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Abstract

Background: The problem of learning causal influences from data has recently attracted much attention. Standard
statistical methods can have difficulty learning discrete causes, which interacting to affect a target, because the
assumptions in these methods often do not model discrete causal relationships well. An important task then is to
learn such interactions from data. Motivated by the problem of learning epistatic interactions from datasets
developed in genome-wide association studies (GWAS), researchers conceived new methods for learning discrete
interactions. However, many of these methods do not differentiate a model representing a true interaction from a
model representing non-interacting causes with strong individual affects. The recent algorithm MBS-IGain addresses
this difficulty by using Bayesian network learning and information gain to discover interactions from high-dimensional
datasets. However, MBS-IGain requires marginal effects to detect interactions containing more than two causes. If the
dataset is not high-dimensional, we can avoid this shortcoming by doing an exhaustive search.

Results: We develop Exhaustive-IGain, which is like MBS-IGain but does an exhaustive search. We compare the
performance of Exhaustive-IGain to MBS-IGain using low-dimensional simulated datasets based on interactions with
marginal effects and ones based on interactions without marginal effects. Their performance is similar on the datasets
based on marginal effects. However, Exhaustive-IGain compellingly outperforms MBS-IGain on the datasets based on 3
and 4-cause interactions without marginal effects. We apply Exhaustive-IGain to investigate how clinical variables
interact to affect breast cancer survival, and obtain results that agree with judgements of a breast cancer oncologist.

Conclusions: We conclude that the combined use of information gain and Bayesian network scoring enables us to
discover higher order interactions with no marginal effects if we perform an exhaustive search. We further conclude
that Exhaustive-IGain can be effective when applied to real data.
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Background
The problem of learning causal influences from passive
data has attracted a good deal of attention in the past
30 years, and techniques have been developed and
tested. The constraint-based technique for learning
Bayesian networks is a well-known method [1], and has
been implemented in the Tetrad package (http://
www.phil.cmu.edu/tetrad/). This method orients edges
which are compelled to be causal influences. Another
method for learning Bayesian networks is the greedy

equivalent search (GES) [2], which does not in itself dis-
tinguish which edges are compelled to be causal. How-
ever, post-processing of its resultant network can
compel edges. Both these (and other) strategies assume
the composition property, which states that a variable Z
and a set of variables S are not independent conditional
on T, then there exists a variable X in S such that X and
Z are not independent conditional on T [2]. When T is
the empty set, this property simply states if Z and S are
not independent then there is an X in S such that Z and
X are not independent. So, at least one variable in S
much be correlated with Z. However, if two or more var-
iables interact in some way to affect Z, there could be
little marginal effect for each variable, and the observed
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data could easily not satisfy the composition property.
Furthermore, if interacting variables have strong marginal
effects, the causal learning algorithms do not distinguish
them as interactions, but only as individual causes.
So, the standard methods for learning causal influences

do not learn that causes are interacting to cause a target,
and do not even discover causes that are interacting with
little or no marginal effect. An important task then is to
learn such interactions from data. A method that does this
could be a preliminary step before applying a causal learn-
ing algorithm. This paper concerns the development of a
new method that does this in the case of discrete variables.
We first provide some examples of situations where
discrete variables interact.

Interaction examples
An example, which has recently received a lot of attention,
is gene-gene interactions, called epistasis. Biologically, epis-
tasis describes a situation where a variant at one locus pre-
vents the variant at a second locus from manifesting its
effect [3]. Epistasis between n loci is called pure epistasis if
none of the loci individually are predictive of phenotype
and is called strict epistasis if no proper multi-locus subset
of the loci is predictive of phenotype [4]. Epistasis has been
defined statistically as a deviation from additivity in a model
summarizing the relationship between multi-locus geno-
types and phenotype [5]. It is believed that much of genetic
risk for disease is due to epistatic interactions [6–9]. A Sin-
gle nucleotide polymorphism (SNP) is a substitution of one
base for another. Genome-wide association studies (GWAS)
investigate many SNPs, often numbering in the millions,
along with a phenotype such as disease status. By investi-
gating single-locus associations, researchers have identified
over 150 risk loci associated with 60 common diseases and
traits [10–13]. However, these single-locus investigations
would miss epistatic interactions with little marginal effect.
Another important example is the interaction of clinical

or genomic variables with treatments to affect patient out-
comes. For example, Herceptin is a treatment for breast
cancer patients which is effective for HER2+ patients. So,
Herceptin and HER2 status interact to affect survival. This
is a well-known relationship. However, we now have large
scale breast cancer and other datasets [14] from which we
can learn treatment-variable interactions that are not yet
known. This knowledge will enable us to better provide
precision medicine.
As another example, we are now obtaining abundant

hospital data concerning workflow. These data can be
analysed to determine good personnel combinations and
sequencing [15].

