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Abstract

Background: Data generated from metabolomics experiments are different from other types of “-omics” data. For
example, a common phenomenon in mass spectrometry (MS)-based metabolomics data is that the data matrix
frequently contains missing values, which complicates some quantitative analyses. One way to tackle this problem is
to treat them as absent. Hence there are two types of information that are available in metabolomics data:
presence/absence of a metabolite and a quantitative value of the abundance level of a metabolite if it is present.
Combining these two layers of information poses challenges to the application of traditional statistical approaches in
differential expression analysis.

Results: In this article, we propose a novel kernel-based score test for the metabolomics differential expression
analysis. In order to simultaneously capture both the continuous pattern and discrete pattern in metabolomics data,
two new kinds of kernels are designed. One is the distance-based kernel and the other is the stratified kernel. While
we initially describe the procedures in the case of single-metabolite analysis, we extend the methods to handle
metabolite sets as well.

Conclusions: Evaluation based on both simulated data and real data from a liver cancer metabolomics study
indicates that our kernel method has a better performance than some existing alternatives. An implementation of the
proposed kernel method in the R statistical computing environment is available at http://works.bepress.com/
debashis_ghosh/60/.
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Background
Metabolites are the end products of cellular regulatory
and metabolic processes, and their levels can be regarded
as the response of biological systems to genetic or envi-
ronmental changes.Metabolomics experiments have been
carried out because of the fundamental regulatory impor-
tance of metabolites as components of biochemical path-
ways, the importance of certain metabolites in human diet
and their use as diagnostic markers for a wide range of
biological conditions including diseases. Recent advances
in experimental techniques like liquid chromatography
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coupled with mass spectrometry (LC-MS), gas chro-
matography coupled with mass spectrometry (GC-MS)
and capillary electrophoresis coupled with mass spec-
trometry (CE-MS), allow for the generation of high-
throughput metabolomics data. Those platforms support
the approach of trying to capture the entire metabolome,
rather than only targeted compounds. As a result, the
power of metabolomics experiments as a technology plat-
form for gene-function analysis, pharmaceutical research
and systems biology, is now beginning to be fully realized
[1,2].
Similar to other “-omic” technologies, metabolomics

studies require the development of sophisticated and
powerful statistical methodologies to evaluate and analyze
the data so that it can be turned into further biological
insights. While a lot of attention has been paid to the
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statistical analysis of genomic and proteomic data, less
has been given to data from metabolomics experiments.
The might be due to the challenges for processing of
metabolomics data given the size and complexity of the
dataset [3]. For example, mass spectrometry (MS)-based
metabolomics data is typically characterized by high
dimensionality, small sample size, high correlation struc-
ture between metabolites, redundant information (such
as adducts and fragments), and especially the sparse data
matrix, which is comprised of the samples, the variable
ID (m/z, retention time), and peak area. Novel and mul-
tiple levels of statistical approaches are required to deal
with MS-based metabolomics data. Examples of such sta-
tistical analysis can be found in [1] and [4]. In this paper,
we focus on differential expression analysis of MS-based
metabolomics data. This fundamental approach is to com-
pare the abundance level of a metabolite between an
experimental group and a control group, and to use statis-
tics to assess the significance of any differences. This kind
of study strongly supports the value of proper identifica-
tion of putative oncometabolomic markers [5,6].
A big challenge in metabolomics differential expres-

sion analysis is that the data matrix frequently contains
missing values. The missing values are caused for the fol-
lowing possible reasons. One possible reason is that the
peak might have been present in the chromatogram but
subsequently missed by peak picking. A second possi-
ble reason is that the peak was not initially present in
the chromatogram. A third reason is that the peak was
present in the chromatogram but the intensity was below
the threshold that the equipment can detect [7]. Many
statistical methods require a fully defined data matrix.
Treatment of missing values is important inmetabolomics
differential expression analysis. The most straightforward
way to handle this missing value problem is to delete a
metabolite whenever a missing value is present. However
a typical metabolomics dataset has widespread missing
values, so deleting metabolites with missing values will
result in a much smaller dataset. Another way to deal with
missing value problem is through the use of imputation
methods. However, as mentioned above, the pattern of
the missing values is very complicated. Simple imputation
routines often need the assumption of missing at random
[8], which is probably not appropriate in metabolomics
experiments. Another argument against imputation is that
one may think that, by imputing the missing values, it
only sidesteps the problem instead of incorporating this
missingness as a fundamental feature of metabolomics data [9].
An alternative is to code the missing values as zeroes,

denoting absence. Based on that, some methodologies are
proposed. One example is the presence/absence analysis
for proteomics data proposed in [10]. In their analysis,
the data matrix is digitized into binary measurements
depending on whether a peptide is present or not. In this

paper, a kernel-based score test is introduced to perform
the differential analysis in metabolomics experiments. We
also code missing values as zeroes; however, we keep the
non-zero values instead of coding them to ones. Note
that two types of information are contained in a typical
metabolomics dataset. One is the presence and absence
information of a metabolite and the other is a quantitative
abundance level of a metabolite if it is present. This spe-
cial structure poses challenges to many existing statistical
methodologies, which often fail to utilize both the contin-
uous and discrete nature of metabolomics data simultane-
ously. To address this issue, two new kinds of kernels are
designed to take the special pattern in metabolomics data
into account. Beyond the point of incorporating miss-
ing values in metabolomics experiments as an important
aspect of the data, another contribution of this paper is
that we group metabolites into metabolite-sets and per-
form the kernel-based score test on those metabolite-sets.
This allows the unit of analysis to be both a single metabo-
lite and a metabolite-set with multiple metabolites, which
is more flexible than traditional analysis. Correlation coef-
ficients are used for grouping the metabolites. Our meth-
ods are evaluated via simulation studies and by application
to real data from a liver cancer metabolomics study.

