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Abstract
In this paper, we introduce and study a new system of general nonconvex variational
inclusions involving four different nonlinear operators (SGNVI) and prove the
equivalence between the SGNVI and a fixed point problem. By using this equivalent
formulation, we establish the existence and uniqueness theorem for solution of the
SGNVI. We use the foregoing equivalent alternative formulation and two nearly
uniformly Lipschitzian mappings S1 and S2 to suggest and analyze some new
two-step projection iterative algorithms for finding an element of the set of fixed
points of the nearly uniformly Lipschitzian mappingQ = (S1, S2), which is the unique
solution of the SGNVI. Further, the convergence analysis of the suggested iterative
algorithms under suitable conditions is studied.
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1 Introduction
The variational principle, the origin of which can be traced back to Fermat, Newton, Leib-
niz, Bernoulli, Euler, and Lagrange, has been one of the major branches of mathematical
and engineering sciences for more than two centuries. It can be used to interpret the basic
principles of mathematical and physical sciences in the form of simplicity and elegance.
The variational principles have played a fundamental and important part as unifying in-
fluence in sciences and have played a fundamental role in the development of general
theory of relativity, gauge field theory in modern particle physics, and solution theory. In
recent years, these variational principles have been enriched by the discovery of the varia-
tional inequalities theory, which is mainly due to Stampacchia [] in . The variational
inequalities theory constituted a significant and novel extension of the variational princi-
ples and describe a broad spectrum of interesting and fascinating developments involving
a link among various fields of mathematics, physics, economics, equilibrium, financial,
optimization, regional, and engineering sciences. In fact, it has been shown that the vari-
ational inequalities theory provides the most natural, direct, simple, unified, and efficient
framework for a general treatment of a wide class of problems.Many research papers have
been written lately, both on the theory and applications of this field. Important connec-
tions with main areas of pure and applied sciences have been made, see for example [–]
and the references cited therein. The development of variational inequality theory can be
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viewed as the simultaneous pursuit of two different lines of research. On the one hand, it
reveals the fundamental facts on the qualitative aspects of the solution to important classes
of problems; on the other hand, it also enables us to develop highly efficient and powerful
new numerical methods to solve, for example, obstacle, unilateral, free, moving and the
complex equilibrium problems. One of the most interesting and important problems in
variational inequality theory is the development of an efficient numerical method. There
is a substantial number of numerical methods, including projection method and its vari-
ant forms, Wiener-Holf (normal) equations, auxiliary principle, and descent framework
for solving variational inequalities and complementarity problems.
Projectionmethod and its variant forms represent important tool for finding the approx-

imate solution of various types of variational and quasi-variational inequalities, the origin
of which can be traced back to Lions and Stampacchia []. The projection type methods
were developed in ’s and ’s. The main idea in this technique is to establish the
equivalence between the variational inequalities and the fixed point problems using the
concept of projection. This alternative formulation enables us to suggest some iterative
methods for computing the approximate solution.
Verma [], Chang et al. [] and Huang and Noor [] introduced and studied systems of

nonlinear variational inequalities, and by using the projection operator technique, they
proposed some projection iterative algorithms for solving these systems of variational in-
equalities. They also studied the convergence analysis of the proposed iterative algorithms
under some certain conditions.
It should be pointed out that almost all the results regarding the existence and itera-

tive schemes for solving variational inequalities and related optimizations problems are
being considered in the convexity setting. Consequently, all the techniques are based on
the properties of the projection operator over convex sets, which may not hold in gen-
eral, when the sets are nonconvex. It is known that the uniformly prox-regular sets are
nonconvex and include the convex sets as special cases, for more details, see for example
[–]. In recent years, Balooee et al. [], Bounkhel et al. [], Noor et al. [], Pang et al.
[], Petrot [] and Suwannawit et al. [] have considered variational inequalities in the
context of uniformly prox-regular sets.
On the other hand, related to the variational inequalities, we have the problem of finding

the fixed points of nonexpansivemappings, which is the subject of current interest in func-
tional analysis. It is natural to consider a unified approach to these two different problems.
Motivated and inspired by the research going in this direction, Noor and Huang [] con-
sidered the problem of finding a common element of the set of solutions of variational in-
equalities and the set of fixed points of nonexpansivemappings. It is well known that every
nonexpansive mapping is a Lipschitzian mapping. Lipschitzian mappings have been gen-
eralized by various authors. Sahu [] introduced and investigated nearly uniformly Lips-
chitzian mappings as a generalization of Lipschitzian mappings. In the recent past, some
works in this direction for finding the solutions of the variational inequalities/inclusion
problems and the fixed points of the nearly uniformly Lipschitzian mappings have been
done, see, for example, [, , ].
Motivated and inspired by the above works, in the present paper, we first introduce and

consider a new system of general nonconvex variational inclusions involving four differ-
ent nonlinear operators (SGNVI). We prove the equivalence between the SGNVI and a
fixed point problem, and then by this equivalent formulation, we discuss the existence
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and uniqueness of solution of the SGNVI. By using two nearly uniformly Lipschitzian
mappings S and S and the aforesaid equivalent alternative formulation, we suggest and
analyze some new projection two-step iterative algorithms for finding an element of the
set of fixed points of the nearly uniformly Lipschitzian mapping Q = (S,S), which is the
unique solution of the SGNVI. The convergence analysis of the suggested iterative algo-
rithms under suitable conditions is also studied.

2 Formulations and basic facts
Throughout this article, we letH be a real Hilbert space, which is equipped with an inner
product 〈·, ·〉 and the corresponding norm ‖ · ‖, and we let K be a nonempty and closed
subset of H. We denote by dK (·) or d(·,K) the usual distance function to the subset K ,
i.e., dK (u) = infv∈K ‖u – v‖. Let us recall the following well-known definitions and some
auxiliary results of nonlinear convex analysis and nonsmooth analysis [–, ].

