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1 Introduction andmain results
The concept of complete convergence was introduced by Hsu and Robbins [] as follows.
A sequence of random variables {Xn,n ≥ } is said to converge completely to a constant
c if

∞∑
n=

P
(|Xn – c| > ε

)
< ∞, ∀ε > .

From then on, many authors have devoted their study to complete convergence; see [–],
and so on.
Recently, Sung [] obtained a complete convergence result for weighted sums of identi-

cally distributed ρ∗-mixing random variables (we call these Sung’s type weighted sums).

Theorem A Let p > /α and / < α ≤ . Let {X,Xn,n ≥ } be a sequence of identically
distributed ρ∗-mixing random variables with EX =  and E|X|p < ∞.Assume that {ani,  ≤
i ≤ n,n≥ } is an array of real numbers satisfying

n∑
i=

|ani|q =O(n) (.)

for some q > p. Then

∞∑
n=

npα–P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

aniXi

∣∣∣∣∣ > εnα

)
< ∞, ∀ε > . (.)

Conversely, (.) implies EX =  and E|X|p < ∞ if (.) holds for any array {ani,  ≤ i ≤
n,n ≥ } with (.) for some q > p.
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In this paper, we will extend Theorem A under the END setup. We firstly introduce the
concept of END random variables.

Definition . Random variables Y,Y, . . . are said to be extended negatively dependent
(END) if there exists a constantM >  such that, for each n≥ ,

P(Y ≤ y, . . . ,Yn ≤ yn) ≤ M
n∏
i=

P(Yi ≤ yi)

and

P(Y > y, . . . ,Yn > yn)≤ M
n∏
i=

P(Yi > yi)

hold for every sequence {y, . . . , yn} of real numbers.

The concept was introduced by Liu []. When M = , the notion of END random vari-
ables reduces to the well-known notion of so-called negatively dependent (ND) random
variables, which was firstly introduced by Embrahimi and Ghosh []; some properties and
limit results can be found in Alam and Saxena [], Block et al. [], Joag-Dev and Proschan
[], and Wu and Zhu []. As is mentioned in Liu [], the END structure is substantially
more comprehensive than the ND structure in that it can reflect not only a negative de-
pendence structure but also a positive one, to some extent. Liu [] pointed out that the
END random variables can be taken as negatively or positively dependent and provided
some interesting examples to support this idea. Joag-Dev and Proschan [] also pointed
out that negatively associated (NA) random variables must be ND and ND is not neces-
sarily NA, thus NA random variables are END. A great number of articles for NA random
variables have appeared in the literature. But very few papers are written for END random
variables. For example, for END random variables with heavy tails Liu [] obtained the
precise large deviations and Liu [] studied sufficient and necessary conditions for mod-
erate deviations, and Qiu et al. [] and Wu and Guan [] studied complete convergence
for weighted sums and arrays of rowwise END, and so on.
Now we state the main results; some lemmas and the proofs will be detailed in the next

section.

Theorem . Let p > /α and / < α ≤ . Let {X,Xn,n ≥ } be a sequence of identically
distributed END random variables with EX =  and E|X|p < ∞. Assume that {ani,  ≤ i ≤
n,n ≥ } is an array of real numbers satisfying (.) for some q > p. Then (.) holds. Con-
versely, (.) implies EX =  and E|X|p <∞ if (.) holds for any array {ani,  ≤ i ≤ n,n≥ }
with (.) for some q > p.

Remark . The tool is the maximal Rosenthal’s moment inequality in the proof of Theo-
rem A. But we do not know whether the maximal Rosenthal’s moment inequality holds or
not for an END sequence. So the proof of Theorem . is different from that of TheoremA.

Remark . Theorem . does not discuss the very interesting case: pα = . In fact, it is still
an open problem whether (.) holds or not even in the partial sums of an END sequence
when pα = . But we have the following partial result.
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Theorem . Let {X,Xn,n≥ } be a sequence of identically distributed END random vari-
ables with EX = . Assume that {ani,  ≤ i≤ n,n≥ } is an array of real numbers satisfying
(.) for some q > . Then

∞∑
n=

n–P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

aniXi

∣∣∣∣∣ > εn

)
<∞, ∀ε > . (.)