Methods
Kernels
Most statistical strategies used in differential expression
analysis are based on linear methods like OLS (ordinary
least squares regression) and ANOVA (analysis of vari-
ance). Linear methods are very popular in many statistical
problems, mostly because the simple mathematical form
allows simple algorithms and detailed study of their prop-
erties. Real-world data problems, on the other hand, often
require nonlinear methods. Taking metabolomics differ-
ential expression analysis as an example, linear methods
are not able to simultaneously capture both the continu-
ous and the discrete nature of metabolomics data. Kernels
provide a way to extend those linear methods to nonlinear
ones in a computationally tractable manner. Examples of a
gain in terms of a certain criterion by extension from lin-
earity to non-linearity can be found in [11,12]. For those
readers who are interested in the topic of kernel methods,
more details can be found in [13] and [14]. Broadly speak-
ing, instead of assuming a linear functional relationship,
kernel-basedmethods assume amore general relationship
based on a Hilbert space of functions spanned by a certain
kernel function.
LetX be the input space (usually a compact subspace of

Rp). In this paper, we call a bivariate symmetric function
k(x, y) on X × X is a kernel or a kernel function if

∫
X

∫
X
k(x, y)g(x)g(y)dxdy ≥ 0,
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for all squared integrable function g(·) on X , i.e., g(·) ∈
L2(X ). Equivalently, for any finite collection of points
x1, . . . , xn ∈ X , n ≥ 2, the Gram (kernel) matrix K with
Kij = k(xi, xj) is positive definite.
An important concept relating to kernel methods is that

of reproducing kernel Hilbert space (RKHS). The Moore-
Aronszajn theorem states that, for each kernel k on a set
X , there is a unique Hilbert space of functions on X for
which k is a reproducing kernel [15]. Mercer’s theorem
characterizes the relationship between a RKHS and its
reproducing kernel. Details can be found in [16]. Kernel
methods have been widely used in genome-wide asso-
ciation studies (GWAS). Examples include [11,17-19]. It
works in the following way. Let Y be the phenotype and
X be the genotype variables. Let i, j be two subjects in the
study. Because k(·, ·) is positive definite, k(Xi,Xj) can be
used as a measure of similarity between individual pair
(i, j) in terms of genotype variables X. Then, this kernel-
based similarity measure can be incorporated to test to
what extent variation in the level of similarity exhibited by
pairs of individual can explain the similarity in Y . In the
next subsection, we propose an approach to apply the ker-
nel to our metabolomics differential expression analysis in
a similar way as done in the genomics studies.
One of the most commonly used kernels is the Gaussian

kernel k(x, y) = exp
{−ρ−1||x − y||2}, where ρ is a pos-

itive parameter and || · || is the L2 norm. The Gaussian
kernel generates the function space spanned by radial
basis functions (RBF) and ρ is called bandwidth or shape
parameter in literature [20]. The RKHS generated by a
Gaussian kernel includes a very broad class of functions.
Another widely used kernel is the dth polynomial kernel
given by k(x, y) = (

xTy + ρ
)d, where ρ ≥ 0 and d is a

positive integer. It is called the homogeneous polynomial
kernel if ρ = 0. Other examples include spline kernels,
ANOVA kernels, tree kernels and graph kernels [21].

A kernel-based score test for differential expression
analysis
Traditional metabolite differential analysis often involves
analyzing each metabolite individually in a parametric
model, which generates a p-value for each metabolite [1].
Then significance of a metabolite is claimed if its p-value
is smaller than some certain threshold, which is often cor-
rected for multiple testing. This kind of individual analysis
can be useful. However it is widely observed in genomic
study that individual analysis can be limited [17,18]. One
appealing feature of the kernel-based score test we pro-
pose in this paper is that, it allows the unit of analysis
to be shifted from individual metabolite to groupings of
metabolites. Hence metabolic pathway analysis is also
allowed in our framework.
For a fixed metabolite-set, we observe the data

{xi, yi}, i = 1, . . . , n, where n is number of observations.

xi is the abundance level of the metabolites for sample i,
and it can be either a vector (if the metabolite-set contains
more than one metabolite) or a scaler (if the metabolite-
set consists of only one metabolite). The dimension of xi
equals the size of the metabolite-set. yi is the case-control
label for observation i. For ease of exposition, we assume
that yi is binary so that only two groups are being consid-
ered. Moreover, y = 1 indicates the case group and y = 0
indicates the control group. The following logistic model
is assumed in this paper:

logit
[
Pr(yi = 1)

] = β0 + f (xi), (1)

where f (·) is a centered smooth function in a RKHS
spanned by kernel k. Unlike traditional models, Model (1)
is semi-parametric in the sense that it does not put any
parametric assumption on f (·) except that it is assumed
to lie in a certain functional space. Hence, kernel-based
models are more flexible and more robust to issues like
model misspecification. Model (1) looks at the problem
of finding differentially expressed metabolite-sets from
a different point of view. If f (·) = 0, then metabolite
expression value xi is not related to the group labels yi.
Hence, a differentially expressed metabolite-set will lead
to a rejection of the hypothesis H0 : f (·) = 0.
A similar test has been discussed in [11]. Following the

discussion there, a score test for differential analysis with
metabolites can be proposed as follows. Let K be the n ×
n Gram matrix with Kjk = kρ(xj, xk). Here kρ(·, ·) is the
reproducing kernel of the RKHS which contains f (·), and
ρ is an unknown kernel parameter. Let y be the n×1 vector
of 0/1 group labels. The test statistic for H0 : f (·) = 0 in
model (1) is

S(ρ) = Q(ρ) − μQ
σQ

, (2)

where Q(ρ) = (y − μ̂0)TK(y − μ̂0), μ̂0 = logit−1β̂0 and
β̂0 is the estimate of β0 under the null H0 : f (·) = 0
in model (1). μQ and σ 2

Q are the mean and variance of
Q(ρ) respectively (more details about μQ and σ 2

Q can be
found in [11]). Note that f (·) is in the RKHS spanned be
kρ(·, ·). That is, ρ does not enter Model (1) under the null
H0 : f (·) = 0. Hence, the test statistic S(ρ) is inestimable
under H0 and the significance level cannot be established.
Davies, 1977 [22] and Davies, 1987 [23] considered this
non-standard testing problem and proposed a test based
on the process {S(ρ), ρ ∈ [L,U]}. This test has rejection
region of the form