Definition . Let u ∈H be a point not lying in K . A point v ∈ K is called a closest point
or a projection of u onto K if dK (u) = ‖u – v‖. The set of all such closest points is denoted
by PK (u), i.e.,

PK (u) :=
{
v ∈ K : dK (u) = ‖u – v‖}.

Definition . The proximal normal cone of K at a point u ∈ K is given by

NP
K (u) :=

{
ξ ∈H : ∃α >  such that u ∈ PK (u + αξ )

}
.

Clarke et al. [], in Proposition .., give a characterization of NP
K (u) as follows.

Lemma . Let K be a nonempty closed subset in H. Then ξ ∈ NP
K (u) if and only if there

exists a constant α = α(ξ ,u) >  such that 〈ξ , v – u〉 ≤ α‖v – u‖ for all v ∈ K .

The above inequality is called the proximal normal inequality. The special case in which
K is closed and convex is an important one. In Proposition .. of [], the authors give
the following characterization of the proximal normal cone for the closed and convex sub-
set K ⊂H.

Lemma . Let K be a nonempty, closed and convex subset in H. Then ξ ∈ NP
K (u) if and

only if 〈ξ , v – u〉 ≤  for all v ∈ K .

Definition . Let X be a real Banach space, and let f : X → R be the Lipschitz with
constant τ near a given point x ∈ X, that is, for some ε > , we have |f (y) – f (z)| ≤ τ‖y– z‖
for all y, z ∈ B(x; ε), where B(x; ε) denotes the open ball of radius ε >  and centered at x.
The generalized directional derivative of f at x in the direction v, denoted as f ◦(x; v), is
defined as follows.

f ◦(x; v) = lim sup
y→x,t↓

f (y + tv) – f (y)
t

,

where y is a vector in X and t is a positive scalar.

http://www.journalofinequalitiesandapplications.com/content/2013/1/377
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The generalized directional derivative defined earlier can be used to develop a notion of
tangency that does not require K to be smooth or convex.

Definition . The tangent cone TK (x) to K at a point x in K is defined as follows:

TK (x) :=
{
v ∈H : d◦

K (x; v) = 
}
.

Having defined a tangent cone, the likely candidate for the normal cone is the one ob-
tained from TK (x) by polarity. Accordingly, we define the normal cone ofK at x by polarity
with TK (x) as follows:

NK (x) :=
{
ξ : 〈ξ , v〉 ≤ , ∀v ∈ TK (x)

}
.

TheClarke normal cone, denoted byNC
K (x), is defined byNC

K (x) := co[NP
K (x)], where co[S]

denotes the closure of the convex hull of S.
Clearly, NP

K (x) ⊆ NC
K (x). Note that NC

K (x) is a closed and convex cone, whereas NP
K (x) is

convex, but may not be closed. For further details on this topic, we refer to [, , ] and
the references therein.

In , Clarke et al. [] introduced and studied a new class of nonconvex sets, called
proximally smooth sets; subsequently, Poliquin et al. in [], investigated the aforemen-
tioned set under the name of uniformly prox-regular sets. These have been successfully
used in many nonconvex applications in areas such as optimizations, economic models,
dynamical systems, differential inclusions, etc. For such applications, see [–]. This
class seems particularly well suited to overcome the difficulties, which arise due to the
nonconvexity assumptions on K . We take the following characterization, proved in [],
as a definition of this class. We point out that the original definition was given in terms of
the differentiability of the distance function, see [].

Definition . For any r ∈ (, +∞], a subset Kr ofH is called normalized uniformly prox-
regular (or uniformly r-prox-regular []) if every nonzero proximal normal to Kr can be
realized by an r-ball. This means that for all x̄ ∈ Kr and all  �= ξ ∈NP

Kr (x̄),

〈
ξ

‖ξ‖ ,x – x̄
〉
≤ 

r
‖x – x̄‖, ∀x ∈ Kr .

Obviously, the class of normalized uniformly prox-regular sets is sufficiently large to in-
clude the class of convex sets, p-convex sets, C, submanifolds (possibly with a boundary)
of H, the images under a C, diffeomorphism of convex sets and many other nonconvex
sets, see [, ].

Lemma. [] A closed set K ⊆H is convex if and only if it is proximally smooth of radius
r for every r > .

If r = +∞, then, in view of Definition . and Lemma ., the uniform r-prox-regularity
of Kr is equivalent to the convexity of Kr , which makes this class of great importance. For
the case of that r = +∞, we set Kr = K .

http://www.journalofinequalitiesandapplications.com/content/2013/1/377
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The following proposition summarizes some important consequences of the uniform
prox-regularity needed in the sequel.

Proposition . [, ] Let r > , and let Kr be a nonempty closed and uniformly r-prox-
regular subset ofH. Let U(r) = {u ∈H : dKr (u) < r}. Then the following assertions hold
(a) For all x ∈U(r), PKr (x) �= ∅;
(b) For all r′ ∈ (, r), PKr is Lipschitz continuous with constant r

r–r′ on
U(r′) = {u ∈H : dKr (u) < r′};

(c) The proximal normal cone is closed as a set-valued mapping.

As a direct consequent of part (c) of Proposition ., for any uniformly r-prox-regular
subset Kr of H, we have NC

Kr (x) = NP
Kr (x). Therefore, we define NKr (x) := NC

Kr (x) = NP
Kr (x)

for such a class of sets.
In order tomake clear the concept of r-prox-regular sets, we state the following concrete

example. The union of two disjoint intervals [a,b] and [c,d] is r-prox-regular with r = c–b
 ,

see [, , ]. The finite union of disjoint intervals is also r-prox-regular, and r depends
on the distances between the intervals.