Statistical interactions
In statistics, the standard definition of an interaction is a
relationship where the simultaneous influence of two or

more variables on a target variable is not additive. How-
ever, when we leave the domain of regression and deal
with the type of non-linear discrete interactions discussed
above, this definition is limited. For example, researchers
have developed the Noisy-Or model to combine the effect
of binary causes that are independently causing a binary
target [16]. We would not call this relationship an inter-
action; yet the rule for combining the individual effects is
not additive. When variables combine to affect a target
with no marginal effect (e.g. pure, strict epistasis), we
definitely can say there is an interaction. Figure 1
shows Bayesian networks illustrating these two dispar-
ate situations. We discuss Bayesian networks further
in the Methods Section. However, briefly a Bayesian
networks consists of nodes which represent random
variables, edges between the nodes, and the conditional
probability distribution of every variable given each com-
bination of values of its parents. Figure 1a shows a causal
relationship with no marginal effects. That is,

P z1jx1ð Þ ¼ 0� 0:25þ 0:1� 0:5þ 0� 0:25 ¼ 0:05

P z1jx2ð Þ ¼ 0:1� 0:25þ 0:0� 0:5þ 0:1� 0:25
¼ 0:05

P z1jx3ð Þ ¼ 0:0� 0:25þ 0:1� 0:5þ 0:0� 0:25
¼ 0:05:

By the symmetry of the problem, we see the same re-
sult holds for Y. Figure 1b shows a causal relationship
developed with the Noisy-Or model. That model as-
sumes each cause has a causal strength that independ-
ently affects the target. See [16] for the details of the
assumptions. In this case the causal strength of X is px =
0.9 and the causal strength of Y is py = 0.9. From these
causal strengths, the Noisy-Or model computes the con-
ditional probabilities of Z as follows:

P z1jx1; y1ð Þ ¼ 1− 1−0:9ð Þ 1−0:9ð Þ ¼ 0:99

P z1jx1; y2ð Þ ¼ 1− 1−0:9ð Þ ¼ 0:9

P z1jx2; y1ð Þ ¼ 1− 1−0:9ð Þ ¼ 0:9

P z1jx2; y2ð Þ ¼ 1−1 ¼ 0

The examples just shown are two extreme cases, provid-
ing us with clear examples of an interaction and a non-
interaction. However, in general, there does not appear to
be a dichotomous way to classify a discrete causal rela-
tionship as an interaction or a non-interaction. So, we
propose a fuzzy set membership definition of a discrete
interaction in the Methods Section.
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Previous research on learning discrete interactions
The problem concerning learning genetic epistasis from
GWAS datasets has recently inspired ample research on
learning discrete interactions from high-dimensional
datasets. Researchers applied standard statistical tech-
niques including logistic regression [17,18], and regular-
ized logistic regression [19,20]. However, many felt that
regression may not work well at learning interacting loci
because the assumptions in these models are too re-
strictive. So researchers applied machine learning strat-
egies including modeling full interactions [21], using
information gain [22], a technique called SNP Harvester
[23], using ReliefF [24], applying random forests [25], a
strategy called predictive rule inference [26], a method
called Bayesian epistasis association mapping (BEAM)
[27], the use of maximum entropy [28], Bayesian net-
work learning [29–31], and Bayesian network learning
combined with information gain [32]. A well-known new
technique called Multifactor Dimensionality Reduction
(MDR) [33] was also developed. MDR combines two or
more variables into a single variable (hence leading to di-
mensionality reduction); this changes the representation
space of the data and facilitates the detection of nonlinear
interactions among the variables. MDR has been applied
to detect epistatically interacting loci in hypertension [34],
sporadic breast cancer [35], and type II diabetes [36]. Jiang
et al. [37] evaluated the performance of 22 Bayesian net-
work scoring criteria and MDR when learning two inter-
acting SNPs with no marginal effects. Using 28,000
simulated datasets and a real Alzheimer's GWAS dataset,
they found that several of the Bayesian network scoring
criteria performed substantially better than other scores
and MDR. The BN score that performed best was the

Bayesian Dirichlet equivalence uniform score, which is
based on the probability of the data given the model.
Henceforth, we refer to a candidate cause as a pre-

dictor. The multiple beam search algorithm (MBS) was
developed in [29] to discover causal interactions. MBS
starts by narrowing down the number of predictors
using a Bayesian network scoring criterion (discussed in
the Methods Section) to identify a best set of possible
predictors. Next it starts a beam from each of these pre-
dictors. It performs greedy forward search on this beam
by adding the predictor that increases the score the
most. It stops when no predictor addition increases the
score. Next MBS does greedy backward search on each
beam by deleting the predictor that increases the score
the most. It stops when no predictor deletion increases
the score. The set of predictors discovered in this man-
ner is a candidate causal interaction. However, if two
predictors each have a strong individual effect, they will
have a high score together and will therefore be identi-
fied as an interaction, even if they do not interact. MBS-
IGain [32] resolves this difficulty. MBS-IGain also used
MBS to develop beams and uses Bayesian network scor-
ing to end the forward search. However, it uses informa-
tion gain to choose the next predictor rather than
adding the predictor that increases the score the most.
In a comparison using 100 simulated 1000-predictor
datasets with 15 interacting predictors involved in 5 in-
teractions, MBS-IGain substantially outperformed nine
epistasis learning methods including MBS [29], LEAP
[31], logistic regression [18], MDR [33] combined with a
heuristic search, full interaction modeling [21], informa-
tion gain alone [22], SNP Harvester [23], BEAM [27],
and a technique that uses maximum entropy [28].