{
supL≤ρ≤U S(ρ) > c

}
. Using this test,

an upper-bound for the p-value of testing H0 : f (·) = 0 in
(1) is given by

�(−M) + V exp
(
1
2
M2

)
/
√
8π , (3)

where �(·) is the cumulative distribution function of the
standard normal density, M is the maximum of S(ρ) over
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the range of ρ and V = |S(ρ1) − S(L)| + |S(ρ2) − S(ρ1)| +
· · · + |S(U) − S(ρm)| is the total variation of S(ρ) over
the interval [L,U], where ρ1, . . . , ρm are m grid points in
the interval [L,U]. For the kernels used in this paper, the
parameter ρ takes values in (0,∞). Based on the discus-
sion in [11], it is not necessary to consider all ρ values up
to ∞. For computational purposes, we take [L,U] to be[
10−3, 103

]
and m ≡ 200 evenly spaced grid points are

used.
The test statistic Q(ρ) = (y − μ̂0)TK(y − μ̂0) can be

rewritten as

Q(ρ) =
n∑

i=1

n∑
j=1

k
(
xi, xj

) (
yi − μ̂0

) (
yj − μ̂0

)
,

which is the componentwise product of the matrices
K and (y − μ̂0)(y − μ̂0)T . Note that μ̂0 is the expec-
tation of y under the null hypothesis, so the matrix
(y − μ̂0)(y − μ̂0)T is the covariance matrix of the out-
comes under the null. If we replace the kernel matrix
K with the covariance matrix of X, then this score test
is essentially the one considered in [24]. Because kernel
k(·, ·) is positive definite, the kernel matrix K with Kij =
k(xi, xj) can be viewed as a generalization of the covari-
ance matrix of metabolite-expression patterns between
the samples. Therefore, the kernel-based score test is a
generalization of the association test in [24] and it enjoys
the locally optimal power property in [25]. The test statis-
tic Q(ρ) has a high value if the covariance structure of
metabolite-expression resembles that of the outcome. The
remaining task is to design a kernel that can serve as a
proper covariancematrix of x. Two such kernels have been
designed to take the special structure of metabolomics
data into account.

Kernels for metabolomics data
In this section, we always assume that the metabolite-set
is fixed and contains p metabolites. An measurement of
the metabolite-set on one subject contains p individual
metabolite measurements. Each metabolite measurement
can be positive (indicating the metabolite abundance
level) or zero (indicating absence of that metabolite). Let
x, y ∈ X p be two arbitrary metabolite-set measurements,
where X ≡ R+ ∪ {0}. Note that we use notation y as
metabolite-set measurements in this section, while it was
used as group indicator in the previous section. In what
follows, the y in function k(x, y) or d(x, y) always denotes
metabolite measurements unless specified differently.

Distance-based kernel
One commonly used kernel is the Gaussian kernel:

k(x, y) = exp
{

−
∑p

i=1(xi − yi)2

ρ

}
; x, y ∈ Rp,

where ρ > 0 and xi is the ith dimension of x. Inspired
by the Gaussian kernel, we define a distance between two
measurements x and y as:

d(x, y) =
√√√√ p∑

i=1
I[δxi 	=δyi

] +
p∑

i=1
(xi − yi)2, (4)

where xi ∈ X , i = 1, . . . , p is measurement of the
ith metabolite in the metabolite-set, and δxi = I[xi 	=0]
is the indicator of the presence of the ith metabolite.
The first term in Eq. (4) captures the discrete nature of
metabolomics data, and the second term captures the con-
tinuous nature of metabolomics data. Compared to the
Euclidean distance on Rp, we modify the Euclidean dis-
tance by adding the first term to define a distance on the
set X p. Think about the new distance in a simple exam-
ple. Suppose the measurements are now scalars (there is
only one metabolite in each metabolite-set). Take three
measurements x1 = 0, x2 = 1 and x3 = 2 as an exam-
ple. d(x1, x2) = √

2 while d(x2, x3) = 1. The first term in
the distance defined in Eq. (4) can be taken as a penalty
term for being absent. Based on this distance, a kernel is
constructed as follows,

kd(x, y) = exp
{
−d2(x, y)

ρ

}
. (5)

The proof that (4) is a well-defined distance metric and
(5) is well-defined kernel can be found in the Supplemen-
tary materials (Section 1 in Additional file 1). Readers
who are less interested in the mathematical details can
skip the proof. There is little harm in understanding the
kernel-based score test proposed in this paper by sim-
ply treating the distance-based kernel as a variant of the
Gaussian kernel. Due to the way we define the distance
Eq. (4), the distance-based kernel kd(x, y) can take both
continuous nature and discrete nature of metabolomics
data into account. Some kinds of data processing, like
normalization, is recommended when using this kind of
kernel. For example, if those nonzero numerical values are
relatively large, then the continuous pattern will dominate
the other one in Eq. (4). Conversely, when the continuous
values are relatively small, then the second term will have
less weight compared to the first one.

Stratified kernel
An alternative way to define a kernel on X p is using strat-
ification. We first partition X p into smaller sets. On each
of those partitions, it is easier to define a kernel function.
Then we use the stratified representation proposed in [26]
to build a kernel on X p. Let � be a general complicated
set, on which it is difficult to define an appropriate kernel
function. Suppose � = ⋃m

n=1 �n, where �1, . . . ,�m are
disjoint partitions of �, andm is the number of partitions.
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Let {kn(·, ·)}mn=1 be a family of kernels on �n × �n, n =
1, . . . ,m. For ωi, ωj ∈ �, define

ks(ωi,ωj) =
{
kn(ωi,ωj) if both ωi,ωj ∈ �n,
0 otherwise.

Park et al., 2012 [26] showed that ks(·, ·) is strictly
positive-definite as long as each kernel kn(·, ·), n =
1, . . . ,m is a bounded strictly positive-definite kernel. We
extend this result to our metabolite differential expression
analysis by proposing the partitions as follows. Let X p

1 ≡
{0}p denote the stratum that no metabolite is present;
X p
2 ≡ R+ × {0}p−1 denote the stratum that only the first

metabolite in the set is present while all others are absent;
X p
3 ≡ {0} × R+ × {0}p−2 denote the stratum that only the

second metabolite in the set is present while all others are
absent; and X p

2p ≡ {R+}p denote the one that all metabo-
lites in the set are present. Notice that X p

i ’s are disjoint,
and

X p =
2p⋃
i=1

X p
i .