3 System of general nonconvex variational inclusions
This section is concerned with the introduction of a new system of nonconvex variational
inclusions and establishing of the existence and uniqueness theorem for solution of the
aforesaid system.

Let Kr be a uniformly r-prox-regular subset ofH, and let Ti :H×H →H and gi :H →
H (i = , ), be four nonlinear single-valued operators. For any given constants ρ,η > , we
consider the problem of finding (x∗, y∗) ∈ Kr ×Kr such that

⎧⎨
⎩
g(y∗) – x∗ – ρT(y∗,x∗) ∈NP

Kr (x
∗),

g(x∗) – y∗ – ηT(x∗, y∗) ∈NP
Kr (y

∗),
(.)

which is called a system of general nonconvex variational inclusions involving four different
nonlinear operators (SGNVI).
If for each i = , , Ti = T : Kr → H, is a univariate nonlinear operator and gi ≡ I , the

identity operator, then system (.) collapses to the system of finding (x∗, y∗) ∈ Kr × Kr

such that
⎧⎨
⎩
y∗ – x∗ – ρT(y∗) ∈NP

Kr (x
∗),

x∗ – y∗ – ηT(x∗) ∈NP
Kr (y

∗),
(.)

which was considered and studied by Moudafi [] and Petrot [].
If r = ∞, i.e., Kr = K , the convex set inH, and for each i = , , gi(H) = K , then it follows

from Lemma . that (x∗, y∗) ∈ K ×K is a solution of system (.) if and only if

⎧⎨
⎩

〈ρT(y∗,x∗) + x∗ – g(y∗), g(x) – x∗〉 ≥ , ∀x ∈ K ,

〈ηT(x∗, y∗) + y∗ – g(x∗), g(x) – y∗〉 ≥ , ∀x ∈ K .
(.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/377
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Problem (.) is called a system of general nonlinear variational inequalities in the sense
of convex analysis.
If r = ∞ and for each i = , , gi ≡ I , then system (.) collapses to the system of finding

(x∗, y∗) ∈ K ×K such that

⎧⎨
⎩

〈ρT(y∗,x∗) + x∗ – y∗,x – x∗〉 ≥ , ∀x ∈ K ,

〈ηT(x∗, y∗) + y∗ – x∗,x – y∗〉 ≥ , ∀x ∈ K ,
(.)

which was introduced and studied by Huang and Noor [].
Some special cases of system (.) are introduced and studied by Chang et al. [], Verma

[, , ] and Stampacchia [].

Now, we establish the existence and uniqueness of solution for SGNVI (.). For this
end, we need the following lemma, in which the equivalence between SGNVI (.) and a
fixed point problem is proved.

Lemma . Let Ti, gi (i = , ), ρ and η be the same as in SGNVI (.) such that for each
i = , , gi(H) = Kr . Then (x∗, y∗) ∈ Kr ×Kr is a solution of system (.) if and only if

⎧⎨
⎩
x∗ = PKr (g(y∗) – ρT(y∗,x∗)),

y∗ = PKr (g(x∗) – ηT(x∗, y∗)),
(.)

provided that ρ < r′
+‖T(y∗ ,x∗)‖ and η < r′

+‖T(x∗ ,y∗)‖ , for some r′ ∈ (, r), where PKr is the pro-
jection ofH onto Kr .

Proof Let (x∗, y∗) ∈ Kr × Kr be a solution of SGNVI (.). Since g(y∗), g(x∗) ∈ Kr , ρ <
r′

+‖T(y∗ ,x∗)‖ and η < r′
+‖T(x∗ ,y∗)‖ , for some r′ ∈ (, r), it is easy to check that the two points

g(y∗)–ρT(y∗,x∗) and g(x∗)–ηT(x∗, y∗) belong toU(r′). Therefore, the r-prox regularity
of Kr implies that the two sets PKr (g(y∗) – ρT(y∗,x∗)) and PKr (g(x∗) – ηT(x∗, y∗)) are
nonempty and singleton, that is, equations (.) are well defined. Then, we have

⎧⎨
⎩
g(y∗) – x∗ – ρT(y∗,x∗) ∈NP

Kr (x
∗),

g(x∗) – y∗ – ηT(x∗, y∗) ∈NP
Kr (y

∗),

⇐⇒
⎧⎨
⎩
g(y∗) – ρT(y∗,x∗) ∈ (I +NP

Kr )(x
∗),

g(x∗) – ηT(x∗, y∗) ∈ (I +NP
Kr )(y

∗),

⇐⇒
⎧⎨
⎩
x∗ = PKr (g(y∗) – ρT(y∗,x∗)),

y∗ = PKr (g(x∗) – ηT(x∗, y∗)),

where I is the identity operator, and we have used the well-known fact that PKr = (I +
NP

Kr )
–. �

Definition . A single-valued operator T :H →H is called

http://www.journalofinequalitiesandapplications.com/content/2013/1/377


Petrot and Balooee Journal of Inequalities and Applications 2013, 2013:377 Page 7 of 17
http://www.journalofinequalitiesandapplications.com/content/2013/1/377

(a) monotone if

〈
T(x) – T(y),x – y

〉 ≥ , ∀x, y ∈H;

(b) r-strongly monotone if there exists a constant r >  such that

〈
T(x) – T(y),x – y

〉 ≥ r‖x – y‖, ∀x, y ∈H;

(c) γ -Lipschitz continuous if there exists a constant γ >  such that

∥∥T(x) – T(y)
∥∥ ≤ γ ‖x – y‖, ∀x, y ∈H.

