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Abstract
We investigate two types of dual identities for Riemann fractional sums and
differences. The first type relates nabla- and delta-type fractional sums and
differences. The second type represented by the Q-operator relates left and right
fractional sums and differences. These dual identities insist that in the definition of
right fractional differences, we have to use both nabla and delta operators. The
solution representation for a higher-order Riemann fractional difference equation is
obtained as well.

Keywords: right (left) delta and nabla fractional sums; right (left) delta and nabla
Riemann; Q-operator; dual identity

1 Introduction
During the last two decades, due to its widespread applications in different fields of science
and engineering, fractional calculus has attracted the attention of many researchers [–].
Starting from the idea of discretizing the Cauchy integral formula, Miller and Ross

[] and Gray and Zhang [] obtained discrete versions of left-type fractional integrals
and derivatives, called fractional sums and differences. Fifteen years later, several authors
started to deal with discrete fractional calculus [–], benefiting from the theory of time
scales originated by Hilger in  (see []).
In this article, we summarize some of the results mentioned in the above references

and add more in the right-type and higher order fractional cases. Throughout the arti-
cle, we almost agree with the previously presented definitions except for the definition
of right fractional difference. We will figure out that these definitions seem to be more
convenient than the previously presented ones by proving some dual identities. These
identities fall into two kinds. The first kind relates nabla-type fractional differences and
sums to delta ones. The second kind represented by the Q-operator relates left and right
fractional sums and differences. This setting enables us to get identities resembling better
the ordinary fractional case. Along with the previously mentioned points, we are able to
fit a reasonable nabla integration by parts formula which remains in accordance with the
one obtained in [] but different from those obtained in [] and []. The obtained dual
identities are also used to obtain a delta integration by parts formula from the nabla one.
The solution representation for the higher-order Riemann fractional difference equation
is obtained as well and thus the result in [] is generalized. We will see that the higher-
order Riemann fractional difference initial value problem of non-integer order needs only
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one initial condition which is not the case for the higher-order difference equation (i.e., of
positive integer order).
The article is organized as follows. The remaining part of this section contains sum-

mary to some of the basic notations and definitions in delta and nabla calculus. Section 
contains the definitions in the frame of delta and nabla fractional sums and differences in
the Riemann sense. Moreover, some essential lemmas about the commutativity of the dif-
ferent fractional sum operators with the usual difference operators are established. These
lemmas are vital to proceeding in the next sections. The third section contains some dual
identities relating nabla anddelta fractional sums anddifferences in the left and right cases.
Using these dual identities, power formulas for nabla left and right fractional sums and a
commutative law for nabla left and right sums are obtained. In Section  the integration
by parts formula for nabla fractional sums and differences obtained in [] is used by the
help of the dual identities to obtain delta integration by parts formulas. Section  is de-
voted to higher-order initial fractional difference value problems into Riemann. Finally, in
Section  the Q-operator is used to relate left and right fractional sums in nabla and delta
case and hence relates delta and nabla Riemann fractional differences. The Q-dual iden-
tities obtained in this section expose the validity of the definition of delta and nabla right
fractional differences where delta and nabla operators are used in each of the definitions
of delta and nabla right fractional differences.
For a natural number n, the fractional polynomial is defined by

t(n) =
n–∏
j=

(t – j) =
�(t + )

�(t +  – n)
, ()

where � denotes the special gamma function, and the product is zero when t +  – j = 
for some j. More generally, for arbitrary α, define

t(α) =
�(t + )

�(t +  – α)
, ()

where we have the convention that division at pole yields zero. Given that the forward and
backward difference operators are defined by

�f (t) = f (t + ) – f (t), ∇f (t) = f (t) – f (t – ) ()

respectively, we define iteratively the operators �m = �(�m–) and ∇m = ∇(∇m–), where
m is a natural number.
Here are some properties of the factorial function.

Lemma . [] Assume the following factorial functions are well defined.
(i) �t(α) = αt(α–).
(ii) (t –μ)t(μ) = t(μ+), where μ ∈R.
(iii) μ(μ) = �(μ + ).
(iv) If t ≤ r, then t(α) ≤ r(α) for any α > r.
(v) If  < α < , then t(αν) ≥ (t(ν))α .
(vi) t(α+β) = (t – β)(α)t(β).
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Also, for our purposes, we list down the following two properties, the proofs of which
are straightforward.

∇s(s – t)(α–) = (α – )
(
ρ(s) – t

)(α–), ()

∇t
(
ρ(s) – t

)(α–) = –(α – )
(
ρ(s) – t

)(α–). ()

For the sake of the nabla fractional calculus, we have the following definition.

