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Abstract
In this paper, we investigate the Cauchy problem of a weakly dissipative generalized
periodic Degasperis-Procesi equation. The precise blow-up scenarios of strong
solutions to the equation are derived by a direct method. Several new criteria
guaranteeing the blow-up of strong solutions are presented. The exact blow-up rates
of strong solutions are also determined. Finally, we give a new global existence results
to the equation.
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1 Introduction
Recently, the following generalized periodic Degasperis-Procesi equation (μDP) was in-
troduced and studied in [–]

μ(u)t – utxx + μ(u)ux = uxuxx + uuxxx,

where u(t,x) is a time-dependent function on the unite circle S = R/Z and μ(u) =∫
S
u(t,x)dx denotes its mean. The μDP equation can be formally described as an evolu-

tion equation on the space of tensor densities over the Lie algebra of smooth vector fields
on the circle S. In [], the authors verified that the periodic μDP equation describes the
geodesic flows of a right-invariant affine connection on the Fréchet Lie group Diff∞(S) of
all smooth and orientation-preserving diffeomorphisms of the circle S.
Analogous to the generalized periodic Camassa-Holm (μCH) equation [–], μDP

equation possesses bi-Hamiltonian form and infinitely many conservation laws. Here we
list some of the simplest conserved quantities:

H = –



∫
S

ydx, H =



∫
S

u dx, H =
∫
S

(


μ(u)

(
A–∂xu

) + 

u

)
dx,

where y = μ(u) – uxx, A = μ – ∂
x is an isomorphism between HS and Hs–. Moreover, it is

easy to see that
∫
S
u(t,x)dx is also a conserved quantity for the μDP equation.
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Obviously, under the constraint of μ ≡ , the μDP equation is reduced to the μBurgers
equation [].
It is clear that the closest relatives of the μDP equation are the DP equation [–]

ut – utxx + uux = uxuxx + uuxxx,

which was derived by Degasperis and Procesi in [] as a model for the motion of shallow
water waves, and its asymptotic accuracy is the same as for the Camassa-Holm equation.
Generally speaking, energy dissipation is a very common phenomenon in the real world.

It is interesting for us to study this kind of equation. Recently, Wu and Yin [] considered
the weakly dissipative Degasperis-Procesi equation. For related studies, we refer to []
and []. Liu andYin [] discussed the blow-up, global existence for theweakly dissipative
μ-Hunter-Saxton equation.
In this paper, we investigate the Cauchy problem of the following weakly dissipative

periodic Degasperis-Procesi equation []:

⎧⎪⎨
⎪⎩

μ(u)t – utxx + μ(u)ux = uxuxx + uuxxx – λ(μ(u) – uxx), t > ,x ∈R,
u(,x) = u(x), x ∈R,
u(t,x + ) = u(t,x), t ≥ ,x ∈ R,

(.)

the constant λ is a nonnegative dissipative parameter and the term λy = λ(μ(u)–uxx) mod-
els energy dissipation. Obviously, if λ =  then the equation reduces to the μDP equation.
we can rewrite the system (.) as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
yt + uyx + uxy + λy = , t > ,x ∈R,
y = μ(u) – uxx, t > ,x ∈R,
u(,x) = u(x), x ∈ R,
u(t,x + ) = u(t,x), t ≥ ,x ∈R.

(.)

Let G(x) := 
x

 – 
 |x| + 

 , x ∈ R be the associated Green’s function of the operator A–,
then the operator can be expressed by its associated Green’s function,

A–f (x) = (G ∗ f )(x), f ∈ L,

where ∗ denotes the spatial convolution. Then equation (.) takes the equivalent form of
a quasi-linear evolution equation of hyperbolic type:

⎧⎪⎨
⎪⎩
ut + uux + μ(u)A–∂xu + λu = , t > ,x ∈R,
u(,x) = u(x), x ∈R,
u(t,x + ) = u(t,x), t ≥ ,x ∈R.

(.)

It is easy to check that the operator A = μ – ∂
x has the inverse

(
A–f

)
(x) =

(


x –



x +




)
μ(f ) +

(
x –




)∫ 



∫ y


f (s)dsdy

–
∫ x



∫ y


f (s)dsdy +

∫ 



∫ y



∫ s


f (r)dr dsdy. (.)
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Since A– and ∂x commute, the following identities hold:

(
A–∂xf

)
(x) =

(
x –




)∫ 


f (x)dx –

∫ x


f (y)dy +

∫ 



∫ x


f (y)dydx (.)

and

(
A–∂

x f
)
(x) = –f (x) +

∫ 


f (x)dx. (.)

