q, z).

Throughout the paper, we denote with ‖f ‖r =max{|f (z)| ∈R : z ∈ D̄r} the norm of f in the
space of continuous functions on D̄r and with ‖f ‖B[,∞) = sup{|f (x)| ∈ R : x ∈ [,∞)} the
norm of f in the space of bounded functions on [,∞).
Also, the many results in this study are obtained under the condition that f : DR ∪

[R,∞) → C is analytic in DR for r < R, which assures the representation f (z) =
∑∞

k= ckzk

for all z ∈DR.

2 Convergence results
The following lemmas will help in the proof of convergence results.

Lemma  Let n ≥ ,  < β ≤ 
 and 

 < r < R ≤ [n]
–β
q
 . Let us define αk,n,q(z) = Rn(ek ;q, z)

for all z ∈ D̄r , where ek(z) = zk . If f :DR ∪ [R,∞)→C is uniformly continuous, bounded on
[,∞) and analytic in DR, then we have the form

Rn(f ;q, z) =
∞∑
k=

ckαk,n,q(z)

for all z ∈ D̄r .

Proof For anym ∈N, we define

fm(z) =
m∑
k=

ckek(z) if |z| ≤ r and fm(z) = f (z) if z ∈ (r,∞).

From the hypothesis on f , it is clear that each fm is bounded on [,∞), that is, there exist
M(fm) >  with |fm(z)| ≤ M(fm), which implies that

∣∣Rn(fm;q, z)
∣∣ ≤ 

|∏n–
s=( + qsanz)|

n∑
j=

qj(j–)/M(fm)

[
n
j

]
q

(
an|z|

)j < ∞,

that is all Rn(fm;q, z) with n≥ n, r <
[n]

–β
q
 ,m ∈N are well defined for all z ∈ D̄r .
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Defining

fm,k(z) = ckek(z) if |z| ≤ r and fm,k(z) =
f (z)
m + 

if z ∈ (r,∞),

it is clear that each fm,k is bounded on [,∞) and that fm(z) =
∑m

k= fm,k(z).
From the linearity of Rn(f ;q, z), we have

Rn(fm;q, z) =
m∑
k=

ckαk,n,q(z) for all |z| ≤ r.

It suffices to prove that

lim
m→∞Rn(fm;q, z) = Rn(f ;q, z)

for any fixed n ∈N, n≥ n and |z| ≤ r.
We have the following inequality for all |z| ≤ r:

∣∣Rn(fm;q, z) – Rn(f ;q, z)
∣∣ ≤ Mr,n,q‖fm – f ‖r , ()

whereMr,n,q =
∏n–

s=
(+qsanr)
(–qsanr) .

Using (), limm→∞ ‖fm – f ‖r =  and ‖fm – f ‖B[,∞) ≤ ‖fm – f ‖r , the proof of the lemma is
finished. �

Lemma  If we denote (β + z)nq =
∏n–

s=(β + qsz), then the following formula holds:

Dq

[


(β + z)nq

]
= –

[n]q
(β + z)n+q

,

where β is a fixed real number and z ∈C.

Proof We can write (β + z)nq as follows:

(β + z)nq = qn(n–)/
(
z + q–n+β

)n
q . ()

In [] (see p., Proposition .), we already have the following formula:

Dq
[
(β + z)nq

]
= [n]q(β + z)n–q . ()

Using () and (), we get

Dq
[
(β + z)nq

]
= qn(n–)/[n]q

(
z + q–n+β

)n–
q

= [n]qqn–q(n–)(n–)/
(
z + q–n+

(
q–β

))n–
q

= [n]qqn–
(
q–β + z

)n–
q

= [n]q(β + qz)n–q . ()

From (), we obtain the result. �
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Lemma  We have the following recurrence formula for the complex q-Balázs-Szabados
operators Rn(f ;q, z):

αk+,n,q(z) =
( + qnanz)z
( + anz)bn

Dq
[
αk,n,q(z)

]
+

z
 + anz

αk,n,q(z),

where αk,n,q(z) = Rn(ek ;q, z) for all n ∈N, z ∈C and k = , , , . . . .