That is, X p is partitioned into 2p pieces depending on
whether each metabolite in the metabolite-set is present
or not. Under this stratified representation, if x, y ∈ X p

come from the same stratum, then they have exactly the
same subset of metabolites being present (or absent).
Hence, we only need to consider the continuous aspect
information if two measurements are within the same
stratum. If they are from different stratums, we just assign
a 0 value for the kernel function. For x, y ∈ X p, the
stratified kernel ks(x, y) is defined as

ks(x, y) =
{
ki(x, y) if both x, y ∈ X p

i
0 otherwise , (6)

where i = 1, . . . , 2p, and ki(x, y) is a kernel defined
on X p

i . In this paper, the Gaussian kernel is used for
ki(x, y). Since the Gaussian kernel is bounded and strictly
positive-definite, ks(x, y) defined in Eq. (6) is then strictly
positive-definite based on result in [26].
Unlike the distance-based kernel, the stratified kernel

utilizes both the continuous nature and discrete nature
of metabolomics data in stratification. We first use the
discrete aspect of information to define each stratum.
Then, within each stratum, the presence/absence infor-
mation of each measurement are the same. After this
presence/absence information being taken account for, we
use a relatively simpler kernel ki(x, y) to capture the con-
tinuous pattern in the data. An advantage of this stratified
kernel is that it is a little computationally cheaper than
the distance-based kernel, because the entries of the strat-
ified kernel matrix are simpler to calculate. However, the
disadvantage of this kind of kernel is also straightforward.
When p is large, the number of samples in each stra-
tum is small, and most entries of the kernel matrix are

zeroes. This may lead to a less informative kernel matrix
which fails to capture the correlation structure between
metabolites.

Formingmetabolites set andmultiple testing correction
The mode of our metabolite differential analysis proceeds
in two steps. First, metabolites are assigned to metabolite-
sets based on some certain criteria. Second, a kernel-
based score test is performed on each set. A nice feature
of our method is that metabolite-set analysis is allowed
in our framework. The advantages of genetic set/pathway
analysis have been widely explored in the kernel litera-
ture [11,17,18]. A similar phenomena is also observed for
metabolomics data [27-29]. In our metabolomics differ-
ential expression analysis, there are two major appeal-
ing advantages of allowing set-based analysis. First, tests
based on metabolite-sets tend to have greater power.
This is because, one can borrow information from dif-
ferent but correlated metabolites and take advantage of
the correlation between individuals, by pooling individual
metabolites into sets. Second, the number of hypothe-
ses being tested is reduced and thus relaxes the strin-
gent condition needed for correction of multiple testing.
This could be very helpful in those metabolomic experi-
ments which detected a large number of peaks, features or
compounds.
In the data experiments, the grouping criterion we used

is based on correlation coefficients. We first picked a cor-
relation threshold value c. Each metabolite was treated
as a node and we added an edge between two nodes if
the absolute correlation value between these two nodes
was greater than the threshold c. In the end, those nodes
which were connected were assigned in the same set.
This group scheme is based on the following reason-
ing. We think that, for each metabolite in a metabolic
pathway, there exists at least another metabolite which is
strongly correlated with it. We also tried setting thresh-
old value on pairwise correlations. That was, each pair
of metabolites in a set had an absolute correlation coeffi-
cient greater than the threshold value. However, we found
that pairwise correlation was too stringent and resulted
in metabolite-sets that were too small. This seems plau-
sible, as it is unlikely to be the case that for metabolite
pathways in which every pair of metabolites are strongly
correlated. Other grouping criterion are also proposed
recently by Suvitaival et al. in [27-29]. The motivation of
both our grouping method and the methods proposed
by Suvitaival et al. are the same. We both observe that
multiple peaks are highly correlated, and both want to
increase the statistical strength of differential analysis by
grouping. They differ in the grouping mechanisms. In our
method, the grouping is done based on simple network
model, while in their’s, grouping is based on more com-
plicated hierarchical Bayesian models. Other schemes like
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grouping based on some meaningful biochemical path-
way knowledge are also possible. In principle, our kernel
approach is statistically valid irrespective of the group-
ing scheme. The choice of determining optimal groupings
is an open one and beyond the scope of the current
investigation.
Note that we applied a kernel-based score test to each

metabolite-set. Assessing differential expression in this
setting leads to a multiple comparisons involving results
from hundreds of univariate kernel score tests. We need
to apply some sort of multiple testing correction to con-
trol a certain overall error measure such as false discovery
rate (FDR) [30]. Following [31], the FDR associated with a
rejection p-value cutoff c (i.e., reject an individual test with
a p-value smaller than c) is the expected of false positives
F(c) out of the total number of positives S(c):

FDR(c) = E
[
F(c)
S(c)

]
≈ E [F(c)]

E [S(c)]
(7)

E [S(c)] is simply estimated by the observed number of
positives. E [F(c)] is estimated by pπ̂0(λ)c, where M is
the total number of hypotheses, π̂0(λ) is the estimated
proportion of true null given by

π̂0(λ) =
∑M

i=1 I[pi>λ]
M(1 − λ)

, (8)

where λ is a tuning parameter between 0 and 1. Accord-
ing to [31], Eq. (8) holds when the true null p-values are
almost uniformly distributed. Therefore, given a rejection
region of [0, c] based on p-values of individual tests, the
FDR was estimated as

ˆFDR(c) = Mπ̂0(λ)c∑M
i=1 I[pi≤c]

. (9)

Eq. (9) will be used when we need to estimate FDR.
In the simulation studies, we know whether an individual
hypothesis is a true null hypothesis or a true alterna-
tive hypothesis. Hence, the true FDR can be calculated
and we do not need Eq. (9). As pointed out in [31], an
assumption that Eq. (9) holds is that the p-values of the
true null hypotheses are almost uniformly distributed.
This assumption will be checked before applying Eq. (9)
in the real data experiment analysis. Moreover, Eq. (9)
also relies on the tuning parameter λ. We tried differ-
ent λ values in our data experiments. Last, [10] propose
a hybrid procedure to estimate FDR(c) in Eq. (7) using a
binary weight (instead of the uniform weight as in Eq .(8)).
This approach is well-suited to the application described
in [10]. However, unlike Eq. (9) proposed in [31], the
theoretical properties of this hybrid method are not

well-understood. Therefore, we do not attempt compar-
isons with the hybrid method to estimate FDR in this
paper.