Fig. 1 On the left is a Bayesian network representing a causal interaction with no marginal effects, and on the right is a Bayesian network
representing a causal interaction described by the Noisy-Or model
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Methods
MBS-IGain requires some marginal effect to detect in-
teractions containing more than two predictors. If the
dataset is not high-dimensional, we can alleviate this dif-
ficulty by instead doing an exhaustive search while using
the model selection criteria in MBS-IGain. However, the
exhaustive search is not straightforward because we
must not only score each candidate model M, but also
check the submodels of M to see how much information
is provided if we do not combine them into M. We
develop Exhaustive-IGain, which does this.
We compare the performance of Exhaustive-IGain to

MBS-IGain using 10 simulated 40-predictor datasets
based on 5 interactions with marginal effects, 16 simu-
lated 40-predictor datasets based on two predictors
interacting with no marginal effects, 16 simulated 40-
predictor datasets based on 3 predictors interacting with
no marginal effects, and 16 simulated 40-predictor data-
sets based on 4 predictors interacting with no marginal
effects. We use Exhaustive-IGain to learn interactions
from a real clinical breast cancer dataset.
Since Exhaustive-Gain uses Bayesian networks and

information gain, we first review these.

Bayesian networks
Bayesian networks [16,38–40] are an important architec-
ture for reasoning under uncertainty in machine learn-
ing. They have been applied to many domains including

biomedical informatics [41–46]. A Bayesian network
(BN) represents a joint probability distribution by a
directed acyclic graph (DAG) G = (V,E), where the
nodes in V are random variables and the edges in E
represent relationships among the variables, and by
the conditional probability distribution of every node
X ∈ V given every combination of values of the node’s
parents. The edges in the DAG often represent causal
relationship [16]. A BN modeling causal relationship
among variables related to respiratory diseases ap-
pears in Fig. 2.
Using a BN, we can determine probabilities of interest

with a BN inference algorithm [16]. For example, using
the BN in Fig. 1, if a patient has a smoking history (H =
yes), a positive chest X-ray (X = pos), and a positive
CAT scan (CT = pos), we can determine the probability
of the patient having lung cancer (L = yes). That is, we
can compute P(L = yes| H = Yes, X = pos, CT = pos).
Inference in BNs is NP-hard [47]. So, approximation
algorithms are often employed [16].
Learning a BN from data concerns learning both the

parameters and the structure (called a DAG model). In
the score-based structure-learning approach, a score is
assigned to a DAG based on how well DAG model G fits
the Data. The Bayesian score [48] is the probability of
the Data given G. This score, which uses a Dirichlet
distribution to represent prior belief concerning each
conditional probability distribution in the BN, follows:

Fig. 2 A Bayesian network representing the relationships among a small subset of variables related to respiratory illnesses

Zeng et al. BMC Bioinformatics  (2016) 17:221 Page 4 of 14



where n is the number of variables in the model, ri is the
number of states of Xi, qi is the number of different
values that the parents of Xi can jointly assume, aijk is
a hyperparameter, and sijk is the number of times Xi

assumed its k th value when the parents of Xi as-
sumed their j th value. When aijk = α/riqi, where α rep-
resents a prior equivalent sample size, we call the
Bayesian score the Bayesian Dirichlet equivalent uniform
(BDeu) score [49].
It has been shown that the problem of learning a BN

DAG model from data is NP-hard [50]. Resultantly,
heuristic search algorithms have been developed [16].

Information gain, interaction strength, and interaction
power
Information theory [51] concerns the quantification and
communication of information. Given a discrete random
variable Z with m alternatives, the entropy H(Z) is de-
fined as follows:

HðZÞ ¼ −
Xm

i¼1

PðziÞlog2PðziÞ:

If we repeat n trials of the experiment having outcome
Z, then it is possible to show that the entropy H(Z) is
the limit as n→∞ of the expected value of the number
of bits needed to report the outcome of every trial. En-
tropy provides a measure of our uncertainty in the value
of Z in the sense that, as entropy increases, it takes more
bits on the average to resolve our uncertainty. Entropy
achieves its maximum value when P(zi) = 1/m for all zi,
and its minimum value (0) when P(zj) = 1 for some zj.
The expected value of the entropy of Z given X is

called the conditional entropy of Z given X. We denote
conditional entropy as H(Z | X). Mathematically, we
have

H ZjXð Þ ¼
Xk

j¼1

H Zjxj
� �

P xj
� �

;

where X has k alternatives. Knowledge of the value of X
can reduce our uncertainty in Z. The information gain
of Z relative to X is defined to be the expected reduction
in the entropy of Z given X:

IGðZ;XÞ ¼ HðZÞ−HðZjXÞ:

Let IG(Z;X,Y) denote the information gain of Z relative
to the joint probability distribution of X and Y. The

interaction strength (IS) of X and Y relative to Z as then
defined as follows:

IS Z;X;Yð Þ ¼ IG Z;X;Yð Þ−IG Z;Xð Þ−IG Z;Yð Þ:
Let IG(Z;A) denote the information gain of Z relative

to the joint distribution of all variables in set A. The IS
of variable X and set of variables A is then defined as
follows:

IS Z;X;Að Þ ¼ IG Z;X;Að Þ−IG Z;Xð Þ−IG Z;Að Þ:
Since A is a set, A ∪ {X} should technically be used in

the IG expression. However, we represent this union by
X, A. Interaction strength provides a measure of the in-
crease in information gain obtained when X and A are
known together relative to knowing each of them
separately.
When IG(Z;M) ≠ 0, we define the interaction power

(IP) of model M for effect Z as follows:

IP Z;Mð Þ ¼ min
A⊂M

IS Z;M−A;Að Þ
IG Z;Mð Þ

¼ min
A⊂M

IG Z;Mð Þ−IG Z;M−Að Þ−IG Z;Að Þ
IG Z;Mð Þ :

Since information gain (IG) is nonnegative, it is
straightforward that IP(Z;M) ≤ 1. If M is causing Z with
no marginal effects (e.g. pure, strict epistasis), the IP is
1. We would consider this a very strong interaction.
When the IP is small, the increase in IG obtained by
considering the variables together is small compared to
considering them separately. We would consider this a
weak interaction or no interaction at all.
Jiang et al. [32] show that if the variables in M are

independent causes of Z, then

ISðZ;M−A;AÞ≥0:
So, in situations we often investigate, the IP is between

0 and 1, and therefore satisfies the notion of a fuzzy set
[52], where the greater the value of the IP the greater
membership the model has in the fuzzy set of
interactions.
The IS and IP can be used to discover interactions. In

this next section we develop algorithms for learning in-
teractions that use the IS and the IP.

Interaction strength algorithms
We present the multiple beam search information gain
(MBS-IGain) and exhaustive search information gain
(Exhaustive-IGain) algorithms, which use information

scoreBayes G : Datað Þ ¼ P DatajGð Þ ¼
Yn

i¼1

Yqi

j¼1

Γ ri
k¼1aijk
� �

Γ ri
k¼1aijk þ ri

k¼1sijk
� �

Yri

k¼1

Γ aijk þ sijk
� �

Γ aijk
� �
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gain and Bayesian network scoring to learn interactions.
MBS-IGain, which was previously developed in [32],
does a heuristic search, while Exhaustive-IGain does an
exhaustive search.
Figure 3 shows Algorithm MBS-IGain. The score(Z;M)

in Algorithm MBS-IGain is the BDeu score of the DAG
model that has the predictors in M being parents of the
target Z. The notation score(Z:Y) indicates that Y is the
only parent of Z. MBS-IGain symbiotically uses the IS
and IG functions and a Bayesian network scoring criter-
ion. Initially, the most promising predictors are chosen
using the scoring criterion. A beam is then started from
each of these predictors. On each beam, the predictor,
which has the highest IS with the set of predictors
chosen so far, is greedily chosen. The search ends when
either the IS is small relative to the IG of the model
(based on a threshold T), indicating that the IP would be
small, or when adding the predictor decreases the score
of the model. This latter criterion is included because
we not only want to discover predictors that seem to be
interacting, but we also want to discover probable
models. On the other hand, the check for a sufficiently
large IS is performed because a set of SNPs could score
very high as parents of Z when there is no interaction.
For example, if X and Y each have strong causal strengths
for Z but affect Z independently, the model with them as
parents of Z would score high. The Noisy-OR model [16]
is such a model. In this situation the model X→Z← Y
would have a high score without there being an interaction.
Finally, a parameter R, which puts a limit on the size of the
model M learned, could be included in MBS-IGain.

MBS-IGain will miss a 3-predictor or 4-predictor pure
epistatic interaction. When there are not many predictors,
we can ameliorate this problem by doing an exhaustive
search. Algorithm Exhaustive-IGain, which appears in
Fig. 4, does this. The parameter R is the maximum size of
the interactions we are considering. For each set M of size
between 2 and R, the algorithm checks every subset A of
M to see if the ratio of IS(Z;M ˗ A,A) to IG(Z;M) exceeds
a threshold T. In this way it makes certain that the IP ex-
ceeds T. It also checks that M yields a higher score than
both A and M-A. If M passes these tests for every subset,
then M is considered an interaction.