Proof Firstly, we calculate Dq[αk,n,q(z)] as follows:

Dq
[
αk,n,q(z)

]
=Dq

[
∏n–

s=( + qsanz)

] n∑
j=

qj(j–)/
(
[j]q
bn

)k
[
n
j

]
q

(anz)j

+
∏n–

s=( + qs+anz)

n∑
j=

qj(j–)/
(
[j]q
bn

)k
[
n
j

]
q

(an)jDq
[
zj

]
. ()

Considering Lemma  and using Dq[zj] = [j]qzj– in (), we get

Dq
[
αk,n,q(z)

]
= –

bn
 + qnanz

∏n–
s=( + qsanz)

αk,n,q(z)

+
bn( + anz)
z( + qnanz)

αk+,n,q(z). ()

From (), the proof of the lemma is finished. �

Corollary  ([], p., Corollary ..) Let f (z) = pk (z)∏k
j=(z–aj)

, where pk(z) is a polynomial

of degree ≤ k, and we suppose that |aj| ≥ R >  for all j = , , . . . ,k. If  ≤ r < R, then for all
|z| ≤ r we have

∣∣f ′(z)
∣∣ ≤ R + r

R – r
· k
r
‖f ‖r .

Under hypothesis of the corollary above, by the mean value theorem [] in complex
analysis, we have

∣∣Dq
[
f (z)

]∣∣ ≤ R + r
R – r

· k
r
‖f ‖r . ()

Lemma  Let n ≥ ,  < β ≤ 
 and 

 < r < R ≤ [n]
–β
q
 . For all n ≥ n, |z| ≤ r and k =

, , , . . . , we have

∣∣αk,n,q(z)
∣∣ ≤ k!(r)k .

Proof Taking the absolute value of the recurrence formula in Lemma  and using the tri-
angle inequality, we get

∣∣αk+,n,q(z)
∣∣ ≤ ( + qnan|z|)|z|

| – an|z||bn
∣∣Dq

[
αk,n,q(z)

]∣∣ + |z|
| – an|z||

∣∣αk,n,q(z)
∣∣. ()
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In order to get an upper estimate for |Dq[αk,n,q(z)]|, by using (), we obtain

∣∣Dq
[
αk,n,q(z)

]∣∣ ≤ [n]–β
q + r

[n]–β
q – r

· k
r
‖αk,n,q‖r .

Under the condition r < [n]
–β
q
 , it holds [n]

–β
q +r

[n]
–β
q –r

< , which implies

∣∣Dq
[
αk,n,q(z)

]∣∣ ≤ k
r

‖αk,n,q‖r . ()

Applying () to () and passing to norm, we get

‖αk+,n,q‖r ≤ ( + qnanr)k
( – anr)bn

‖αk,n,q‖r + r
 – anr

‖αk,n,q‖r .

From the hypothesis of the lemma, we have 
–anr < ,  + qnanr < 

 , and

bn < , which

implies

‖αk+,n,q‖r ≤ r(k + )‖αk,n,q‖r .

Taking step by step k = , , , . . . , we obtain

‖αk+,n,q‖r ≤ (r)k+(k + )!.

Using |αk+,n,q| ≤ ‖αk+,n,q‖r and replacing k +  with k, the proof of the lemma is finished.
�

Let q = {qn} be a sequence satisfying the following conditions:

lim
n→∞qn =  and lim

n→∞qnn = c ( ≤ c < ). ()

Now we are in a position to prove the following convergence result.

Theorem  Let {qn} be a sequence satisfying the conditions () with qn ∈ (, ] for all

n ∈N, and let n ≥ ,  < β ≤ 
 and


 < r < R≤ [n]

–β
qn
 . If f :DR ∪ [R,∞)→C is uniformly

continuous, bounded on [,∞) and analytic in DR and there exist M > ,  < A < 
r with

|ck| ≤ MAk

k! (which implies |f (z)| ≤ MeA|z| for all z ∈DR), then the sequence {Rn(f ;qn, z)}n≥n
is uniformly convergent to f in D̄r .