Results and discussion
Simulated data
Wang et al., 2012 [10] and Karpievitch et al., 2009 [32] pro-
pose different methods for proteomics differential expres-
sion analysis. Since MS-based proteomics datasets and
MS-based metabolomics datasets share some common
characteristics including the widespread missing values.
We are also interested in applying those two methods
to our metabolomics differential expression analysis. We
would like first to give a brief description of thosemethods
before applying them in our simulation studies.
In [32], a likelihood-based method is proposed. In par-

ticular, let yijkl be the intensity for protein i, peptide j in
group k and sample l. The following additive linear model
is assumed.

yijkl = Proti + Pepij + Grpik + errorijkl,

where Proti represents the overall intensity for protein i,
Pepij represents the effect of peptide j in protein i, Grpik
represents the effect of group k in protein i, and errorijkl ∼
N(0, σ 2

ij ). The sum-to-zero constrain is applied to both
peptide effects and group effects, that is,

∑
j Pepij = 0,

and
∑

k Grpik = 0. The relevant null hypothesis for test-
ing differential expression in protein i is H0i : Grpi1 =
· · · = GrpiK = 0 (assuming there are K groups in total).
Based on this linear model, yijkl ∼ N(μijk , σ 2

ij ), where
μijk = Proti + Pepij + Grpik . Then the author propose a
likelihood function considering both the likelihood con-
tribution of unobserved yijkl measurements and that of
observed yijkl measurements (see [32] for more details).
Finally, a likelihood ratio test statistic is used for testing
differential expressions.
As an alternative to the intensity-based analysis in

[10,32] propose a presence/absence analysis, in which
peak intensities are digitized into binary measurements
depending on whether a peak was observed or not. A
logistic regressionmodel is used for this presence/absence
analysis. Specifically, let yijkl be the indicator for whether
a peak was observed for protein i, peptide j in group k
and sample l (note that the notation yijkl is different from
the one used in [32]). Then yijkl ∼ Bernoulli(pijk), and the
logistic regression model is:

logit(pijk) = Proti + Pepij + Grpik ,

where the notations for the parameters Proti, Pepij, Grpik
are the same as those in [32], and the same sum-to-zero
constrains are also applied in this logistic model. The null
hypothesis for testing differential expression in protein i
is H0i : Grpi1 = Grpi2 = 0 (assuming there are only 2
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groups in this presence/absence analysis). The proposed
test statistics is

Ti =
∣∣∣∣∣∣
mi∑
j=1

ωij(yij1· − yij2·)

∣∣∣∣∣∣ ,
where mi is the number of peptides in protein i, ωij =
yij··/

∑
j yij··, and a · indicates a summation over that index.

Ti is a weighted average of observed presence difference
Tij (where Tij = yij1· − yij2·) on each sibling peptide j.
Finally, A bootstrap-based test on Ti is proposed for H0i :
Grpi1 = Grpi2 = 0 (see [10] for more details).
We conducted simulation studies to evaluate and to

compare the performance of various tests including two
kernel-based score tests and the two tests used in pro-
teomics differential expression analysis. Simulation data
were generated in a similar way as in [10]. Specifically,
we generated our simulated data with 1000 metabolite-
sets and 20 samples. The number of metabolites within
each metabolite-set was uniformly distributed between 1
and 15. The group information had already been incorpo-
rated in the data, we omitted the grouping stage of our
kernel method to make sure that all methods were work-
ing on the same data structure. More details about this
simulation setup could be found in [10]. This data was
summarized in a matrix with each row representing a
metabolite and each column representing a sample. Each
cell in the data matrix was a measurement of metabolite
abundance level. Different rows formed a metabolite-set
and our analysis was performed at the level of metabolite-
set.
In a typical metabolomics experiment, about 20% to 40%

total collection of measurements are missing, i.e., 20% to
40% cells in the data matrix are zeroes. We first gener-
ated the complete data matrix. A certain proportion of the
smallest values in this complete data matrix were set to
be 0, indicating absence of a metabolite. This is reason-
able because one major reason for missing values in MS
based metabolomics study is that the abundance level is
lower than the detection threshold of the device. In our
simulation, the proportion of zeroes was 20% or 40%. The
complete data were generated from the following linear
fixed effects model:

Xijkl = Si + Mij + Gik + Errijkl,

where i = 1, . . . , 1000 were metabolite-sets, j = 1, . . . , ni
were metabolites within the ith metabolite-set, k = 1, 2
were group labels and l = 1, . . . 10 were samples or
replicates within each group. In this linear model, Si ∼
uniform(10, 14) was the effect of metabolite-set i; Mij ∼
uniform(−2, 2) was the effect of metabolite j in set i. Gik
was the treatment (group) effect in metabolite-set i. Here,
we were more interested in the treatment effect on the
whole metabolite-set instead of an individual metabolite.

That was why we omitted the subindex j in Gik ; Errijkl was
normally distributed error term with mean 0 and different
variances for different metabolite-sets. For model identi-
fiability, we assumed that Gi2 = 0. The null hypothesis
H0 : Gi1 = 0 was of our interest in this differential expres-
sion analysis. We considered both a high and low level
magnitude of group effect. For the high-level magnitude
group effectGi1 = −3 or −4, and for the low-level magni-
tude group effect Gi1 = −1 or −2. Finally, the proportion
of the true null hypotheses were 75% and 50%. Here we
called metabolite i a true null hypothesis if it was not dif-
ferentially expressed, i.e., H0i : Gi1 = Gi2 = 0. To sum
up, we had in total 8 different simulation scenarios: two
different levels of group effect (high and low), two differ-
ent levels of missing data (20% and 40%) and two different
proportions of differentially expressed metabolites (25%
and 50%). Under each scenario, one simulated dataset of
1000 metabolite-sets expressions from 20 samples in two
groups was generated. The size of each metabolite-set
varied from 1 to 15.
We applied both the distance-based kernel score test