The paper is organized as follows. In Section , we briefly give some needed results,
including the local well-posedness of equation (.), and some useful lemmas and results
which will be used in subsequent sections. In Section , we establish the precise blow-up
scenarios and blow-up criteria of strong solutions. In Section , we give the blow-up rate
of strong solutions. In Section , we give two global existence results of strong solutions.

Remark . Although blow-up criteria and global existence results of strong solutions
to equation (.) are presented in [], our blow-up results improve considerably earlier
results.

2 Preliminaries
In this section we recall some elementary results which we want to use in this paper. We
list them and skip their proofs for conciseness. Local well-posedness for equation (.)
can be obtained by Kato’s theory [], in [] the authors gave a detailed description on
well-posedness theorem.

Theorem. [] Let s > / and u ∈Hs(S); then there is amaximal time T and a unique
solution

u ∈ C
(
[,T);Hs(S)

) ∩C([,T);Hs–(S)
)

of the Cauchy problems (.) which depends continuously on the initial data, i.e. the map-
ping

Hs(S) → C
(
[,T);Hs(S)

) ∩C([,T);Hs–(S)
)
, u 	→ u(·,u),

is continuous.

Remark . The maximal time of existence T >  in Theorem . is independent of the
Sobolev index s > /.

Next we present the Sobolev-type inequalities, which play a key role to obtain blow-up
results for the Cauchy problem (.) in the sequel.

Lemma . [] If f ∈H(S) is such that
∫
S
f (x)dx = , then we have

max
x∈S

f (x)≤ 


∫
S

f x (x)dx.
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Lemma . [] If r > , let � = ( – ∂
x )/, then

∥∥[
�r , f

]
g
∥∥
L ≤ c

(‖∂xf ‖L∞
∥∥�r–g

∥∥
L +

∥∥�rf
∥∥
L‖g‖L∞

)
,

where c is a constant depending only on r.

Lemma . [] Let t >  and v ∈ C([, t);H(R)), then for every t ∈ [, t) there exists
at least one point ξ (t) ∈R with

m(t) := inf
x∈R

vx(t,x) = vx
(
t, ξ (t)

)
,

and the function m is almost everywhere differentiable on (, t) with

d
dt

m(t) = vtx
(
t, ξ (t)

)
a.e. on (, t).

We also need to introduce the classical particle trajectory method which is motivated
by McKean’s deep observation for the Camassa-Holm equation in []. Suppose u(x, t) is
the solution of the Camassa-Holm equation and q(x, t) satisfies the following equation:

⎧⎪⎨
⎪⎩
qt = u(q, t),  < t < T ,x ∈ R,
q(x, ) = x, x ∈ R,
q(x + , t) = x,  < t < T ,x ∈ R,

(.)

where T is the maximal existence time of solution, then q(t, ·) is a diffeomorphism of the
line. Taking the derivative with respect to x, we have

dqx
dt

= qtx = ux(q, t)qx, t ∈ (,T).

Hence

qx(x, t) = exp

(∫ t


ux(q, s)ds

)
> , qx(x, ) = , (.)

which is always positive before the blow-up time.
In addition, integrating both sides of the first equation in equation (.) with respect to

x on S, we obtain

d
dt

μ(u) = –λμ(u),

it follows that

μ(u) = μ(u)e–λt := μe–λt , (.)

where

μ := μ(u) =
∫
S

u(x)dx. (.)

http://www.boundaryvalueproblems.com/content/2014/1/123
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3 Blow-up solutions
In this section, we are able to derive an import estimate for the L∞-norm of strong solu-
tions. This enables us to establish precise blow-up scenario and several blow-up results
for equation (.).

Lemma . Let u ∈ Hs, s > / be given and assume the T is the maximal existence time
of the corresponding solution u to equation (.) with the initial data u. Then we have

∥∥u(t,x)∥∥L∞ ≤ e–λt
(|μ|(  |μ| + μ)

λ
+ ‖u‖L∞

)
, ∀t ∈ [,T). (.)