Proof From Lemma  and Lemma , for all n≥ n and |z| ≤ r, we have

∣∣Rn(f ;qn, z)
∣∣ ≤

∞∑
k=

|ck|
∣∣αk,n,qn (z)

∣∣ ≤
∞∑
k=

M
Ak

k!
k!(r)k =M

∞∑
k=

(Ar)k ,

where the series
∑∞

k=(Ar)k is convergent for  < A < 
r .

Since limn→∞ Rn(f ;qn,x) = f (x) for all x ∈ [, r] (see []), by Vitali’s theorem (see [],
p., Theorem ..), it follows that {Rn(f ;qn, z)} uniformly converges to f (z) in D̄r . �

We can give the following upper estimate in the approximation of Rn(f ;qn, z).
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Theorem  Let {qn} be a sequence satisfying the conditions () with qn ∈ (, ] for all

n ∈N, and let n ≥ ,  < β ≤ 
 and


 < r < R≤ [n]

–β
qn
 . If f :DR ∪ [R,∞)→C is uniformly

continuous, bounded on [,∞) and analytic in DR and there exist M > ,  < A < 
r with

|ck| ≤ MAk

k! (which implies |f (z)| ≤ MeA|z| for all z ∈DR), then the following upper estimate
holds:

∣∣Rn(f ;qn, z) – f (z)
∣∣ ≤ C

r (f )
(
an +


bn

)
,

where C
r (f ) =max{MA

∑∞
k=(k –)(Ar)k–, rMAeAr} and∑∞

k=(k –)(Ar)k– < ∞.

Proof Using the recurrence formula in Lemma , we have

∣∣αk+,n,qn (z) – zk+
∣∣ ≤ ( + qnnan|z|)|z|

| – an|z||bn
∣∣Dqn

[
αk,n,qn (z) – zk

]∣∣
+

|z|
| – an|z||

∣∣αk,n,qn (z) – zk
∣∣ + 

bn
( + qnnan|z|)
| – an|z|| [k]qn |z|k

+
an

| – an|z|| |z|
k+.

For |z| ≤ r, we get

∣∣αk+,n,qn (z) – zk+
∣∣ ≤ ( + qnnanr)r

( – anr)bn

∣∣Dqn
[
αk,n,qn (z)

]∣∣ + r
 – anr

∣∣αk,n,qn (z) – zk
∣∣

+

bn

( + qnnanr)
( – anr)

[k]qnr
k +

an
 – anr

rk+.

Using (), 
–anr < , and  + qnnanr <


 , we obtain

∣∣αk+,n,qn (z) – zk+
∣∣ ≤ k · k!

bn
(r)k + r

∣∣αk,n,qn (z) – zk
∣∣ + 

bn
[k]qnr

k + anrk+.

Since [k]qnrk ≤ k · k!(r)k for all k = , , , . . . , we can write

∣∣αk+,n,qn (z) – zk+
∣∣ ≤ k · k!

bn
(r)k + r

∣∣αk,n,qn (z) – zk
∣∣ + anrk+.

Taking k = , , , . . . step by step, finally we arrive at

∣∣αk,n,qn (z) – zk
∣∣ ≤ 

bn
(k – )k!(r)k– + anrk(r)k–, ()

which implies

∣∣Rn(f ;qn, z) – f (z)
∣∣ ≤

∞∑
k=

|ck|
∣∣αk,n,qn (z) – zk

∣∣

≤
∞∑
k=

M
Ak

k!

{

bn

(k – )k!(r)k– + anrk(r)k–
}
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=
MA
bn

∞∑
k=

(k – )(Ar)k– + anrMA
∞∑
k=

(Ar)k–

(k – )!

=
MA
bn

∞∑
k=

(k – )(Ar)k– + anrMAeAr .

Choosing C
r (f ) =max{MA

∑∞
k=(k – )(Ar)k–, rMAeAr}, we obtain the desired re-

sult.
Here the series

∑∞
k=(Ar)k is convergent for  < A < 

r and the series is absolutely
convergent in D̄r , it easily follows that

∑∞
k=(k – )(Ar)k– <∞. �

The following lemmas will help in the proof of the next theorem.