and stratified kernel score test. Because the range of
Xijkl was small, we did not use any normalization when
applying the distance-based kernel score test based on
Eq. (4). Other existing methods such as the qualita-
tive presence/absence method [10] and the quantitative
intensity-based method [32] were also used for purposes
of comparison. As a benchmark, two-sample t-test, which
is commonly used in differential expression analysis, was
also performed in this simulation study. When the size
of metabolite-set was greater than 1, an extension of the
t-test, the Hotelling T2 test was applied. In our simula-
tions, the Hotelling T2 could not be computed because
the estimated variance matrix was not invertible due to
the widespread zero values in metabolomics data. To fix
such an issue, we averaged the abundance level over all
metabolites in the set and applied a t-test to the one-
dimensional average score. Metabolomics data are often
highly skewed, which violates the normality assumption
in t test. Hence, we also applied theWilcoxon signed-rank
test [33]. One similar issue is that the ranking process
required in Wilcoxon method does not work when the
metabolite-set containsmore than onemetabolite. In such
a case, as what we did in t test, the averaged score of abun-
dance level was calculated and the Wilcoxon signed-rank
test was applied to this one-dimension score. For simplic-
ity, we refer to these tests as Kernd, Kerns, Qual, Quant, T
and Wilcox, respectively, in what follows.
Figure 1 presents histograms of p-value of different

methods on the simulation scenario with low group
effect, 20% missing data and 50% differentially expressed
metabolites. In this simulation, a total of 1000 metabolite-
sets were generated, and the first 500 metabolite-sets
were truly differentially expressed. Except for the Qual
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Figure 1 Histogram of p-values. Histogram of p-values on the simulated data with low group effect, 20% missing data and 50% differentially
expressed metabolites. The titles (a), (b), (c), (d), (e), (f) correspond to methods Kernd, Kerns, Qual, Quant, T and Wilcox respectively.

method, the p-value histograms of all other five methods
showed an expected distribution in the sense that about
500 hypotheses were rejected and most of them were true
positive (the corresponding number in Qual method was
about 400 instead). Figure 2 are the ROC curves of dif-
ferent methods on the same simulation study as that in
Figure 1. We were interested in the performance of all
tests in a low false positive rate. Hence we considered
FDR ≤ 0.05. Based on Figure 2a) (left panel), kernel
methods, Quant, T and Wilcox methods had better per-
formance than the Qual method, which supported the
result found in Figure 1. We focused on the area with true
positive rate form 0.9 to 1 to get the Figure 2b) (right
panel). Because Qual method could not achieve a true
positive rate greater than 0.8 based on Figure 2a), Qual
did not appear in Figure 2b). Based on Figure 2b), we can
see that kernel methods had best performance in terms of
ROC curve, followed by the Wilcoxon signed-rank test. A
similar pattern was observed for other simulation scenar-
ios. One reason for such a good performance of Wilcoxon
test is that there were almost no ties in our simulation
setting. Recall that the number of metabolites in each set
was uniformly distributed in {1, 2, . . . , 15}, and most of
the 1000 metabolite contained more than one metabolite.

We performed the Wilcoxon test on the average score of
multiple metabolites. However, by taking average value for
metabolites, it broke down many tied zero values. Hence,
in the average scores, there were much fewer ties. That
explained the fairly good performance of Wilcoxon test
presented in Figure 2.
Table 1 shows the number of identified significantly dif-

ferentially expressed metabolite-sets at a true FDR level
of 0.05 of different methods under various simulation
settings. The notation 25% diff and 50% diff indicate
that there are 250 and 500 truly differentially expressed
metabolite-sets respectively. 20% and 40% of missingness
(proportion of zeroes in the data matrix) are consid-
ered in Table 1. Based on Table 1, the Qual method
has too many false positives. Irrespective of the cutoff
point c, the qualitative method cannot achieve a true FDR
smaller than 0.05. The reason for its performance of may
be that it worked on a less informative binary matrix
while the other five methods worked on a semicontinu-
ous matrix. The Quant method was not effective when
the proportion of missing data was large and the number
of truly differential expressed gene was small. Our ker-
nel score tests, the T-test and the Wilcoxon test worked
quite well in all simulation scenarios. The kernel tests
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Figure 2 ROC curve. ROC curves of different methods on the simulated data with low group effect, 20% missing data and 50% differentially
expressed metabolites. The range of y-axis on the left panel a) is [0,1], and the range of y-axis on the right panel b) is [0.9,1].

seemed to have a slight advantage over the T-test and the
Wilcoxon test across different scenarios especially when
the group effect was low. The major reason for the good
performance of our kernel methods it that the kernels
are well designed to take both aspects of information in
metabolomics data into account. Another advantage of

kernel methods is its flexibility. Note that the kernel meth-
ods do not assume any parametric assumptions, while
three other alternative methods (Qual, Quant, T) rely on
the linearity assumption. Even though we generated our
data under a linear model, yet our kernel methods still had
a slight advantage over those parametric methods. Besides

Table 1 Number of identified significantly differentially expressedmetabolites at a true FDR level of 0.05

Low group effect 25% diff 50% diff

Method/miss(%) 20% 40% 20% 40%

Kernd 259 247 517 500

Kerns 259 247 517 500

Qual * * * *

Quant 244 * 511 487

T 255 241 515 496

Wilcox 254 245 517 496

High group effect 25% diff 50% diff

Method/miss(%) 20% 40% 20% 40%

Kernd 260 248 523 511

Kerns 260 248 523 511

Qual * * * *

Quant 263 * 525 525

T 260 249 523 510

Wilcox 259 247 523 509

The symbol * in the table means that the method can not obtain a true FDR of 0.05 no matter what rejection region [0,c] is used.
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the flexibility in model assumption, our kernel methods
are also more flexible in application. The Hotelling T2

test breaks down because of widespread zeroes leading
to singularity of the sample covariance matrix, and the
Wilcoxon signed-rank test breaks down when the dimen-
sion of metabolite-set is greater than 1. However, our
kernel method are able to handle both cases without any
adjustments.