Proof The first equation of the Cauchy problem (.) is

ut + uux + μ(u)A–∂xu + λu = .

In view of equation (.), we have

∣∣A–∂xu
∣∣ ≤ 


|μ|e–λt + 

(∫
S

u dx
) 


.

A direct computation implies that

d
dt

∫
S

u dx = 
∫
S

uut dx

= –
∫
S

u
(
uux + μ(u)A–∂xu + λu

)
dx

= –λ
∫
S

u dx.

It follows that∫
S

u dx =
∫
S

u dx · e–λt := μ
e

–λt . (.)

So we have

∣∣A–∂x(u)
∣∣ ≤

(


|μ| + μ

)
e–λt .

In view of equation (.) we have

du(t,q(t,x))
dt

= ut
(
t,q(t,x)

)
+ ux

(
t,q(t,x)

)dq(t,x)
dt

= (ut + uux)
(
t,q(t,x)

)
.

Combing the above relations, we arrive at
∣∣∣∣du(t,q(t,x))dt

+ λu
(
t,q(t,x)

)∣∣∣∣ ≤ |μ|
(


|μ| + μ

)
e–λt .

Integrating the above inequality with respect to t < T on [, t] yields

∣∣eλtu
(
t,q(t,x)

)
– u(x)

∣∣ ≤ |μ|(  |μ| + μ)
λ

.
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Thus

∣∣u(
t,q(t,x)

)∣∣ ≤ ∥∥u(
t,q(t,x)

)∥∥
L∞ ≤ e–λt

(|μ|(  |μ| + μ)
λ

+ ‖u‖L∞
)
.

In view of the diffeomorphism property of q(t, ·), we can obtain

∣∣u(t,x)∣∣ ≤ ∥∥u(t,x)∥∥L∞ ≤ e–λt
(|μ|(  |μ| + μ)

λ
+ ‖u‖L∞

)
.

This completes the proof of Lemma .. �

Theorem . Let u ∈ Hs, s > / be given and assume that T is the maximal existence
time of the corresponding solution u(t,x) to the Cauchy problem (.) with the initial data
u. If there exists M >  such that

∥∥ux(t, ·)∥∥L∞ ≤M, t ∈ [,T),

then the Hs-norm of u(t, ·) does not blow up on [,T).

Proof We assume that c is a generic positive constant depending only on s. Let � = ( –
∂
x )/. Applying the operator �s to the first one in equation (.), multiplying by �su, and
integrating over S, we obtain

d
dt

‖u‖Hs = –(uux,u)Hs – 
(
u,A–∂x

(
μ(u)u

))
Hs – λ(u,u)Hs . (.)

Let us estimate the first term of the above equation,

∣∣(uux,u)Hs
∣∣ = ∣∣(�s(uux),�su

)
L

∣∣ = ∣∣([�s,u
]
ux,�su

)
L +

(
u�sux,�su

)
L

∣∣
≤ ∥∥[

�s,u
]
ux

∥∥
L

∥∥�su
∥∥
L +



∣∣(ux�su,�su

)
L

∣∣
≤ 

∥∥(u, v)∥∥
H×H

(

∥∥(u, v)∥∥

H×H
)

≤ c‖ux‖L∞‖u‖Hs , (.)

where we used Lemma . with r = s. Furthermore, we estimate the second term of the
right hand side of equation (.) in the following way:

∣∣(u,A–∂x
(
μ(u)u

))
Hs

∣∣ = ∣∣(u,A–∂x
(
e–λtμu

))
Hs

∣∣
≤ e–λt|μ|‖u‖Hs

∥∥A–∂xu
∥∥
Hs

≤ c|μ|‖u‖Hs . (.)

Combing equations (.) and (.) with equation (.) we arrive at

d
dt

‖u‖Hs ≤ c
(|μ| + ‖ux‖L∞ + λ

)|‖u‖Hs .

http://www.boundaryvalueproblems.com/content/2014/1/123
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An application of Gronwall’s inequality and the assumption of the theorem yield

‖u‖Hs ≤ ec(|μ|+M+λ)t‖u‖Hs .

This completes the proof of the theorem. �

The following result describes the precise blow-up scenario. Although the result which
is proved in [], our method is new, concise, and direct.