Lemma  For all n ∈N, we have

Rn(e;q, z) = , ()

Rn(e;q, z) =
z

 + anz
, ()

Rn(e;q, z) =
( – an

bn )qz


( + anz)( + anqz)
+

z
bn( + anz)

, ()

where ek(z) = zk for k = , , .

Proof () and () are obtained simply replacing x by z in Lemma . and Lemma . in
[]. Also, using [n]q = +q[n–]q and an

bn = 
[n]q and replacing x by z in Lemma . in [],

() is obtained. �

Lemma  For all n ∈N, the following equalities for the operators Rn(f ;q, z) hold:

ψ 
n,q(z) =

–anz

 + anz
, ()

ψ
n,q(z) =

z
bn( + anz)( + anqz)

–
( – q)z

( + anz)( + anqz)

–
an( – q)z

( + anz)( + anqz)
+

anqz

( + anz)( + anqz)
, ()

where ψ i
n,q(z) = Rn((t – e)i;q, z) for i = , .

Proof From Lemma , the proof can be easily got, so we omit it. �

Now, we present a quantitative Voronovskaja-type formula.
Let us define

Ak,n,qn (z) = Rn(f ;qn, z) – f (z) –ψ 
n,q(z)f

′(z) –


ψ

n,q(z)f
′′(z). ()

Theorem  Let {qn} be a sequence satisfying the conditions () with qn ∈ (, ] for all n ∈
N, n ≥ ,  < β ≤ 

 and

 < r < R ≤ [n]

–β
qn
 . If f :DR ∪ [R,∞)→C is uniformly continuous,

http://www.journalofinequalitiesandapplications.com/content/2013/1/361
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bounded on [,∞) and analytic in DR and there exist M > ,  < A < 
r with |ck| ≤ MAk

k!
(which implies |f (z)| ≤ MeA|z| for all z ∈DR), then for all n ≥ n and |z| ≤ r, we have

∣∣Ak,n,qn (z)
∣∣ ≤ C

r (f )
(
an +


bn

)

,

where C
r (f ) = C∗Mr

∑∞
k=(k–)(k–)k(k+)(rA)k– <∞ andC∗ is a fixed real number.

Proof From Lemma  and the analyticity of f , we can write

∣∣Ak,n,qn (z)
∣∣ ≤

∞∑
k=

|ck|
∣∣Ek,n,qn (z)

∣∣, ()

where

Ek,n,qn (z) = αk,n,qn (z) – zk +
ankzk+

 + anz
–

(k – )kzk–

bn( + anz)( + anqnz)

+
( – qn)(k – )kzk

( + anz)( + anqnz)
+
an( – qn)(k – )kzk+

( + anz)( + anqnz)

–
anqn(k – )kzk+

( + anz)( + anqnz)
. ()

Using Lemma , we easily obtain that E,n,q(z) = E,n,q(z) = E,n,q(z) = .
Combining () with the recurrence formula in Lemma , a simple calculation leads us

to the following recurrence formula:

Ek+,n,qn (z) =
( + qnnanz)z
bn( + anz)

Dqn
[
Ek,n,qn (z)

]
+

z
 + anz

Ek,n,qn (z) + Fk,n,qn (z), ()

where

Fk,n,qn (z) = –
(k – [k]qn )zk

bn( + anz)( + anqnz)
+

ankzk+

( + anz)
–

( – qn)kzk+

( + anz)( + anqnz)

+
an( – qn)kzk+

( + anz)( + anqnz)
–

anqnkzk+

( + anz)( + anqnz)

–
ank(k + )zk+

bn( + anz)( + anqnz)
+
an( – qn)k(k + )zk+

( + anz)( + anqnz)

+
an( – qn)k(k + )zk+

( + anz)( + anqnz)
–

anqnk(k + )zk+

( + anz)( + anqnz)

–
an( + qnnanz)((k – )[k + ]qn – qn[k – ]qn )zk+

bn( + anz)( + anqnz)