Theorem. Let Ti, gi (i = , ), ρ and η be the same as in system (.) such that for each i =
, , gi(H) = Kr . Suppose further that for each i = , , the operator Ti is ξi-stronglymonotone
and νi-Lipschitz continuous in the first variable, gi is κi-strongly monotone and θi-Lipschitz
continuous. If the constants ρ,η >  satisfy the following conditions:

ρ <
r′

 + ‖T(y,x)‖ and η <
r′

 + ‖T(x, y)‖ , (.)

for some r′ ∈ (, r) and for all x, y ∈H, and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|ρ – ξ
ν

| <
√

rξ –ν (r–(r–r′)(–μ))
rν

,

|η – ξ
ν

| <
√

rξ –ν (r–(r–r′)(–μ))
rν

,

rξi > νi
√
r – (r – r′)( –μi),

μi = r
r–r′

√
 – (κi – θ

i ) < ,

κi <  + θ
i (i = , ),

(.)

then SGNVI (.) admits a unique solution.

Proof Define � , :H×H → Kr by

�(x, y) = PKr

(
g(y) – ρT(y,x)

)
,

(x, y) = PKr

(
g(x) – ηT(x, y)

)
,

(.)

for all (x, y) ∈ H ×H. Since g(y), g(x) ∈ Kr , it follows from condition (.) that the map-
pings � and  are well defined. Define ‖ · ‖∗ onH×H by

∥∥(x, y)∥∥∗ = ‖x‖ + ‖y‖, ∀(x, y) ∈H×H.

It is clear that (H×H,‖ ·‖∗) is a Banach space. Also, define F :H×H → Kr ×Kr ⊆H×H
as below:

F(x, y) =
(
�(x, y),(x, y)

)
, ∀(x, y) ∈H×H. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/377
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We show that the mapping F is contraction. Let (x, y), (x̂, ŷ) ∈ H × H be given. Applying
Proposition ., we have

∥∥�(x, y) –�(x̂, ŷ)
∥∥

=
∥∥PKr

(
g(y) – ρT(y,x)

)
– PKr

(
g(ŷ) – ρT(ŷ, x̂)

)∥∥
≤ r

r – r′
∥∥g(y) – g(ŷ) – ρ

(
T(y,x) – T(ŷ, x̂)

)∥∥
≤ r

r – r′
(∥∥y – ŷ –

(
g(y) – g(ŷ)

)∥∥ +
∥∥y – ŷ – ρ

(
T(y,x) – T(ŷ, x̂)

)∥∥)
. (.)

From κ-strongly monotonicity and θ-Lipschitz continuity of g, it follows that

∥∥y – ŷ –
(
g(y) – g(ŷ)

)∥∥ = ‖y – ŷ‖ – 
〈
g(y) – g(ŷ), y – ŷ

〉
+

∥∥g(y) – g(ŷ)
∥∥

≤ ( – κ)‖y – ŷ‖ + ∥∥g(y) – g(ŷ)
∥∥

≤ (
 – κ + θ


)‖y – ŷ‖. (.)

Since T is ξ-strongly monotone and ν-Lipschitz continuous in the first variable, we get

∥∥y – ŷ – ρ
(
T(y,x) – T(ŷ, x̂)

)∥∥

= ‖y – ŷ‖ – ρ
〈
T(y,x) – T(ŷ, x̂), y – ŷ

〉
+ ρ∥∥T(y,x) – T(ŷ, x̂)

∥∥

≤ ( – ρξ)‖y – ŷ‖ + ρ∥∥T(y,x) – T(ŷ, x̂)
∥∥

≤ (
 – ρξ + ρν


)‖y – ŷ‖. (.)

Substituting (.) and (.) in (.), we obtain

∥∥�(x, y) –�(x̂, ŷ)
∥∥ ≤ r

r – r′
(√

 – κ + θ
 +

√
 – ρξ + ρν



)
‖y – ŷ‖. (.)

Like in the proofs of (.)-(.), one can obtain

∥∥(x, y) –(x̂, ŷ)
∥∥ ≤ r

r – r′
(√

 – κ + θ
 +

√
 – ηξ + ην



)
‖x – x̂‖. (.)

Applying (.) and (.), we have

∥∥�(x, y) –�(x̂, ŷ)
∥∥ +

∥∥(x, y) –(x̂, ŷ)
∥∥ ≤ ϕ‖x – x̂‖ +ψ‖y – ŷ‖, (.)

where

ψ =
r

r – r′
(√

 – κ + θ
 +

√
 – ρξ + ρν



)
,

ϕ =
r

r – r′
(√

 – κ + θ
 +

√
 – ηξ + ην



)
.

It follows from (.) and (.) that

∥∥F(x, y) – F(x̂, ŷ)
∥∥∗ ≤ ϑ

∥∥(x, y) – (x̂, ŷ)
∥∥∗, (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/377
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where ϑ =max{ϕ,ψ}. Condition (.) implies that  ≤ ϑ < , and so, (.) guarantees that
the mapping F is contraction. According to the Banach fixed point theorem, there exists
a unique point (x∗, y∗) ∈H×H such that F(x∗, y∗) = (x∗, y∗). It follows from (.) and (.)
that x∗ = PKr (g(y∗) – ρT(y∗,x∗)) and y∗ = PKr (g(x∗) – ηT(x∗, y∗)). Now, from Lemma .,
it follows that (x∗, y∗) ∈ Kr × Kr is a unique solution of SGNVI (.), and this completes
the proof. �

Theorem . Let Ti, gi (i = , ), ρ and η be the same as in system (.) such that for
each i = , , the operator Ti is ξi-strongly monotone and νi-Lipschitz continuous in the first
variable, gi is κi-strongly monotone and θi-Lipschitz continuous. If the constants ρ,η > 
satisfy the following conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|ρ – ξ
ν

| <
√

ξ –ν μ(–μ)
ν

,

|η – ξ
ν

| <
√

ξ –νμ(–μ)
ν

,

ξi > νi
√

μi( –μi) (i = , ),

μi =
√
 – (κi – θ

i ) <  (i = , ),

κi <  + θ
i (i = , ),

then system (.) admits a unique solution.