Theorem . Let u ∈ Hs, s > / be given and assume that T is the maximal existence
time of the corresponding solution u(t,x) to the Cauchy problem (.) with the initial data
u. Then the corresponding solution blows up in finite time if and only if

lim inf
t→T

{
inf
x∈S

ux(t,x)
}
= –∞.

Proof Since the maximal existence time T is independent of the choice of s by Theo-
rem ., applying a simple density argument, we only need to consider the case s = .
Multiplying the first one in equation (.) by y and integrating over S with respect to x
yield

d
dt

∫
S

y dx = 
∫
S

yyt dx = –
∫
S

y(uyx + uxy + λy)dx

= –
∫
S

uyyx dx – 
∫
S

uxy dx – λ
∫
S

y dx

= –
∫
S

uxy dx – λ
∫
S

y dx.

If ux is bounded from below on [,T)× S, then there exists N > λ >  such that

ux(t,x)≥ –N , ∀(t,x) ∈ [,T)× S,

then

d
dt

∫
S

y dx ≤ (N – λ)
∫
S

y dx.

Applying Gronwall’s inequality then yields for t ∈ [,T)

∫
S

y dx ≤ e(N–λ)t
∫
S

y(,x)dx.

Note that∫
S

y dx = μ(u) +
∫
S

uxx dx ≥ ‖uxx‖L .

Since ux ∈H ⊂H and
∫
S
ux = , Lemma . implies that

‖ux‖L∞ ≤ 

√

‖uxx‖L ≤ e

(N–λ)t


∥∥y(,x)∥∥L .

http://www.boundaryvalueproblems.com/content/2014/1/123
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Theorem . ensures that the solution u does not blow up in finite time. On the other
hand, by the Sobolev embedding theorem it is clear that if

lim inf
t→T

{
inf
x∈S

ux(t,x)
}
= –∞,

then T < ∞. This completes the proof of the theorem. �

We now give first sufficient conditions to guarantee wave breaking.

Theorem . Let u ∈ Hs, s > / and T be the maximal time of the solution u(t,x) to
equation (.) with the initial data u. If

inf
x∈S

u′
(x) < –



λ –



√

λ + α,

then the corresponding solution to equation (.) blow up in finite time in the following
sense: there exists T satisfying

 < T ≤ √
λ + α

ln

(
 infx∈S u′

(x) + λ –
√

λ + α

 infx∈S u′
(x) + λ +

√
λ + α

)
,

where α = |μ|( |μ|(  |μ|+μ)
λ

+ ‖u‖L∞ ), such that

lim inf
t→T

{
inf
x∈S

ux(t,x)
}
= –∞.

Proof As mentioned early, we only need to consider the case s = . Let

m(t) := inf
x∈S

[
ux(t,x)

]
, t ∈ [,T)

and let ξ (t) ∈ S be a point where this minimum is attained by using Lemma .. It follows
that

m(t) = ux
(
t, ξ (t)

)
.

Differentiating the first one in equation (.) with respect to x, we have

utx + ux + uuxx + μ(u)A–∂
x u + λux = .

From equation (.) we deduce that

utx = –ux – uuxx + μ(u)(u –μ) – λux. (.)

http://www.boundaryvalueproblems.com/content/2014/1/123
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Obviously uxx(t, ξ (t)) =  and u(t, ·) ∈ H(S) ⊂ C(S). Substituting (t, ξ (t)) into equation
(.), we get

dm(t)
dt

= –m(t) – λm(t) + μ(u)u
(
t, ξ (t)

)
– μ(u)

= –m(t) – λm(t) + μe–λtu
(
t, ξ (t)

)
– μ

e
–λt

≤ –m(t) – λm(t) + |μ|
(|μ|(  |μ| + μ)

λ
+ ‖u‖L∞

)
.

Set

α = |μ|
(|μ|(  |μ| + μ)

λ
+ ‖u‖L∞

)
.

Then we obtain

dm(t)
dt

≤ –m(t) – λm(t) + α

≤ –



(
m(t) + λ +

√
λ + α

)(
m(t) + λ –

√
λ + α

)
.

Note that ifm() < – 
λ–




√
λ + α, thenm(t) < – 

λ–



√
λ + α for all t ∈ [,T). From

the above inequality we obtain

m() + λ +
√

λ + α

m() + λ –
√

λ + α
e
√

λ+αt –  ≤ 
√

λ + α

m(t) + λ –
√

λ + α
≤ .