–
an( + qnnanz)(k – )qn[k]qnzk+

bn( + anz)( + anqnz)
+

anqnn[k]qnzk+

bn( + anz)( + anqnz)

–
( + qnnanz)[k – ]qn (k – )kzk–

bn( + anz)( + anqnz)( + anqnz)

+
( – qn)( + qnnanz)[k]qn (k – )kzk

bn( + anz)( + anqnz)( + anqnz)

http://www.journalofinequalitiesandapplications.com/content/2013/1/361
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+
an( – qn)( + qnnanz)[k + ]qn (k – )kzk+

bn( + anz)( + anqnz)( + anqnz)

–
anqn( + qnnanz)[k + ]qn (k – )kzk+

bn( + anz)( + anqnz)( + anqnz)

+
an( + qnnanz)( + qn)(k – )kzk

bn( + anz)( + anqnz)( + anqnz)

–
an( – qn)( + qn)( + qnnanz)(k – )kzk+

bn( + anz)( + anqnz)( + anqnz)

–
an( – qn)( + qn)( + qnnanz)(k – )kzk+

bn( + anz)( + anqnz)( + anqnz)

–
anqn( + qn)( + qnnanz)(k – )kzk+

bn( + anz)( + anqnz)( + anqnz)
.

In the following results, Ci will denote fixed real numbers for i = , , .
Under the hypothesis of Theorem , we have

∣∣∣∣ 
 + qsnanz

∣∣∣∣ ≤ 
 – qsnanr

<  for s = , , , ()

anr <



and  + qnnanr <


, ()

 – qn ≤ an
bn

and k – [k]qn ≤ an
bn

(k – )k


, ()

[k]qn ≤ k, an <  and

bn

< . ()

Using ()-(), for |z| ≤ r, we get

∣∣Fk,n,qn (z)∣∣ ≤ C

(
an +

an
bn

+

bn

)
k(k + )(k + )

×max
{
rk–, rk , rk+, rk+, rk+, rk+

}
≤ C

(
an +


bn

)

k(k + )(k + )(r)k+. ()

On the other hand, for |z| ≤ r, we have

∣∣∣∣ ( + qnnanz)z
bn( + anz)

Dqn
[
Ek,n,qn (z)

]∣∣∣∣ ≤ ( + qnnanr)r
bn( – anr)

k
r

‖Ek,n,qn‖r

≤ k( + qnnanr)
bn( – anr)

{
‖αk,n,qn – ek‖r

+
ankrk+

 – anr
+

(k – )krk–

bn( – anr)( – anqnr)

+
( – qn)(k – )krk

( – anr)( – anqnr)

+
an( – qn)(k – )krk+

( – anr)( – anqnr)
+

anqn(k – )krk+

( – anr)( – anqnr)

}
.
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Taking into account () in the proof of Theorem , we obtain

∣∣∣∣ ( + qnnanz)z
bn( + anz)

Dqn
[
Ek,n,qn (z)

]∣∣∣∣ ≤ C

bn

(
an +


bn

)
(k – )k(k + )

× (k!)(r)k+

≤ C

(
an +


bn

)

(k – )k(k + )(k!)(r)k+. ()

Considering () and () in (), we get

∣∣Ek+,n,qn (z)
∣∣ ≤ r

∣∣Ek,n,qn (z)
∣∣ +C

(
an +


bn

)

k(k + )(k + )(k + )!(r)k+.

Since E,n,q(z) = E,n,q(z) = E,n,q(z) = , taking k = , , , . . . in the last inequality step by
step, finally we arrive at

∣∣Ek,n,qn (z)
∣∣ ≤ C

(
an +


bn

)

(k – )(k – )k(k + )(k!)(r)k+. ()

Finally, considering () in () and using rA < , the proof of the theorem is complete.
�

Remark  For  < q ≤ , since 
[n]q →  – q as n → ∞, therefore an = ( 

[n]q )
–β → ( – q)–β

and 
bn = ( 

[n]q )
β → ( – q)β as n→ ∞. If a sequence {qn} satisfies the conditions (), then


[n]q →  as n → ∞; therefore an = ( 

[n]q )
–β →  and 

bn = ( 
[n]q )

β →  as n→ ∞.
Under the conditions (), Theorem  and Theorem  show that {Rn(f ;qn, z)}n≥n uni-

formly converges to f (z) in D̄r .