Conversely, (.) implies EX =  if (.) holds for any array {ani,  ≤ i ≤ n,n ≥ } with (.)
for some q > .

Throughout this paper, C always stands for a positive constant which may differ from
one place to another.

2 Lemmas and proofs of main results
To prove the main result, we need the following lemmas.

Lemma . ([]) Let X,X, . . . ,Xn be END random variables. Assume that f, f, . . . , fn are
Borel functions all of which aremonotone increasing (or all aremonotone decreasing).Then
f(X), f(X), . . . , fn(Xn) are END random variables.

The following lemma is due to Chen et al. [] when  < r <  and Shen [] when r ≥ .

Lemma . For any r > , there is a positive constant Cr depending only on r such that if
{Xn,n ≥ } is a sequence of END random variables with EXn =  for every n ≥ , then, for
all n≥ ,

E

∣∣∣∣∣
n∑
i=

Xi

∣∣∣∣∣
r

≤ Cr

n∑
i=

E|Xi|r

holds when  < r <  and

E

∣∣∣∣∣
n∑
i=

Xi

∣∣∣∣∣
r

≤ Cr

{ n∑
i=

E|Xi|r +
( n∑

i=

E|Xi|
)r/}

holds when r ≥ .

By Lemma . and the same argument as Theorem .. in Stout [], the following
lemma holds.

Lemma . For any r > , there is a positive constant Cr depending only on r such that if
{Xn,n ≥ } is a sequence of END random variables with EXn =  for every n ≥ , then, for
all n≥ ,

E max
≤k≤n

∣∣∣∣∣
k∑
i=

Xi

∣∣∣∣∣
r

≤ Cr(logn)r
n∑
i=

E|Xi|r
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holds when  < r <  and

E max
≤k≤n

∣∣∣∣∣
k∑
i=

Xi

∣∣∣∣∣
r

≤ Cr(logn)r
{ n∑

i=

E|Xi|r +
( n∑

i=

E|Xi|
)r/}

holds when r ≥ .

Lemma . Let p > /α and / < α ≤ . Let {X,Xn,n ≥ } be a sequence of identically
distributed END random variables with EX =  and E|X|p < ∞. Assume that {ani,  ≤ i ≤
n,n ≥ } is an array of real numbers satisfying |ani| ≤  for  ≤ i ≤ n and n ≥ . Then (.)
holds.

Proof Without loss of generality, we can assume that

ani ≥ , ∀≤ i ≤ n,n≥ , (.)

from which it follows that

n∑
i=

aτ
ni ≤ n, ∀τ ≥ . (.)

Since p > /α and / < α ≤ , we have  ≤ ( – α)/(pα – α) < . We take t as given such
that ( – α)/(pα – α) < t < .
For  ≤ i≤ n, n≥ , set

X()
ni = –ntαI

(
Xi < –ntα

)
+XiI

(|Xi| ≤ ntα
)
+ ntαI

(
Xi > ntα

)
,

X()
ni =

(
Xi – ntα

)
I
(
ntα < Xi ≤ nα

)
+ nαI

(
Xi > nα

)
,

X()
ni =

(
Xi – ntα – nα

)
I
(
Xi > nα

)
,

X()
ni =

(
Xi + ntα

)
I
(
–nα ≤ Xi < –ntα

)
– nαI

(
Xi < –nα

)
,

X()
ni =

(
Xi + ntα + nα

)
I
(
Xi < –nα

)
.

Therefore

∞∑
n=

npα–P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

aniXi

∣∣∣∣∣ > εnα

)

≤
∑
l=

∞∑
n=

npα–P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

aniX(l)
ni

∣∣∣∣∣ > εnα/

)
:=

∑
l=

Il.

For I,

I ≤
∞∑
n=

npα–P

( n⋃
i=

(
X()
ni �= 

)) ≤
∞∑
n=

npα–
n∑
i=

P
(|Xi| > nα

)

=
∞∑
n=

npα–P
(|X| > nα

) ≤ CE|X|p < ∞. (.)