Reporting the noteworthiness of an interaction
Once we discover an interaction, we need to report its
noteworthiness. First, we report its IP to indicate its
strength as an interaction. However, if the model is un-
likely, it is still not very noteworthy even if the IP is large.
So, we also need to in some way report the significance of
the model. Standard p-values are not very informative be-
cause there is more than one null hypothesis. Consider
Fig. 5, which shows the DAG model MXY in which X and
Y are both parents of Z. The three competing models are
on the right. Model M0 represents that neither variable is
a parent of Z, Model MX has X as a parent of Z and Y not
as a parent of Z, and model MY has Y as a parent of Z and
X not as a parent of Z. Standard statistical techniques do
not investigate these multiple competing hypotheses. They
only pit the null hypothesis M0 against MXY. However, if
either model MX or MY were the correct model, we would
obtain an association of the two variables together with Z

Algorithm MBS-IGain

Determine the set Best of n highest scoring predictors Y using score(Z;Y);
for each predictor Y Best

};{YM
;0flag

while 0flag
determine predictor X that maximizes IS(Z;X,M);
if

or  
),;(
),;(

score(Z;M)score(Z;X,M)T
MXZIG

MXZIS

;1flag
else

add X to M ;
endelse 

endwhile 
 while some deletion increases );( MZscore

delete the predictor from M whose deletion increases the score the most;
endwhile

endfor 
Sort the n models by );( MZscore ;

Fig. 3 Algorithm MBS-IGain
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(and thus reject M0) even though MXY is incorrect. To-
wards addressing this difficulty, Jiang et al. [30] developed
the Bayesian network posterior probability (BNPP), which
provides the posterior probability of a DAG model that
has an arbitrary number of parents of a target Z. For the
two-parent model MXY, the BNPP is as follows:

P MXY jDatað Þ

¼ P DatajMXYð ÞP MXYð Þ
P DatajMXYð ÞP MXYð Þ þ P DatajM0ð ÞP M0ð Þ þ

X
k
P DatajMkð ÞP Mkð Þ ;

where k sums over the two 1-predictor models. The
BNPP extends to larger models, but the number of com-
peting hypotheses grows exponentially with size of the
model. However, in general, we usually don’t learn an
interaction with more than 5 predictors. Jiang et al. [30]
discuss and provide prior probabilities in the case of in-
teractions learned from GWAS datasets.

Evaluation methodology
We evaluated Exhaustive-IGain by comparing it to
MBS-IGain using simulated datasets, and by applying

it to a real breast cancer dataset. We discuss each of
these next.

Simulated datasets
One hundred simulated datasets based on interacting
trinary variables causing a binary target were developed
by Chen et al. [53]. They labeled the predictors SNPs
and the target a disease. Therefore, we will proceed with
this terminology. Each dataset had 1000 total SNPs, and
consisted of 1000 cases and 1000 controls. The datasets
were generated based on two 2-SNP interactions, two
3-SNP interactions, and one 5-SNP interaction, mak-
ing a total of 15 causative SNPs. The effects of the
interactions were combined using the Noisy-Or model
[16]. The 5 interactions used to generate the datasets
were as follows:

1. S1, S2, S3, S4, S5
2. S6, S7, S8
3. S9, S10, S11
4. S12, S13
5. S14, S15

Algorithm Exhaustive-IGain

;Models
for every set of predictors M containing between 2 and R predictors

;0flag
for every proper subset A M

if

));(),;((max);(or 
);(

),;(
AZscoreAMZscoreMZscoreT

MZIG

AAMZIS

;1flag
endif

endfor
if 0flag

add M to Models ;
endif

endfor
sort the models in Models by );( MZscore ;

Fig. 4 Algorithm Exhaustive-IGain

Fig. 5 The model that X and Y are both parents of Z is on the left, and its three competing models are on the right
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Each of these 5 interactions exhibits some marginal ef-
fect. As mentioned in the Introduction Section, MBS-IGain
[33] previously outperformed 9 other methods at inter-
action discovery using these 100 datasets. We developed 10
datasets based on these same interactions, but with only 40
total SNPs. Each dataset has 1000 cases and 1000 controls.
Urbanowicz et al. [54] created GAMETES, which is a soft-

ware package for generating pure, strict epistatic models
with random architectures. We used GAMETES to develop
2-SNP, 3-SNP, and 4-SNP models of pure epistatic inter-
action. That is, there are no marginal effects. The software
allows the user to specify the heritability and the minor al-
lele frequency (MAF). We used values of heritability ranging
between 0.01 and 0.2, and values of MAF ranging between
0.1 and 0.4. Using these values, we generated 16 datasets
based on pure, strict 2-SNP interactions, 16 datasets based
on pure, strict 3-SNP interactions, and 16 datasets based on
pure, strict 4-SNP interactions. The 2-SNP and 3-SNP based
datasets contained 1000 cases and 1000 controls, and the 4-
SNP based datasets contained 5000 cases and 5000 controls.
All the simulated datasets are available in Additional file 1.
We used both MBS-IGain and Exhaustive-IGain to

analyze both sets of datasets. We ran both algorithms
with all combination of the following values of the
threshold T in the algorithms: T = 0.1, 0.2; and the par-
ameter α in the BDeu score: α = 9, 54, 128.
We compared the results using the following two

performance criteria:

Criterion 1: This criterion determines how well the
method discovers the predictors in the interactions, but
does not concern itself with whether the method
discovers the actual interactions. First, the learned
interactions are ordered by their scores. Then each
predictor is ordered according to the first interaction in
which it appears. Finally, the power according to
criterion 1 is computed as follows:

Power1 Kð Þ ¼ 1
H �M

XH

i¼1

NK ið Þ

where NK(i) is the number of true interacting predictors
appearing in the first K predictors learned for the ith
dataset, M is the total number of interacting predictors
in all interactions, and H is the number of datasets.
Criterion 2: This criterion measures how well a
method discovers each of the interactions. The
criterion used the Jaccard index which is as follows:

Jaccard A;Bð Þ ¼ # A∩Bð Þ
# A∪Bð Þ :

The Jaccard index equals 1 if the two sets are identical
and equals 0 if their intersection is empty. The criterion

provides a separate measure for each true interaction.
The learned interactions are first ordered by their scores
for each dataset i. Denote the jth learned interaction in
the ith dataset by Mj (i), and denote the true interaction
we are investigating by C. For each i and j we compute
Jaccard(Mj(i),C). We then set

JK i;Cð Þ ¼ max
1≤j≤K

Jaccard Mj ið Þ;C
� �

:

The power according to criterion 2 for interaction C is
then computed as follows:

Power2 K ;Cð Þ ¼ 1
H �M

XH

i¼1

JK i;Cð Þ

where H is the number of datasets and M is the total
number of interacting predictors in interaction C.

Real dataset
The METABRIC data set [15] has clinical data and out-
comes for 1981 primary breast cancer tumors. Table 1
shows the clinical variables and their values used in our
analysis. The data in three of these variables were trans-
formed from their original METABRIC values using do-
main knowledge and the equal distribution discretization
strategy. The transformations follow:

age_at_diagnosis: This variable was discretized to the
five ranges shown using the equal distribution
discretization technique and breast cancer expert
knowledge.
size: This variable was discretized to the three standard
ranges shown.
lymph_nodes_positive: This variable was grouped into
the six ranges shown.

The outcome variable is whether the patient died from
breast cancer. If the person was known to die from
breast cancer, the days after initial consultation that the
patient died is recorded. If the person was not known to
die from breast cancer, the days after initial consultation
that the patient was last seen alive or died from another
cause is recorded. If a patient was known to die from
breast cancer within x years after initial consultation or
is known to be alive x years after initial consultation, we
say their breast cancer survival status is known x years
after initial consultation. These data provide us with
1698 patients whose breast cancer survival status is
known 5 years after initial consultation, 1228 patients
whose breast cancer survival status is known 10 years
after initial consultation, and 782 patients whose breast
cancer survival status is known 15 years after initial
consultation.
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We used Exhaustive-IGain to learn interactions that
affect 5 year, 10 year, and 15 year breast cancer survival.

Results and discussion
Simulated datasets based on marginal effects
The results were similar for all combinations of the pa-
rameters, but best when T = 0.2 and α = 54. Figure 6
shows Power1(K) for K ≤ 25 for the Exhaustive-IGain and
MBS-IGain algorithms. Figure 7 shows Power2(K,C) for
K ≤ 12 for each interaction C for the two methods.
Figure 7f shows the average of Power2(K,C) over all 5 in-
teractions. It is initially surprising that MBS-IGain does
slightly better than Exhaustive-IGain according to Power
Criterion 1 and, on the average, according to Power

Criterion 2. These results can be attributed to the superior
performance of MBS-IGain for interaction {S1,S2,S3,S4,S5}
(Fig. 7a) and interaction {S9,S10,S11} (Fig. 7c). An explan-
ation for this superior performance is as follows. MBS-
IGain, for example, could have S9 and S10 already chosen
on a beam and be considering S11 next. The model
{S9,S10,S11} is only checked for interaction strength rela-
tive to the models {S9,S10} and {S11}. So, if the information
gain of {S9,S10,S11} satisfies a threshold relative to the sum
of the information gains of {S9,S10} and {S11} (and it in-
creases the score), the model will be chosen. On the other
hand, for Exhaustive-IGain to choose model {S9,S10,S11},
that model must also beat the sum of the gains for {S9,S11}
and {S10} and the sum of the gains for {S10,S11} and