4 Iterative algorithms and convergence analysis
We need to recall that a nonlinear mapping T : H → H is called nonexpansive if ‖Tx –
Ty‖ ≤ ‖x – y‖ for all x, y ∈H. In recent years, nonexpansive mappings have been general-
ized and investigated by various authors. One of these generalizations is the class of nearly
uniformly Lipschitzian mappings. In this section, we first recall several generalizations of
nonexpansive mappings, which have been introduced in recent years. Then, we use two
nearly uniformly Lipschitzian mappings S and S and the equivalent alternative formu-
lation (.) to suggest and analyze some new two-step projection iterative algorithms for
finding an element of the set of fixed points Q = (S,S), which is the unique solution of
SGNVI (.). In the next definitions, several generalizations of nonexpansive mappings
are stated.

Definition . A nonlinear mapping T :H →H is called
(a) L-Lipschitzian if there exists a constant L >  such that

‖Tx – Ty‖ ≤ L‖x – y‖, ∀x, y ∈H;

(b) generalized Lipschitzian if there exists a constant L >  such that

‖Tx – Ty‖ ≤ L
(‖x – y‖ + 

)
, ∀x, y ∈H;

(c) generalized (L,M)-Lipschitzian [] if there exist two constants L,M >  such that

‖Tx – Ty‖ ≤ L
(‖x – y‖ +M

)
, ∀x, y ∈H;
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(d) asymptotically nonexpansive [] if there exists a sequence {kn} ⊆ [,∞) with
limn→∞ kn =  such that for each n ∈N,

∥∥Tnx – Tny
∥∥ ≤ kn‖x – y‖, ∀x, y ∈H;

(e) pointwise asymptotically nonexpansive [] if, for each integer n ≥ ,

∥∥Tnx – Tny
∥∥ ≤ αn(x)‖x – y‖, x, y ∈H,

where αn →  pointwise on X ;
(f ) uniformly L-Lipschitzian if there exists a constant L >  such that for each n ∈N,

∥∥Tnx – Tny
∥∥ ≤ L‖x – y‖, ∀x, y ∈H.

Definition . [] A nonlinear mapping T :H →H is said to be
(a) nearly Lipschitzian with respect to the sequence {an} if for each n ∈N, there exists a

constant kn >  such that

∥∥Tnx – Tny
∥∥ ≤ kn

(‖x – y‖ + an
)
, ∀x, y ∈H, (.)

where {an} is a fix sequence in [,∞) with an → , as n→ ∞.
For an arbitrary, but fixed n ∈N, the infimum of constants kn in (.) is called

nearly Lipschitz constant and is denoted by η(Tn). Notice that

η
(
Tn) = sup

{‖Tnx – Tny‖
‖x – y‖ + an

: x, y ∈H,x �= y
}
.

A nearly Lipschitzian mapping T with the sequence {(an,η(Tn))} is said to be
(b) nearly nonexpansive if η(Tn) =  for all n ∈N, that is,

∥∥Tnx – Tny
∥∥ ≤ ‖x – y‖ + an, ∀x, y ∈H;

(c) nearly asymptotically nonexpansive if η(Tn) ≥  for all n ∈N and limn→∞ η(Tn) = ,
in other words, kn ≥  for all n ∈N with limn→∞ kn = ;

(d) nearly uniformly L-Lipschitzian if η(Tn) ≤ L for all n ∈N, in other words, kn = L for
all n ∈N.

Remark . It should be pointed out that
(a) Every nonexpansive mapping is an asymptotically nonexpansive mapping, and every

asymptotically nonexpansive mapping is a pointwise asymptotically nonexpansive
mapping. Also, the class of Lipschitzian mappings properly includes the class of
pointwise asymptotically nonexpansive mappings.

(b) It is obvious that every Lipschitzian mapping is a generalized Lipschitzian mapping.
Furthermore, every mapping with a bounded range is a generalized Lipschitzian
mapping. It is easy to see that the class of generalized (L,M)-Lipschitzian mappings
is more general than the class of generalized Lipschitzian mappings.
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(c) Clearly, the class of nearly uniformly L-Lipschitzian mappings properly includes the
class of generalized (L,M)-Lipschitzian mappings and that of uniformly
L-Lipschitzian mappings. Note that every nearly asymptotically nonexpansive
mapping is nearly uniformly L-Lipschitzian.

Some interesting examples to investigate relations between these mappings, introduced
in Definitions . and ., can be found in [].

Let S : Kr → Kr be a nearly uniformly L-Lipschitzian mapping with the sequence
{an}∞n=, and let S : Kr → Kr be a nearly uniformly L-Lipschitzian mapping with the se-
quence {bn}∞n=. We define the self-mappingQ of Kr ×Kr as follows:

Q(x, y) = (Sx,Sy), ∀x, y ∈ Kr . (.)