By the same argument as (.), we also have I < ∞.

http://www.journalofinequalitiesandapplications.com/content/2014/1/353
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For I, by EX = , Markov’s inequality, (.), (.), and ( – α)/(pα – α) < t < ,

n–α max
≤j≤n

∣∣∣∣∣
j∑

i=

aniEX()
ni

∣∣∣∣∣ ≤ n–α

n∑
i=

aniE|Xi|I
(|Xi| > ntα

)

≤ n–αE|X|I(|X| > ntα
) n∑

i=

ani

≤ n–α–(pα–α)tE|X|pI(|X| > ntα
) → , n→ ∞. (.)

Hence, to prove I < ∞, it is enough to show that

I∗ =
∞∑
n=

npα–P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

ani
(
X()
ni – EX()

ni
)∣∣∣∣∣ > εnα/

)
< ∞.

By the Markov inequality, Lemma ., Lemma ., the Cr-inequality, (.), and (.), for
any r ≥ ,

I∗ ≤ C
∞∑
n=

n(p–r)α–E max
≤j≤n

∣∣∣∣∣
j∑

i=

ani
(
X()
ni – EX()

ni
)∣∣∣∣∣

r

≤ C
∞∑
n=

n(p–r)α–(logn)r
{ n∑

i=

arniE
∣∣X()

ni
∣∣r +

( n∑
i=

aniE
∣∣X()

ni
∣∣)r/}

≤ C
∞∑
n=

n(p–r)α–(logn)rE
∣∣X()

n
∣∣r +C

∞∑
n=

n(p–r)α–+r/(logn)r
(
E
∣∣X()

n
∣∣)r/

:= CI∗ +CI∗. (.)

If p≥ , then (pα – )/(α – /)≥ p. Taking r such that r > (pα – )/(α – /),

I∗ ≤
∞∑
n=

n(p–r)α–+r/(logn)r
(
E|X|)r/ < ∞.

Since r > p and t < , by the Cr-inequality, we get

I∗ ≤ C
∞∑
n=

n(p–r)α–(logn)r
{
E|X|rI(|X| ≤ ntα

)
+ ntrαP

(|X| > ntα
)}

≤ C
∞∑
n=

n(p–r)(–t)α–(logn)rE|X|p < ∞. (.)

If p < , then we can take r = , in this case I∗ = I∗ in (.). Since r > p and t < , (.) still
holds. Therefore I < ∞.
For I, note that I =

∑∞
n= npα–P(

∑n
i= aniX

()
ni > εnα/), by (.) and (.),

 ≤ n–α

n∑
i=

E
(
aniX()

ni
) ≤ n–α

{
EXI

(
ntα < X ≤ nα

)
+ nαP

(
X > nα

)}

≤ n–αE|X|I(|X| > ntα
)
+ nP

(|X| > nα
)
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≤ n–α–(pα–α)tE|X|pI(|X| > ntα
)
+ n–pαE|X|pI(|X| > nα

)
→ , n→ ∞. (.)

Hence, in order to prove I < ∞, it is enough to show that

I∗ =
∞∑
n=

npα–P

( n∑
i=

ani
(
X()
ni – EX()

ni
)
> εnα/

)
< ∞.

By the Markov inequality, Lemma ., Lemma ., the Cr-inequality, (.), and (.), we
have, for any r ≥ ,

I∗ ≤ C
∞∑
n=

n(p–r)α–
{ n∑

i=

arniE
∣∣X()

ni
∣∣r +

( n∑
i=

aniE
∣∣X()

ni
∣∣)r/}

≤ C
∞∑
n=

n(p–r)α–E
∣∣X()

n
∣∣r +C

∞∑
n=

n(p–r)α–+r/
(
E
∣∣X()

n
∣∣)r/

:= CI∗ +CI∗. (.)

If p≥ , we take r such that r > (pα – )/(α – /). It follows that

I∗ ≤ C
∞∑
n=

n(p–r)α–+r/
(
E|X|)r/ <∞.

Since r > p, we get by (.) of Sung []

I∗ ≤ C
∞∑
n=

n(p–r)α–E|X|rI(|X| ≤ nα
)
+C

∞∑
n=

npα–P
(|X| > nα

) ≤ CE|X|p < ∞. (.)