Table 1 The clinical variables in the METABRIC dataset

Variable Description Values

age_at_diagnosis age at diagnosis of the disease 0-39, 39–54, 54–69, 69–84, 84-100

menopausal_status inferred menopausal status pre, post

size size of tumor in cm 0-20, 20–50, 50-180

lymph_nodes_positive number of positive lymph nodes 0, 1, 2–3, 4–5, 6–9. ≥ 10

lymph_nodes_removed number of lymph nodes removed 0, 1–3, 4–9, 10–20, ≥ 21

percent_nodes_positive percent of removed nodes positive 0-0.2, 0.2-0.4, 0.4-0.6, 0.6-0.8, 0.8-1

grade grade of disease 1, 2, 3

stage composite of size and # positive nodes 0,1,2,3,4

histological tumor histology IDC, Other

ER_Expr estrogen receptor expression +, −

PR_Expr progesterone receptor expression +, −

HER2_status HER2 expression +, −

P53_mutation_status whether P53 is mutated +, −

chemo whether patient had chemotherapy yes, no

radiation whether patient had radiation therapy yes, no

hormone whether patient had hormone therapy yes, no

Fig. 6 Comparison of Exhaustive-IGain and MBS-IGain, when analysing the simulated datasets based on interactions with marginal effects, using
Performance Criterion 1
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{S9}. So, MBS-IGain will more readily accept model
{S9,S10,S11}. This is a property of these particular
datasets, and should not indicate the MBS-IGain per-
forms better than Exhaustive-IGain when there are
marginal effects. MBS-IGain does a heuristic search,
and the performance of a comparison to each com-
bination of sub-models, as done by Exhaustive-IGain,
has a more proper theoretical basis. Note that the
performances of the two methods are about the same

in the case of the 2-SNP models (Fig. 7d and e),
when this phenomenon cannot occur.
Exhaustive-IGain discovers on the average 7.5 models

and MBS-IGain discovers on the average 7 models. When
there are 40 SNPs, there about 760,058 models containing
between 2 and 5 SNPs. So, both methods exhibit the good
discovery performance shown in Figs. 5 and 6 with very
few false positives. Note that MBS-IGain could discover at
most 40 models because there are only 40 beams.

Fig. 7 Comparison of Exhaustive-IGain and MBS-IGain, when analysing the simulated datasets based on interactions with marginal effects, using
Performance Criterion 2
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Simulated datasets based on pure, strict epistasis
Figure 8 shows Power2(K,C) for Exhaustive-IGain and
MBS-IGain for K ≤ 25 for each of the three pure epistatic
interactions.
We see from Fig. 8a that both methods discover the 2-

SNP interaction very well. In fact Exhaustive-IGain
ranked the correct interaction first in 15 of the datasets
and 3rd in the remaining dataset, while MBS-IGain ranks
it first in 15 of the datasets and 4th in the remaining
dataset (This information is not in the figure). In the
case of a 2-SNP interaction, MBS-IGain effectively does
an exhaustive search, explaining why it performs almost
as well as Exhaustive-IGain. Its slightly worse perform-
ance is due to its different exit criteria concerning the
score. It stops adding predictors when no predictor in-
creases the score. On the other hand, Exhaustive-IGain
checks whether any sub-model has a higher score than
the model being considered. Exhaustive-IGain achieves
this performance with very few false discoveries. The aver-
age number of interactions discovered by Exhaustive-
IGain is 2.0. On the other hand, the average number of
interactions discovered by MBS-IGain is 4.75.
Figure 8b shows that Exhaustive-IGain also discovers

the 3-SNP interactions extremely well, while MBS-IGain

exhibits poor performance. This poor performance is to
be expected. That is, when there are no marginal effects,
if {S1,S2,S3} is our interaction, S2 or S3 would be chosen
first on the beam initiating from S1 only by chance. In
general, Exhaustive-IGain exhibited this good perform-
ance with a low false positive rate. The average number
of interactions discovered for 15 of the datasets was
2.47. However, for one of the datasets, 100 interactions
(the maximum reported) were identified.
As Fig. 8c shows, Exhaustive-IGain performed well for

the 4-SNP interactions, but not as well it did for the
smaller models. This result indicates that higher order
interactions are more difficult to discover. As expected,
MBS-IGain again showed very poor performance. For 14
of the datasets, the average number of interactions dis-
covered by Exhaustive-IGain was 1.85. However, for two
of the datasets, 100 interactions were discovered.

Real dataset
Table 2 shows the correlations of each of the predictors
with breast cancer survival according to both the BNPP
and Pearson’s chi-square test. Except for a few excep-
tions, the two methods are in agreement. Our purpose
here is not to discuss these correlations, but rather to

Fig. 8 Comparison of Exhaustive-IGain and MBS-IGain, when analysing the simulated datasets based on pure epistatic interactions with no marginal
effects, using Performance Criterion 2

Zeng et al. BMC Bioinformatics  (2016) 17:221 Page 11 of 14



provide them as a frame of reference for the learned in-
teractions, which appear in Table 3.
Table 3 shows the interactions learned from the