Since

 <
m() + λ +

√
λ + α

m() + λ –
√

λ + α
< ,

then there exists T,

 < T ≤ √
λ + α

ln

(
m() + λ –

√
λ + α

m() + λ +
√

λ + α

)

such that limt→T m(t) = –∞. Theorem . implies that the solution u blows up in finite
time. �

We give another blow-up result for the solutions of equation (.).

Theorem . Let u ∈ Hs, s > / and T be the maximal time of the solution u(t,x) to
equation (.) with the initial data u. If u is odd satisfies u′

 < –λ, then the corresponding
solution to equation (.) blows up in finite time.

Proof By μ(u(t, –x)) = μ(t, –x)e–λt = –μ(t,x)e–λt = –μ(u(t,x)), we can check the func-
tion

v(t,x) := –u(t, –x), t ∈ [,T),x ∈R,

http://www.boundaryvalueproblems.com/content/2014/1/123
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is also a solution of equation (.), therefore u(x, t) is odd for any t ∈ [,T). By continuity
with respect to x of u and uxx, we get

u(t, ) = uxx(t, ) = , ∀t ∈ [,T).

Define h(t) := ux(t, ) for t ∈ [,T). From equation (.), we obtain

dh(t)
dt

= –h(t) – λh(t) – μ(u)

≤ –h(t) – λh(t)

= –h(t)
(
h(t) + λ

)
.

Note that if h() < –λ, then h(t) < –λ for all t ∈ [,T). From the above inequality we obtain
(
 +

λ

h()

)
eλt –  ≤ λ

h(t)
≤ .

Since

 <
h() + λ

h()
< ,

there exists T,

 < T ≤ 
λ
ln

h()
h() + λ

such that limt→T m(t) = –∞. Theorem . implies that the solution u blows up in finite
time. �

4 Blow-up rate
In this section, we consider the blow-up profile; the blow-up rate of equation (.) with
respect to time can be shown as follows.

Theorem . Let u ∈ Hs, s > / and T be the maximal time of the solution u(t,x) to
equation (.) with the initial data u. If T is finite, then

lim
t→T

{
(T – t)min

x∈S
ux(x, t)

}
= –.

Proof It is inferred from Lemma . that the function

m(t) :=min
x∈S

ux(x, t) = ux
(
t, ξ (t)

)
is locally Lipschitz with m(t) < , t ∈ [,T). Note that uxx = , a.e. t ∈ [,T). Then we
deduce that

∣∣m′(t) +m(t) + λm(t)
∣∣ = ∣∣μ(u)u(

t, ξ (t)
)
– μ(u)

∣∣
=

∣∣μe–λtu
(
t, ξ (t)

)
– μ

e
–λt∣∣

≤ |μ|
(|μ|(  |μ| + μ)

λ
+ ‖u‖L∞ + |μ|

)
:= K .

http://www.boundaryvalueproblems.com/content/2014/1/123
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It follows that

–K ≤m′(t) +m(t) + λm(t)≤ K a.e. on (,T). (.)

Thus,

–K –



λ ≤m′(t) +
(
m(t) +



λ

)

≤ K +



λ a.e. on (,T).

Now fix any ε ∈ (, ). In view of Theorem ., there exists t ∈ (,T) such that m(t) <
–
√
(K + 

λ)( + 
ε
) – 

λ. Being locally Lipschitz, the functionm(t) is absolutely continu-
ous on [,T). It then follows from the above inequality that m(t) is decreasing on [t,T)
and satisfies

m(t) < –

√(
K +




λ
)(

 +

ε

)
–


λ, t ∈ [t,T).

Sincem(t) is decreasing on [t,T), it follows that

lim
t→T

m(t) = –∞.

It is found from equation (.) that

 – ε ≤ d
dt

(
m(t) +



λ

)–

= –
m′(t)

(m(t) + 
λ)

≤  + ε. (.)

Integrating both sides of equation (.) on (t,T), we obtain

( – ε)(T – t) ≤ –


(m(t) + 
λ)

≤ ( + ε)(T – t), t ∈ [t,T), (.)

that is,


( + ε)

–≤
(
m(t) +



λ

)
(T – t)≤ 

( – ε)
, t ∈ [t,T). (.)