If p < , then we take r = , in this case I∗ =∗
. Since r > p, (.) still holds. Therefore,

I < ∞. Similar to the proof of I <∞, we also have I <∞. Thus, (.) holds. �

Lemma . Let p > /α and / < α ≤ . Let {Xn,n ≥ } be a sequence of identically dis-
tributed END random variables with EX = .Assume that {ani,  ≤ i≤ n,n≥ } is an array
of real numbers satisfying (.) for some q > p and ani =  or |ani| > . Then (.) holds.

Proof Let t be as in Lemma .. Without loss of generality, we may assume that ani ≥ 
and

∑n
i= a

q
ni ≤ n for some q > p, thus, we have

n∑
i=

aτ
ni ≤ n, ∀ < τ ≤ q. (.)

Similar to the proof of Lemma . of Sung [], we may assume that (.) holds for some
p < q <  when p < . For  ≤ i≤ n, n≥ , set

X()
ni = –ntαI

(
aniXi < –ntα

)
+ aniXiI

(|aniXi| ≤ ntα
)
+ ntαI

(
aniXi > ntα

)
,

X()
ni =

(
aniXi – ntα

)
I
(
ntα < aniXi ≤ nα

)
+ nαI

(
aniXi > nα

)
,

http://www.journalofinequalitiesandapplications.com/content/2014/1/353
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X()
ni =

(
aniXi – ntα – nα

)
I
(
aniXi > nα

)
,

X()
ni =

(
aniXi + ntα

)
I
(
–nα ≤ aniXi < –ntα

)
– nαI

(
aniXi < –nα

)
,

X()
ni =

(
aniXi + ntα + nα

)
I
(
aniXi < –nα

)
.

Therefore

∞∑
n=

npα–P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

aniXi

∣∣∣∣∣ > εnα

)

≤
∑
l=

∞∑
n=

npα–P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

X(l)
ni

∣∣∣∣∣ > εnα/

)
:=

∑
l=

Il.

By the proof of Lemma . in Sung [], we have

I ≤
∞∑
n=

npα–P

( n⋃
i=

(
X()
ni �= 

))

≤
∞∑
n=

npα–
n∑
i=

P
(|aniXi| > nα

) ≤ CE|X|p < ∞. (.)

Similarly, we have I <∞.
For I, since EXi = , p > /α, / < α ≤ , ( – α)/(pα – α) < t <  and (.), we get

n–α max
≤j≤n

∣∣∣∣∣
j∑

i=

X()
ni

∣∣∣∣∣ ≤ n–α

n∑
i=

E|aniXi|I
(|aniXi| > ntα

)

≤ n–α–(p–)tα
n∑
i=

apniE|Xi|pI
(|aniXi| > ntα

)

≤ Cn–α–(p–)tα
n∑
i=

apni ≤ Cn–α–(p–)tα → , n→ ∞. (.)

Hence, in order to prove I < ∞, it is enough to show that

I∗ =
∞∑
n=

npα–P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

(
X()
ni – EX()

ni
)∣∣∣∣∣ > εnα/

)
<∞.

Similar to the proof of (.), we have, for any r ≥ ,

I∗ ≤ C
∞∑
n=

n(p–r)α–(logn)r
n∑
i=

E
∣∣X()

ni
∣∣r +C

∞∑
n=

n(p–r)α–(logn)r
( n∑

i=

E
∣∣X()

ni
∣∣)r/

:= CI∗ +CI∗. (.)

If p≥ , we take r such that r > (pα – )/(α – /). By (.)

I∗ ≤ C
∞∑
n=

n(p–r)α–(logn)r
( n∑

i=

aniE|X|
)r/

≤ C
∞∑
n=

n(p–r)α–+r/(logn)r < ∞.

http://www.journalofinequalitiesandapplications.com/content/2014/1/353
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Since r > p and  < t < , we get by (.)

I∗ ≤ C
∞∑
n=

n(p–r)α–(logn)r
{ n∑

i=

(
E|aniXi|rI

(|aniXi| ≤ ntα
)
+ ntrαP

(|aniXi| > ntα
))}

≤ C
∞∑
n=

n(p–r)α–(logn)r
{ n∑

i=

n(r–p)tαapniE|Xi|p
}

≤ C
∞∑
n=

n(p–r)(–t)α–(logn)rE|X|p < ∞. (.)