From Theorem  and Theorem , we get the following consequence.

Theorem  Let {qn} be a sequence satisfying the conditions () with qn ∈ (, ] for all

n ∈ N, n ≥ ,  < β ≤ 
 , β �= 

 and 
 < r < R ≤ [n]

–β
qn
 . Suppose that f : DR ∪ [R,∞) → C

is uniformly continuous, bounded on [,∞) and analytic in DR and there exist M > ,
 < A < 

r with |ck| ≤ MAk

k! (which implies |f (z)| ≤ MeA|z| for all z ∈ DR). If f is not a
polynomial of degree ≤ , then for all n ≥ n we have

∥∥Rn(f ;qn, ·) – f
∥∥
r ∼

(
an +


bn

)
.

Proof We can write

Rn(f ;qn, z) – f (z) =
(
an +


bn

){
G(z) +Hn(z)

}
, ()

where

G(z) = –
an

an + /bn
zf ′(z)
 + anz

+


anbn + 
zf ′′(z)

( + anz)( + anqnz)
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–
 – qn

an + /bn
zf ′′(z)

( + anz)( + anqnz)

–
an( – qn)
an + /bn

zf ′′(z)
( + anz)( + anqnz)

+
an

an + /bn
qnzf ′′(z)

( + anz)( + anqnz)
()

and

Hn(z) =
(
an +


bn

)[


(an + 
bn )


Ak,n,qn (z)

]
, ()

and also (Hn(z))n∈N is a sequence of analytic functions uniformly convergent to zero for
all |z| ≤ r.
Since an + 

bn →  as n → ∞, and taking into account Theorem , it remains only to
show that for sufficiently large n and for all |z| ≤ r, we have |G(z)| > ρ > , where ρ is
independent of n.
If β –  < , then the term 

anbn+ →  as n → ∞, while the other terms converge to
zero, so there exists a natural number n ∈N with n ≥ n so that for all n≥ n and |z| ≤ r,
we have

∣∣G(z)∣∣ ≥ 


∣∣∣∣ zf ′′(z)
( + anz)( + anqnz)

∣∣∣∣ ≥ 


|zf ′′(z)|
( + r)

. ()

If β –  > , then the term an
an+/bn →  as n→ ∞, while the other terms converge to zero.

So, there exists a natural number n ∈ N with n ≥ n so that for all n ≥ n and |z| ≤ r, we
have

∣∣G(z)∣∣ ≥ 


∣∣∣∣ zf ′(z)
 + anz

∣∣∣∣ ≥ 


|zf ′(z)|
 + r

. ()

In the case of β –  = , that is, β = 
 , we obtain

an
an+/bn = [n]/qn → ∞, as n → ∞, so that

the case β = 
 remains unsettled.

Choosing n =max{n,n}, considering () and (), for all n≥ n, we get

∥∥Rn(f ;qn, ·) – f
∥∥
r ≥

(
an +


bn

)∣∣‖G‖r – ‖Hn‖r
∣∣ ≥

(
an +


bn

)


‖G‖r .

For all n ∈ {n, . . . ,n – }, we get
∥∥Rn(f ;qn, ·) – f

∥∥
r ≥

(
an +


bn

)
Mr,n,qn (z)

withMr,n,qn (z) = 
an+/bn ‖Rn(f ;qn, ·) – f ‖r > , which finally implies

∥∥Rn(f ;qn, ·) – f
∥∥
r ≥

(
an +


bn

)
Cr(f ) ()

for all n ≥ n, with Cr(f ) =min{Mr,n,qn (z), . . . ,Mr,n–,qn (z),

‖G‖r}.

From () and Theorem , the proof is complete. �
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Remark  Recently, it is much more interesting to study these operators in the case q > .
Authors continue to study that case.
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