By the arbitrariness of ε ∈ (,  ), we have

lim
t→T

(T – t)
(
m(t) + λ

)
= –. (.)

This completes the proof of the theorem. �

5 Global existence
In this section, we will present some global existence results. Let us now prove the follow-
ing lemma.

Lemma . Let u ∈ Hs, s > / be given and assume that T >  is the maximal existence
time of the corresponding solution u(t,x) to the Cauchy problem (.). Let q ∈ C([,T) ×

http://www.boundaryvalueproblems.com/content/2014/1/123
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R;R) be the unique solution of equation (.). Then we have

y
(
t,q(t,x)

)
qx = y(x)e–λt ,

where y = μ(u) – uxx.

Proof By the first one in equation (.) and equation (.) we have

d
dt

y
(
t,q(t,x)

)
qx = (yt + yxqt)qx + yqxqxt

= (yt + yxu)qx + yqxqxt

= (yt + uyx + yuxyxu)qx

= –λyqx .

Therefore

y
(
t,q(t,x)

)
qx = y(x)e–λt . �

Lemma . and equation (.) imply that y and y have the same sign.

Theorem . Let u ∈ Hs, s > /. If y = μ – u,xx ∈ H does not change sign, then the
corresponding solution u(t,x) to equation (.) with the initial data u exists globally in
time.

Proof By equation (.), we know that q(t, ·) is diffeomorphism of the line and the period-
icity of u with respect to spatial variable x, given t ∈ [,T), there exists a ξ (t) ∈ S such that
ux(t, ξ (t)) = .
We first consider the case that y ≥  on S, in which case Lemma . ensures that y ≥ .

For x ∈ [ξ (t), ξ (t) + ], we have

–ux(t,x) = –
∫ x

ξ (t)
uxx(t,x)dx =

∫ x

ξ (t)

(
y –μ(u)

)
dx

=
∫ x

ξ (t)
ydx –μ(u)

(
x – ξ (t)

) ≤
∫
S

ydx –μ(u)
(
x – ξ (t)

)
= μ(u)

(
 – x + ξ (t)

) ≤ |μ|.

It follows that ux(t,x)≥ –|μ|.
On the other hand, if y ≤  on S, then Lemma . ensures that y ≤ . Therefore, for

x ∈ [ξ (t), ξ (t) + ], we have

–ux(t,x) = –
∫ x

ξ (t)
uxx(t,x)dx =

∫ x

ξ (t)

(
y –μ(u)

)
dx

=
∫ x

ξ (t)
ydx –μ(u)

(
x – ξ (t)

)
≤ –μ(u)

(
x – ξ (t)

) ≤ |μ|.

http://www.boundaryvalueproblems.com/content/2014/1/123
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It follows that ux(t,x) ≥ –|μ|. By using Theorem ., we immediately conclude that the
solution is global. This completes the proof of the theorem. �

Corollary . If the initial value u ∈H such that

∥∥∂
x u

∥∥
L ≤ 

√
|μ|,

then the corresponding solution u of the initial value u exists globally in time.

Proof Since
∫
S
∂
x u dx = , by Lemma ., we obtain

∥∥∂
x u

∥∥
L∞ ≤ 


√


∥∥∂
x u

∥∥
L .

If μ ≥ , we have

y = μ – ∂
x u ≥ μ –



√


∥∥∂
x u

∥∥
L ≥ μ – |μ| = .

If μ < , we have

y = μ – ∂
x u ≤ μ +

∥∥∂
x u

∥∥
L∞ ≤ μ +



√


∥∥∂
x u

∥∥
L ≤ μ + |μ| = . �

Thus the theorem is proved by using Theorem ..

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details
1Department of Mathematics, Tianshui Normal University, Tianshui, Gansu 741001, P.R. China. 2Nonlinear Analysis and
Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
3Department of Mathematics, Quaid-I-Azam University 45320, Islamabad, 44000, Pakistan. 4Department of Mathematics,
Zhejiang Normal University, Jinhua, 321004, P.R. China.

Acknowledgements
This work is partially supported by the NSFC (Grant No. 11101376) the HiCi Project (Grant No. 27-130-35-HiCi).

Received: 19 February 2014 Accepted: 6 May 2014 Published: 20 May 2014

References
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