If p < , then we take r = , in this case I∗ = I∗ in (.). Since r > p and t < , (.) still
holds. Therefore I < ∞.
For I, since ( – α)/(pα – α) < t < , we have by (.)

 ≤ n–α

n∑
i=

E
(
X()
ni

) ≤ n–α

n∑
i=

{
EaniXiI

(
ntα < aniXi ≤ nα

)
+ nαP

(
aniXi > nα

)}

≤
n∑
i=

{
n–αEaniXiI

(
aniXi > ntα

)
+ P

(
aniXi > nα

)}

≤
n∑
i=

{
n–(p–)tα–αE|aniXi|pI

(|aniXi| > ntα
)
+ n–pαE|aniXi|pI

(|aniXi| > nα
)}

≤ C
n∑
i=

apni
(
n–(p–)tα–α + n–pα

)

≤ Cn–α–(p–)tα +Cn–pα → , n→ ∞. (.)

Hence, in order to prove I < ∞, it is enough to show that

I∗ =
∞∑
n=

npα–P

( n∑
i=

(
X()
ni – EX()

ni
)
> εnα/

)
< ∞.

Similar to the proof of (.), we have for any r ≥ 

I∗ ≤ C
∞∑
n=

n(p–r)α–
n∑
i=

E
∣∣X()

ni
∣∣r +C

∞∑
n=

n(p–r)α–
( n∑

i=

E
∣∣X()

ni
∣∣)r/

:= CI∗ +CI∗. (.)

If p≥ , we take r such that r > {(pα – )/(α – /),q}. By (.), we have

I∗ ≤ C
∞∑
n=

n(p–r)α–
( n∑

i=

E
{|aniXi|I

(|aniXi| ≤ nα
)
+ nαP

(|aniXi| > nα
)})r/

≤ C
∞∑
n=

n(p–r)α–
( n∑

i=

aniE|Xi|
)r/

≤ C
∞∑
n=

n(p–r)α–+r/ <∞,

http://www.journalofinequalitiesandapplications.com/content/2014/1/353
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and we get by the Cr-inequality and (.)-(.) of Sung [] and (.)

I∗ ≤ C
∞∑
n=

n(p–r)α–
n∑
i=

E
{
(aniXi)rI

(
ntα < aniXi ≤ nα

)
+ nrαI

(
aniXi > nα

)}

≤ C
∞∑
n=

n(p–r)α–
n∑
i=

E|aniXi|rI
(|aniXi| ≤ nα

)
+C

∞∑
n=

npα–
n∑
i=

P
(|aniXi| > nα

)

≤ CE|X|p < ∞. (.)

If p < , then we take r = , in this case I∗ = I∗ in (.). Similar to the proof of Lemma .
of Sung [], (.) still holds. Therefore, I < ∞. Similar to the proof of I < ∞, we have
I <∞. Thus, (.) holds. �

Proof of Theorem . By Lemmas . and ., the proof is similar to that in Sung [], so
we omit the details. �

Proof of Theorem . Sufficiency. Without loss of generality, we can assume that ani ≥ 
and (.) holds for  < q ≤  by the Hölder inequality. We firstly prove that

∞∑
n=

n–P

(∣∣∣∣∣
n∑
i=

aniXi

∣∣∣∣∣ > εn

)
< ∞, ∀ε > . (.)

For  ≤ i≤ n, n≥ , set

X()
ni = –nI(Xi < –n) +XiI

(|Xi| ≤ n
)
+ nI(Xi > n), X()

ni = Xi –X()
ni .

Note that EX = , by the Hölder inequality,

n–
∣∣∣∣∣E

n∑
i=

aniX()
ni

∣∣∣∣∣ ≤ CE|X|I(|X| > n
) → .