Real data
The data analyzed in this section come from a
metabolomics study on the effect of hepatocellular
carcinoma (HCC) on liver metabolism and circulating
endogenous metabolites. This dataset is publicly available,
and that details of the study including the statements of
ethical approval and informed consent are provided in the
original paper [5]. Ultraperformance liquid chromatog-
raphy coupled with electrospray ionization quadrupole
time-of-flight mass spectrometry was used to profile the
samples. The raw chromatographic and spectral data
were aligned, deconvoluted and normalized by Pareto
scaling. We do not perform any other normalization in
the distance-based kernel score test. A total of 1388
features have been generated on 55 subjects. Each spec-
tral feature was represented by a unique m/z, reten-
tion time, and peak area. For clarity and simplicity, we
define a feature a unique m/z and retention time. Among
those 55 subjects, 20 are HCC patients, 35 are non-
HCC patients. A more detailed description can be found
in [5].
The goal of this study was to find features or feature-sets

which were significantly differentially expressed between
HCC group and control group. Hence, those features
could be treated as potential diagnostic markers of the
disease. Exploratory data analysis showed that some pair-
wise Pearson’s correlation coefficients were as high as
0.99. Hence, some features might correspond to the same
metabolite with different ions (like H and Na adducts) in
theMS-basedmetabolomics study. Them/z and retention
time information in the dataset supported this asser-
tion. Based on this observation, we applied the grouping
algorithm using Pearson’s correlation described in the
Methods Section to group those highly correlated fea-
tures into the same feature-set. Other grouping schemes
are also possible depending on the purpose of the study.
The threshold correlation value for grouping was set to be
0.95. Because this dataset contained only 1388 features,
there was not a huge need to use a low correlation thresh-
old value to reduce the number of individual tests. Under
this threshold value, all 1388 features were grouped as
1130 feature-sets. Among those 1130 feature-sets, 1064
of them contained a single feature and the biggest set
contained 56 features. For each feature-set, a distance-
based kernel score test and a stratified kernel score test

were applied. For ease of presenting the result, we only
applied the Wilcoxon signed-rank test. There are two
major reasons for this. First, it is a robust test in the sense
that it requires fewer assumptions, while the other three
non-kernel methods (Qual, Quant, T) need the linearity
assumption. The true relationship between hepatocellular
carcinoma and metabolites abundance level is unknown
and possibly nonlinear. Hence, this robustness is desired
in our real data analysis. Second, the Wilcoxon signed-
rank test showed a better performance than the three
parametric methods inmost of scenarios in the simulation
studies.
Figure 3 illustrates the p-values obtained from the three

methods. We checked the distribution of those p-values
greater than 0.05 using QQ-plot on the right panel in
Figure 3. The deviations from the straight line were mostly
minimal. Hence, those p-values greater than 0.05 were
almost distributed as Uniform (0,1), and it was valid to use
Eq. (9) to estimate FDR. Figure 4 shows curves of number
of significantly differentially expressed metabolites versus
FDR estimation. Each point in the curve corresponds to
a cutoff value c. The y-axis is associated with the num-
ber of features with a p-value smaller than c, and the
x-axis is the estimated ˆFDR(c) using Eq. (9). The range
of the cutoff value c was set to be (0, 0.05) in Figure 4.
Different λ values in Eq. (9) were used and those results
were similar. The one presented in Figure 4 corresponds
to λ = 0.7. Based on Figure 4, a distance-based kernel
score test had the best performance in that it could detect
more significance at a given estimated FDR level than the
other two methods. At an estimated FDR level lower than
0.1, our stratified kernel score test also outperformed the
Wilcoxon signed-rank test. At an estimated FDR level of
0.05, 279, 218, 194 feature-sets were detected as signif-
icantly differentially expressed by distance-based kernel
score test, stratified kernel score test and Wilcoxon test
respectively. At a estimated FDR level of 0.01, the num-
bers of rejections from the three tests were 210, 163 and
86. Therefore, our kernel-based method had best perfor-
mance inmetabolomics differential expression analysis on
this HCC data especially at a low FDR level. In this HCC
dataset, 1064 out of 1130 feature-sets contain only one
feature. There are a lot of tied zero values in those single-
feature feature-sets. Those ties reduce the power of the
Wilcoxon signed-rank test. Moreover, we also performed
the grouping based on Spearman’s correlation. The results
are shown in Section 2 in Additional file 1. The results
obtained from grouping based on Spearman’s correlation
are very similar with those using Pearson’s correlation.
The same analysis we did here can also apply to the
differential analysis using Spearman’s correlation-based
groupings. Our kernel approach for differential expres-
sion analysis has a good performance irrespective of the
grouping scheme.
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Figure 3 P-values of different methods. The left panel are the histograms of all p-values, and the right panel are the QQ-plot of those p-values
greater than 0.05.

Finally, [5] used a different error measure, the family-
wise error rate (FWER), instead of FDR in their study.
They used Bonferroni correction to control the FWER.
That was, any individual test with a p-value smaller than
α/n was rejected in order to achieve a FWER of α, where
n was the number of individual tests. We were also inter-
ested in a comparison between their method and our
kernel methods. In [5], about 30 significant features were
determined by the Student t test with Bonferroni correc-
tion to control a family-wise error rate (FWER) of 0.05.
We also applied Bonferroni correction at a FWER level
of 0.05 to our methods, and found that 159, 125 and
34 feature-sets were significantly differently expressed by
distance-based kernel score test, stratified kernel score
test and Wilcoxon signed-rank test respectively. At a
FWER of 0.05, the Wilcoxon test has similar perfor-
mance with the Student t test in [5]. Our kernel-based
approaches are much more powerful in that they can

reject more hypotheses at the same level of statistical
confidence. Further research of these significant features
would provide new insights into the pathobiology of the
disease.