Metabric dataset that have IPs > 0.4. The data indicates
that histological interacts with menopausal_status to
affect both 5 year and 15 year breast cancer death survival.
A consultation with a breast cancer oncologist1 reveals
that invasive ductal carcinoma (IDC) has a worse progno-
sis in premenopausal women, but other histological types
do not. Furthermore, Table 2 indicates that neither histo-
logical nor menopausal status is highly correlated with
5 year or 15 year breast cancer death survival by them-
selves. Table 3 also shows that the data indicates hormone
and menopausal_status interact to affect 10 breast cancer
death survival. The breast cancer oncologist indicated that
hormone therapy is more effective in post-menopausal
women. As Table 2 shows, neither hormone nor menopau-
sal_status are highly correlated with 10 year breast cancer
death survival by themselves. Finally, Table 3 shows that
the data indicates that histological and hormone interact
to affect 5 year breast cancer death survival. The oncolo-
gist stated IDC might respond slightly worse to hormone

therapy than other types, but that this difference is not
well-established.
The BNPP is a relatively new concept, and the IP is a

complete new concept. So, we do not have the same in-
tuition for their values as we have for a p-value. That is,
we have come to consider a p-value of 0.05 meaningful
partly due to Fisher's [55] statement in 1921 that “it is
convenient to draw the line at about the level at which
we can say: Either there is something in the treatment,
or a coincidence has occurred such as does not occur
more than once in twenty trials,” and also due to years
of experience. To provide a context for the results in
Table 3, Table 4 shows the average BNPPs and IPs of all
2, 3, 4, and 5 predictor models obtained from the
Metabric dataset. As we would expect, the value of the
BNPP decreases as the size of the models increases.
However, the IP is small for models of all sizes. The
models we learned (Table 3) are all 2-predictor models.
So we compare those results to the averages for 2-
predictor models. Our IP results of 0.43, 0.47, 0.72 and
0.49 are all substantially larger than the 2-predictor IP
average of 0.042. Three of our BNPP results, namely

Table 2 The individual variable effects learned from the METABRIC dataset. The p-values were obtained using the chi-square test

Variable 5 year BC death 10 year BC death 15 year BC death

BNPP p-value BNPP p-value BNPP p-value

P53_mutation_status 1 0 0.97 0.001 0.936 0.0004

HER2_Status 1 0 1 0 0.853 0.0006

chemo 1 0 1 0 0.999 0

PR_category 1 0 1 0 0.971 0.002

hormone 0.880 0.112 0.410 0.120 0.999 0

radiation 0.240 0.320 0.170 1 0.280 0.576

ER_category 1 0 1 0 0.889 0.002

overall_stage 1 0 1 0 1 0

menopausal_status 0.940 0.019 0.190 0.76 0.421 0.554

histological 0.450 0.0250 0.940 0.002 0.913 0.055

lymph_nodes_pos 1 0 1 0 1 0

percent_nodes_positive 1 0 1 0 0.999 0

overall_grade 1 0 1 0 0.999 0.0001

size 1 0 1 0 0.954 0.014

age_at_diagnosis 1 0 1 0 0.950 0.0003

axillary_nodes_removed 0.160 0.113 0.950 0.003 0.147 0.567

Table 3 The interactions learned from the METABRIC dataset

Outcome Interaction BNPP IP

5 year BC death histological, menopausal_status 0.77 0.43

histological, hormone 0.93 0.47

10 year BC death hormone, menopausal_status 0.32 0.72

15 year BC death histological, menopausal status 0.57 0.49

Table 4 The average BNPPs and IPs of all 2, 3, 4, and 5 predictor
models obtained from the Metabric dataset

Model Avg. BNPP Avg. IP

2-predictor models 0.266 0.042

3-predictor models 0.005 −0.005

4-predictor models 6.13 × 10 -7 0.013

5-predictor models 7:04 × 10 -16 0.040
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0.77, 0.93, and 0.57 are much higher than the average 2-
predictor BNPP of 0.266. However, the value of 0.32,
which is obtained for {hormone, menopausal_status}, is
not much higher than the average. Yet, this model has
the largest IP (0.72).

Conclusions
We compared Exhaustive-IGain to MBS-IGain using
simulated datasets based on interactions with marginal
effects, and simulated datasets based on interactions
with no marginal effects. MBS-IGain performed as well
as (actually slightly better than) Exhaustive-IGain when
analysing the datasets based on interactions with mar-
ginal effects. MBS-IGain is O(Rn2) whereas Exhaustive-
IGain is O(nR), where n is the number of predictors and
R is the maximum size of the models considered. So,
our results indicate that MBS-IGain achieves similar re-
sults to Exhaustive-IGain with this type of dataset, but
much more efficiently. On the other hand, as could be
expected, MBS-IGain could not discover pure epistatic
interactions involving more than two SNPs. Exhaustive-
IGain performed very well at discovering 3-SNP interac-
tions, and reasonably well at discovering 4-SNP interactions.
We conclude from these results that the combined use of
information gain and Bayesian network scoring enables us
to discover higher order pure epistatic interactions if we
perform an exhaustive search.
When we applied Exhaustive-IGain to a real breast

cancer dataset to learn interactions affecting breast can-
cer survival, we learned interactions that agreed with the
judgements of a breast cancer oncologist. We conclude
that Exhaustive-IGain can be effective when applied to
real data.
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