ThenQ = (S,S) : Kr ×Kr → Kr ×Kr is a nearly uniformlymax{L,L}-Lipschitzian map-
ping with the sequence {an + bn}∞n= with respect to the norm ‖ · ‖∗ inH×H. Because, for
any (x, y), (x′, y′) ∈ Kr ×Kr and n ∈N, we have

∥∥Qn(x, y) –Qn(x′, y′)∥∥∗

=
∥∥(
Sn x,S

n
y

)
–

(
Sn x

′,Sny
′)∥∥∗ =

∥∥(
Sn x – Sn x

′,Sny – Sny
′)∥∥∗

=
∥∥Sn x – Sn x

′∥∥ +
∥∥Sny – Sny

′∥∥ ≤ L
(∥∥x – x′∥∥ + an

)
+ L

(∥∥y – y′∥∥ + bn
)

≤ max{L,L}
(∥∥x – x′∥∥ +

∥∥y – y′∥∥ + an + bn
)

=max{L,L}
(∥∥(x, y) – (

x′, y′)∥∥∗ + an + bn
)
.

We denote the sets of all fixed points of Si (i = , ) and Q by Fix(Si) and Fix(Q), respec-
tively, and the set of all solutions of system (.) by SGNVI(Kr ,Ti, gi, i = , ). In view of
(.), for any (x, y) ∈ Kr × Kr , (x, y) ∈ Fix(Q) if and only if x ∈ Fix(S) and y ∈ Fix(S),
that is, Fix(Q) = Fix(S,S) = Fix(S) × Fix(S). We now characterize the problem. Let
the operators Ti, gi (i = , ), and the constants ρ , η be the same as in system (.). If
(x∗, y∗) ∈ Fix(Q) ∩ SGNVI(Kr ,Ti, gi, i = , ), ρ < r′

+‖T(y∗ ,x∗)‖ and η < r′
+‖T(x∗ ,y∗)‖ , for some

r′ ∈ (, r), then by using Lemma ., it is easy to see that for each n ∈ N∪ {},
⎧⎨
⎩
x∗ = Sn x∗ = PKr (g(y∗) – ρT(y∗,x∗)) = SnPKr (g(y∗) – ρT(y∗,x∗)),

y∗ = Sny∗ = PKr (g(x∗) – ηT(x∗, y∗)) = SnPKr (g(x∗) – ηT(x∗, y∗)).
(.)

The fixed point formulation (.) enables us to suggest the following iterative algorithm
for finding an element of the set of fixed points of the nearly uniformly Lipschitzian map-
pingQ = (S,S), which is the unique solution of SGNVI (.).

Algorithm . Let Ti, gi (i = , ), ρ and η be the same as in SGNVI (.), and let the
constants ρ , η satisfy condition (.). For an arbitrary chosen initial point (x, y) ∈H×H,
compute the iterative sequence {(xn, yn)}∞n= inH×H in the following way:

⎧⎨
⎩
xn+ = ( – αn)xn + αnSnPKr (g(yn) – ρT(yn,xn)),

yn+ = ( – αn)yn + αnSnPKr (g(xn) – ηT(xn, yn)),
(.)
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where S,S : Kr → Kr are two nearly uniformly Lipschitzian mappings, and {αn}∞n= is a
sequence in the interval [, ] such that

∑∞
n= αn = ∞.

If for each i = , , Si ≡ I , then Algorithm . reduces to the following algorithm.

Algorithm . Let Ti, gi (i = , ), ρ and η be the same as in SGNVI (.), and let the
constants ρ , η satisfy condition (.). For an arbitrary chosen initial point (x, y) ∈H×H,
compute the iterative sequence {(xn, yn)}∞n= inH×H in the following way:

⎧⎨
⎩
xn+ = ( – αn)xn + αnPKr (g(yn) – ρT(yn,xn)),

yn+ = ( – αn)yn + αnPKr (g(xn) – ηT(xn, yn)),

where the sequence {αn}∞n= is the same as in Algorithm ..

Now, we discuss the convergence analysis of iterative sequence generated by the projec-
tion iterative Algorithm .. We need the following lemma for verifying our main results.

Lemma . [] Let {an} be a nonnegative real sequence, and let {bn} be a real sequence
in [, ] such that

∑∞
n= bn = ∞. If there exists a positive integer n such that

an+ ≤ ( – bn)an + bncn, ∀n≥ n,

where cn ≥  for all n ≥  and limn→∞ cn = , then limn→ an = .

Theorem . Let Ti, gi (i = , ), ρ and η be the same as in Theorem .. Assume that all
the conditions of Theorem . hold and the constants ρ , η satisfy condition (.). Suppose
that S : Kr → Kr is a nearly uniformly L-Lipschitzian mapping with the sequence {bn}∞n=,
S : Kr → Kr is a nearly uniformly L-Lipschitzian mapping with the sequence {cn}∞n=, and
Q is a self-mapping of Kr × Kr , defined by (.) such that Fix(Q) ∩ SGNVI(Kr ,Ti, gi, i =
, ) �= ∅. Further, let for each i = , , Liϑ < , where ϑ is the same as in (.). Then the
iterative sequence {(xn, yn)}∞n= generated by Algorithm ., converges strongly to the only
element of Fix(Q)∩ SGNVI(Kr ,Ti, gi, i = , ).

Proof In view of Theorem ., SGNVI (.) has a unique solution (x∗, y∗) ∈ Kr × Kr .
Since ρ < r′

+‖T(y∗ ,x∗)‖ and η < r′
+‖T(x∗ ,y∗)‖ , for some r′ ∈ (, r), it follows from Lemma .

that (x∗, y∗) satisfies equations (.). Since SGNVI(Kr ,Ti, gi, i = , ) is a singleton set and
Fix(Q)∩SGNVI(Kr ,Ti, gi, i = , ) �= ∅, we deduce that x∗ ∈ Fix(S) and y∗ ∈ Fix(S). Hence,
for each n ∈ N∪ {}, we can write

⎧⎨
⎩
x∗ = ( – αn)x∗ + αnSnPKr (g(y∗) – ρT(y∗,x∗)),

y∗ = ( – αn)y∗ + αnSnPKr (g(x∗) – ηT(x∗, y∗)),
(.)