Hence to prove (.), it is enough to show that for any ε > 

I =
∞∑
n=

n–P

(∣∣∣∣∣
n∑
i=

ani
(
X()
ni – EX()

ni
)∣∣∣∣∣ > εn

)
< ∞

and

I =
∞∑
n=

n–P

(∣∣∣∣∣
n∑
i=

aniX()
ni

∣∣∣∣∣ > εn

)
< ∞.

By theMarkov inequality, Lemma ., theCr-inequality, (.), and a standard computation

I ≤ C
∞∑
n=

n––qE

∣∣∣∣∣
n∑
i=

ani
(
X()
ni – EX()

ni
)∣∣∣∣∣

q

≤ C
∞∑
n=

n––q
( n∑

i=

|ani|q
){

E|X|qI(|X| ≤ n
)
+ nqP

(|X| > n
)}

http://www.journalofinequalitiesandapplications.com/content/2014/1/353


Zhang Journal of Inequalities and Applications 2014, 2014:353 Page 10 of 11
http://www.journalofinequalitiesandapplications.com/content/2014/1/353

≤ C
∞∑
n=

n–qE|X|qI(|X| ≤ n
)
+C

∞∑
n=

P
(|X| > n

)

≤ CE|X| < ∞.

Obviously,

I ≤
∞∑
n=

P
(|X| > n

) ≤ CE|X| <∞.

To prove (.), it is enough to prove that

∞∑
n=

n–P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

ani
(
X+
i – EX+

i
)∣∣∣∣∣ > εn

)
< ∞, ∀ε >  (.)

and

∞∑
n=

n–P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

ani
(
X–
i – EX–

i
)∣∣∣∣∣ > εn

)
< ∞, ∀ε > , (.)

where x+ =max{,x} and x– = (–x)+.
Let ε >  be given. By EX+ ≤ E|X| < ∞, (.), and the Hölder inequality, there exists a

constant x = x(ε) >  such that

n–
n∑
i=

aniE
(
X+
i – x

)
I
(
X+
i > x

)
= n–

( n∑
i=

ani

)
E
{(
X+ – x

)
I
(
X+ > x

)} ≤ ε/. (.)

Set

X()
i,x = X+

i I
(
X+
i ≤ x

)
+ xI

(
X+
i > x

)
, X()

i,x = X+
i –X()

i,x .

Note that by (.)

max
≤j≤n

n–
∣∣∣∣∣

j∑
i=

ani
(
X+
i – EX+

i
)∣∣∣∣∣

≤ max
≤j≤n

n–
∣∣∣∣∣

j∑
i=

ani
(
X()
i,x – EX()

i,x
)∣∣∣∣∣ + max

≤j≤n
n–

∣∣∣∣∣
j∑

i=

ani
(
X()
i,x – EX()

i,x
)∣∣∣∣∣

≤ max
≤j≤n

n–
∣∣∣∣∣

j∑
i=

ani
(
X()
i,x – EX()

i,x
)∣∣∣∣∣ + n–

∣∣∣∣∣
n∑
i=

ani
(
X()
i,x – EX()

i,x
)∣∣∣∣∣ + ε/.

Therefore, to prove (.), it is enough to prove that

I =
∞∑
n=

n–P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

ani
(
X()
i,x – EX()

i,x
)∣∣∣∣∣ > εn/

)
< ∞

http://www.journalofinequalitiesandapplications.com/content/2014/1/353
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and

I =
∞∑
n=

n–P

(∣∣∣∣∣
n∑
i=

ani
(
X()
i,x – EX()

i,x
)∣∣∣∣∣ > εn/

)
< ∞.

By the Markov inequality, Lemma ., and (.)

I ≤ C
∞∑
n=

n––qE max
≤j≤n

∣∣∣∣∣
j∑

i=

ani
(
X()
i,x – EX()

i,x
)∣∣∣∣∣

q

≤
∞∑
n=

n–q(logn)q <∞.

By Lemma ., {X()
i,x – EX()

i,x , i ≥ } is a sequence of identically distributed END with zero
mean. Then I <∞ by taking {X()

i,x –EX
()
i,x , i≥ } instead of {Xi, i≥ } in (.). Hence (.)

holds.
The proof of (.) is the same as that of (.).
Necessity. It is similar to the proof of Theorem . in Sung []. Here we omit the details.

So we complete the proof. �
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