Conclusion
In this article, we have developed a kernel-based anal-
ysis for metabolomics data that is designed to test for
differentially expressed metabolites. One challenge in
metabolomics is the sparsity of the data matrix resulting
from missing values. We extend the kernel-based score
test widely used in genomics to metabolomics by intro-
ducing two new kernels. The new kernels can incorporate
both the discrete nature as well as continuous nature
of metabolomics data into differential expression analy-
sis. Besides the advantage of being able to capture both
aspects of information in metabolomics data, the p-value
of kernel score test is almost continuous and can be fit into
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Figure 4 Significance versus FDR. Number of significantly
differentially expressed metabolites versus FDR estimation on
hepatocellular carcinoma data. The vertical dotted line has an
estimated FDR of 0.05.

the existing FDR estimation framework proposed in [31].
In order to combine both presence/absense information
as well as the quantitative information, some authors
have applied two separate tests and then introduce some
new approach to estimate a overall FDR measure [10].
Those methods are new and not well-studied compared
with the one in [31]. In this sense, our kernel approach
is more general and easily fits into the existing FDR
framework.
We have also developed a data-driven algorithm to

group metabolites into clusters as a preprocessing step
to performing the association test. However, the crite-
ria for selecting clusters based on correlation is ad hoc.
Some other grouping schemes have also been proposed in
the literature [27-29]. Further work is needed in order to
provide more formal guidance on how to do metabolite
grouping. The kernel-based approach has better perfor-
mance relative to standard methods in both the simulated
examples and the hepatocellular carcinoma dataset we
examined. An implementation of the proposed kernel
metabolomics differential analysis method in the R statis-
tical computing environment is available at http://works.
bepress.com/debashis_ghosh/60/.

Additional file

Additional file 1: Supplementary material. The Supplementary material
includes the proof of positive-definiteness of the distance-based kernel,
and more simulation results on the HCC dataset.
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5. Patterson AD, Maurhofer O, Beyoğlu D, Lanz C, Krausz KW, Pabst T, et al.
Aberrant lipid metabolism in hepatocellular carcinoma revealed by
plasma metabolomics and lipid profiling. Cancer Res. 2011;71(21):
6590–600.

6. Soga T, Baran R, Suematsu M, Ueno Y, Ikeda S, Sakurakawa T, et al.
Differential metabolomics reveals ophthalmic acid as an oxidative stress
biomarker indicating hepatic glutathione consumption. J Biol Chem.
2006;281(24):16768–76.

7. Bijlsma S, Bobeldijk I, Verheij ER, Ramaker R, Kochhar S, Macdonald IA,
et al. Large-scale human metabolomics studies: a strategy for data (pre-)
processing and validation. Anal Chem. 2006;78(2):567–74.

8. Little RJ, Rubin DB. Statistical analysis with missing data. Hoboken, NJ:
John Wiley & Sons; 2014.

9. Mak TD, Laiakis EC, Goudarzi M, Fornace Jr AJ. Metabolyzer: A novel
statistical workflow for analyzing postprocessed lc–ms metabolomics
data. Anal Chem. 2013;86(1):506–13.

10. Wang X, Anderson GA, Smith RD, Dabney AR. A hybrid approach to
protein differential expression in mass spectrometry-based proteomics.
Bioinformatics. 2012;28(12):1586–91.

11. Liu D, Ghosh D, Lin X. Estimation and testing for the effect of a genetic
pathway on a disease outcome using logistic kernel machine regression
via logistic mixed models. BMC Bioinf. 2008;9(1):292.

12. Zhan X, Ghosh D. Incorporating auxiliary information for improved
prediction using combination of kernel machines. Stat Methodol.
2015;22:47–57.

13. Muller K, Mika S, Ratsch G, Tsuda K, Scholkopf B. An introduction to
kernel-based learning algorithms. Neural Networks, IEEE Trans. 2001;12(2):
181–201.

14. Schölkopf B, Smola AJ. Learning with kernels: support vector machines,
regularization, optimization, and beyond. Cambridge, USA: MIT press;
2002.

15. Aronszajn N. Theory of reproducing kernels. Trans Am Math Soc.
1950337–404.

http://works.bepress.com/debashis_ghosh/60/
http://works.bepress.com/debashis_ghosh/60/
http://www.biomedcentral.com/content/supplementary/s12859-015-0506-3-s1.pdf
http://onlinelibrary.wiley.com/doi/10.1002/9780470744307.gat016/full
http://onlinelibrary.wiley.com/doi/10.1002/9780470744307.gat016/full


Zhan et al. BMC Bioinformatics  (2015) 16:77 Page 13 of 13

16. Cristianini N, Shawe-Taylor J. An introduction to support vector machines
and other kernel-based learning methods. Cambridge: Cambridge
university press; 2000.

17. Liu D, Lin X, Ghosh D. Semiparametric regression of multidimensional
genetic pathway data: Least-squares kernel machines and linear mixed
models. Biometrics. 2007;63(4):1079–88.

18. Wu MC, Kraft P, Epstein MP, Taylor DM, Chanock SJ, Hunter DJ, et al.
Powerful snp-set analysis for case-control genome-wide association
studies. Am J Human Genet. 2010;86(6):929–42.

19. Zhan X, Epstein MP, Ghosh D. An adaptive genetic association test using
double kernel machines. Stat Biosci. 20141–20. http://link.springer.com/
article/10.1007/s12561-014-9116-2.

20. Buhmann MD. Radial basis functions: theory and implementations, vol. 5.
Cambridge: Cambridge university press; 2003.

21. Hofmann T, Schölkopf B, Smola AJ. Kernel methods in machine learning.
Anal Stat. 20081171–220.

22. Davies RB. Hypothesis testing when a nuisance parameter is present only
under the alternative. Biometrika. 1977;64(2):247–54.

23. Davies RB. Hypothesis testing when a nuisance parameter is present only
under the alternative. Biometrika. 1987;74(1):33–43.

24. Goeman JJ, Van De Geer SA, De Kort F, Van Houwelingen HC. A global
test for groups of genes: testing association with a clinical outcome.
Bioinformatics. 2004;20(1):93–9.

25. Goeman JJ, Van De Geer SA, Van Houwelingen HC. Testing against a
high dimensional alternative. J R Stat Soc: Ser B (Stat Methodology).
2006;68(3):477–93.

26. Park IM, Seth S, Rao M, Príncipe JC. Strictly positive-definite spike train
kernels for point-process divergences. Neural Comput. 2012;24(8):
2223–50.

27. Huopaniemi I, Suvitaival T, Nikkilä J, Orešič M, Kaski S. Two-way analysis
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