where the sequence {αn} is the same as in Algorithm .. Since g(y∗), g(yn) ∈ Kr , ρ <
r′

+‖T(y∗ ,x∗)‖ and ρ < r′
+‖T(yn ,xn)‖ , for some r′ ∈ (, r) and for all n ∈ N, we can easily check

that the points g(y∗) – ρT(y∗,x∗) and g(yn) – ρT(yn,xn) (n ∈ N ∪ {}), belong to U(r′).
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By using (.), (.) and Proposition ., we have

∥∥xn+ – x∗∥∥
≤ ( – αn)

∥∥xn – x∗∥∥ + αn
∥∥SnPKr

(
g(yn) – ρT(yn,xn)

)
– SnPKr

(
g

(
y∗) – ρT

(
y∗,x∗))∥∥

≤ ( – αn)
∥∥xn – x∗∥∥

+ αnL
(∥∥PKr

(
g(yn) – ρT(yn,xn)

)
– PKr

(
g

(
y∗) – ρT

(
y∗,x∗))∥∥ + bn

)
≤ ( – αn)

∥∥xn – x∗∥∥
+ αnL

(
r

r – r′
∥∥g(yn) – g

(
y∗) – ρ

(
T(yn,xn) – T

(
y∗,x∗))∥∥ + bn

)

≤ ( – αn)
∥∥xn – x∗∥∥ + αnL

(
r

r – r′
(∥∥yn – y∗ –

(
g(yn) – g

(
y∗))∥∥

+
∥∥yn – y∗ – ρ

(
T(yn,xn) – T

(
y∗,x∗))∥∥)

+ bn
)
. (.)

Since T is ξ-strongly monotone and ν-Lipschitz continuous in the first variable, g is
κ-strongly monotone and θ-Lipschitz continuous, in a similar way to the proofs of (.)
and (.), we can get

∥∥yn – y∗ –
(
g(yn) – g

(
y∗))∥∥ ≤

√
 – κ + θ


∥∥yn – y∗∥∥,

∥∥yn – y∗ – ρ
(
T(yn,xn) – T

(
y∗,x∗))∥∥ ≤

√
 – ρξ + ρν


∥∥yn – y∗∥∥.

(.)

By combining (.) and (.), we obtain

∥∥xn+ – x∗∥∥ ≤ ( – αn)
∥∥xn – x∗∥∥ + αnL

(
ψ

∥∥yn – y∗∥∥ + bn
)
, (.)

where ψ is the same as in (.). Like in the proofs of (.)-(.), one can prove that

∥∥yn+ – y∗∥∥ ≤ ( – αn)
∥∥yn – y∗∥∥ + αnL

(
ϕ
∥∥xn – x∗∥∥ + cn

)
, (.)

where ϕ is the same as in (.). Letting L =max{L,L}, it follows from (.) and (.) that

∥∥(xn+, yn+) – (
x∗, y∗)∥∥∗

≤ ( – αn)
∥∥(xn, yn) – (

x∗, y∗)∥∥∗ + αnL
(
ϑ

∥∥(xn, yn) – (
x∗, y∗)∥∥∗ + bn + cn

)

≤ (
 – αn( – Lϑ)

)∥∥(xn, yn) – (
x∗, y∗)∥∥∗ + αn( – Lϑ)

L(bn + cn)
 – Lϑ

, (.)

where ϑ is the same as in (.). Since Lϑ < ,
∑∞

n= αn = ∞ and limn→∞ bn = limn→∞ cn =
, we note that all the conditions of Lemma . are satisfied, and so, Lemma . and (.)
imply that (xn, yn) → (x∗, y∗) as n → ∞. Hence, the sequence {(xn, yn)}∞n=, generated by
Algorithm ., converges strongly to the unique solution (x∗, y∗) of SGNVI (.), that is,
the only element of Fix(Q)∩ SGNVI(Kr ,Ti, gi, i = , ). This completes the proof. �
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Theorem. Suppose that Ti, gi (i = , ), ρ and η are the same as in Theorem ., and let
all the conditions of Theorem . hold. Then the iterative sequence {(xn, yn)}∞n=, generated
by Algorithm ., converges strongly to the unique solution (x∗, y∗) of SGNVI (.).

Remark . Equality (.) can be written as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

z = g(y∗) – ρT(y∗,x∗),

t = g(x∗) – ηT(x∗, y∗),

x∗ = SnPKr (z),

y∗ = SnPKr (t),

(.)

where n≥ .

The fixed point formulation (.) enables us to suggest the following iterative algorithm
for finding an element of the set of fixed points of the nearly uniformly Lipschitzian map-
pingQ = (S,S), which is the unique solution of SGNVI (.).

Algorithm . Let Ti, gi (i = , ), ρ and η be the same as in SGNVI (.). Suppose further
that the constants ρ and η satisfy condition (.) for some r′ ∈ (, r). For a given (z, t) ∈
U(r′)×U(r′), compute the iterative sequence {(xn, yn)}∞n= in Kr ×Kr in the following way:

⎧⎪⎪⎨
⎪⎪⎩
xn = SnPKr (zn), yn = SnPKr (tn),

zn+ = g(yn) – ρT(yn,xn),

tn+ = g(xn) – ηT(xn, yn),

(.)

where Si (i = , ) and {αn}∞n= are the same as in Algorithm ..

If for each i = , , Si ≡ I , then Algorithm . reduces to the following algorithm.

Algorithm . Let Ti, gi (i = , ), ρ and η be the same as in SGNVI (.). Assume fur-
ther that the constants ρ and η satisfy condition (.) for some r′ ∈ (, r). For an arbitrary
chosen initial point (z, t) ∈U(r′)×U(r′), compute the iterative sequence {(xn, yn)}∞n= in
Kr ×Kr in the following way:

⎧⎪⎪⎨
⎪⎪⎩
xn = PKr (zn), yn = PKr (tn),

zn+ = g(yn) – ρT(yn,xn),

tn+ = g(xn) – ηT(xn, yn),

where the sequence {αn}∞n= is the same as in Algorithm ..

Theorem . Let Ti, gi (i = , ), ρ and η be the same as in Theorem ., and let all
the conditions of Theorem . hold. Assume that Si (i = , ) and Q are the same as in
Theorem . such that Fix(Q) ∩ SGNVI(Kr ,Ti, gi, i = , ) �= ∅. Further, let Liϑ <  for i =
, , where ϑ is the same as in (.). Then the iterative sequence {(xn, yn)}∞n= generated by
Algorithm ., converges strongly to the only element of Fix(Q)∩ SGNVI(Kr ,Ti, gi, i = , ).
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Proof In view of Theorem ., SGNVI (.) admits a unique solution (x∗, y∗) ∈ Kr ×Kr . It
follows fromLemma. that x∗ = PKr (g(y∗)–ρT(y∗,x∗)) and y∗ = PKr (g(x∗)–ηT(x∗, y∗)).
Since SGNVI(Kr ,Ti, gi, i = , ) is a singleton set and Fix(Q)∩SGNVI(Kr ,Ti, gi, i = , ) �= ∅,
we deduce that x∗ ∈ Fix(S) and y∗ ∈ Fix(S). Accordingly, in view of Remark ., for each
n≥ , we can write

⎧⎪⎪⎨
⎪⎪⎩
x∗ = SnPKr (z), y∗ = SnPKr (t),

z = g(y∗) – ρT(y∗,x∗),

t = g(x∗) – ηT(x∗, y∗).

(.)

From (.), (.) and the assumptions, it follows that

‖zn+ – z‖ =
∥∥g(yn) – g

(
y∗) – ρ

(
T(yn,xn) – T

(
y∗,x∗))∥∥

≤ ∥∥yn – y∗ –
(
g(yn) – g

(
y∗))∥∥

+
∥∥yn – y∗ – ρ

(
T(yn,xn) – T

(
y∗,x∗))∥∥. (.)

Since g is κ-stronglymonotone and θ-Lipschitz continuous, andT is ξ-stronglymono-
tone and ν-Lipschitz continuous in the first variable, similar to the proofs of (.) and
(.), one can prove that

∥∥yn – y∗ –
(
g(yn) – g

(
y∗))∥∥ ≤

√
 – κ + θ


∥∥yn – y∗∥∥ (.)

and

∥∥yn – y∗ – ρ
(
T(yn,xn) – T

(
y∗,x∗))∥∥ ≤

√
 – ρξ + ρν


∥∥yn – y∗∥∥. (.)

By combining (.)-(.), we get

‖zn+ – z‖ ≤
(√

 – κ + θ
 +

√
 – ρξ + ρν



)∥∥yn – y∗∥∥. (.)

By using (.), (.) and Proposition ., we have

∥∥yn – y∗∥∥ =
∥∥SnPKr (tn) – SnPKr (t)

∥∥ ≤ L
(∥∥PKr (tn) – PKr (t)

∥∥ + cn
)

≤ L
(

r
r – r′

‖tn – t‖ + cn
)
. (.)

Substituting (.) in (.), we get

‖zn+ – z‖ ≤ Lψ‖tn – t‖ + Lψcn, (.)

where ψ is the same as in (.). Like in the proofs of (.)-(.), one can establish that

‖tn+ – t‖ ≤ Lϕ‖zn – z‖ + Lϕbn, (.)
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where ϕ is the same as in (.). Let L =max{Li : i = , }. Then, applying (.) and (.),
we obtain

∥∥(zn+, tn+) – (z, t)
∥∥∗ ≤ Lϑ

∥∥(zn, tn) – (z, t)
∥∥∗ + Lϑ(bn + cn)

≤ (Lϑ)
∥∥(zn–, tn–) – (z, t)

∥∥ + (Lϑ)(bn– + cn–) + Lϑ(bn + cn)

≤ · · · ≤ (Lϑ)n+
∥∥(z, t) – (z, t)

∥∥ +
n∑
i=

(Lϑ)i+(bn–i + cn–i), (.)

where ϑ is the same as in (.). Since Lϑ <  and limn→∞ bn = limn→∞ cn = , it follows
that the right side of the above inequality tends to zero, as n → ∞ and so (zn, tn) → (z, t),
as n→ ∞. By using (.), (.) and Proposition ., we have

∥∥xn – x∗∥∥ =
∥∥SnPKr (zn) – SnPKr (z)

∥∥ ≤ L
(∥∥PKr (zn) – PKr (z)

∥∥ + bn
)

≤ L
(

r
r – r′

‖zn – z‖ + bn
)
. (.)

Since limn→∞ zn = z, limn→∞ tn = t and limn→∞ bn = limn→∞ cn = , from inequalities
(.) and (.), it follows that yn → y∗, xn → x∗, as n → ∞. Hence, the sequence
{(xn, yn)}∞n=, generated by Algorithm ., converges strongly to the unique solution (x∗, y∗)
of system (.), that is, the only element of Fix(Q) ∩ SGNVI(Kr ,Ti, gi, i = , ). This com-
pletes the proof. �

Theorem . Let Ti, gi (i = , ), ρ and η be the same as in Theorem ., and let all
the conditions of Theorem . hold. Then the iterative sequence {(xn, yn)}∞n=, generated by
Algorithm ., converges strongly to the unique solution (x∗, y∗) of SGNVI (.).
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