Definition . [, –]
(i) For a natural numberm, them rising (ascending) factorial of t is defined by

tm =
m–∏
k=

(t + k), t = . ()

(ii) For any real number, the α rising function is defined by

tα =
�(t + α)

�(t)
, t ∈R – {. . . , –,–, }, α = . ()

Regarding the rising factorial function, we observe the following:
(i)

∇(
tα

)
= αtα–. ()

(ii)

(
tα

)
= (t + α – )(α). ()

(iii)

�t
(
s – ρ(t)

)α = –α
(
s – ρ(t)

)α–. ()

Notation
(i) For a real α > , we set n = [α] + , where [α] is the greatest integer less than α.
(ii) For real numbers a and b, we denote Na = {a,a + , . . .} and bN = {b,b – , . . .}.
(iii) For n ∈N and real a, we denote

��nf (t)� (–)n�nf (t).

(iv) For n ∈N and real b, we denote

∇n
�f (t)� (–)n∇nf (t).

2 Definitions and essential lemmas
Definition . Let σ (t) = t +  and ρ(t) = t –  be forward and backward jumping opera-
tors, respectively. Then

http://www.advancesindifferenceequations.com/content/2013/1/36
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(i) The (delta) left fractional sum of order α >  (starting from a) is defined by

�–α
a f (t) =


�(α)

t–α∑
s=a

(
t – σ (s)

)(α–)f (s), t ∈Na+α . ()

(ii) The (delta) right fractional sum of order α >  (ending at b) is defined by

b�
–αf (t) =


�(α)

b∑
s=t+α

(
s – σ (t)

)(α–)f (s)

=


�(α)

b∑
s=t+α

(
ρ(s) – t

)(α–)f (s), t ∈ b–αN. ()

(iii) The (nabla) left fractional sum of order α >  (starting from a) is defined by

∇–α
a f (t) =


�(α)

t∑
s=a+

(
t – ρ(s)

)α–f (s), t ∈Na+. ()

(iv) The (nabla) right fractional sum of order α >  (ending at b) is defined by:

b∇–αf (t) =


�(α)

b–∑
s=t

(
s – ρ(t)

)α–f (s)

=


�(α)

b–∑
s=t

(
σ (s) – t

)α–f (s), t ∈ b–N. ()

Regarding the delta left fractional sum, we observe the following:
(i) �–α

a maps functions defined on Na to functions defined on Na+α .
(ii) u(t) = �–n

a f (t), n ∈ N, satisfies the initial value problem

�nu(t) = f (t), t ∈ Na, u(a + j – ) = , j = , , . . . ,n. ()

(iii) The Cauchy function (t–σ (s))(n–)
(n–)! vanishes at s = t – (n – ), . . . , t – .

Regarding the delta right fractional sum, we observe the following:
(i) b�

–α maps functions defined on bN to functions defined on b–αN.
(ii) u(t) = b�

–nf (t), n ∈N, satisfies the initial value problem

∇n
�u(t) = f (t), t ∈ bN, u(b – j + ) = , j = , , . . . ,n. ()

(iii) The Cauchy function (ρ(s)–t)(n–)
(n–)! vanishes at s = t + , t + , . . . , t + (n – ).

Regarding the nabla left fractional sum, we observe the following:
(i) ∇–α

a maps functions defined on Na to functions defined on Na.
(ii) ∇–n

a f (t) satisfies the nth order discrete initial value problem

∇ny(t) = f (t), ∇ iy(a) = , i = , , . . . ,n – . ()

(iii) The Cauchy function (t–ρ(s))n–
�(n) satisfies ∇ny(t) = .

http://www.advancesindifferenceequations.com/content/2013/1/36
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Regarding the nabla right fractional sum, we observe the following:
(i) b∇–α maps functions defined on bN to functions defined on bN.
(ii) b∇–nf (t) satisfies the nth order discrete initial value problem

��ny(t) = f (t), ��iy(b) = , i = , , . . . ,n – . ()

The proof can be done inductively. Namely, assuming it is true for n, we have

��n+
b∇–(n+)f (t) = ��n[–�b∇–(n+)f (t)

]
. ()

By the help of (), it follows that

��n+
b∇–(n+)f (t) = ��n

b∇–nf (t) = f (t). ()

The other part is clear by using the convention that empty sums are taken to be .
(iii) The Cauchy function (s–ρ(t))n–

�(n) satisfies ��ny(t) = .

Definition . (i) [] The (delta) left fractional difference of order α >  (starting from a)
is defined by

�α
a f (t) = �n�–(n–α)

a f (t) =
�n

�(n – α)

t–(n–α)∑
s=a

(
t – σ (s)

)(n–α–)f (s), t ∈Na+(n–α). ()

(ii) [] The (delta) right fractional difference of order α >  (ending at b) is defined by

b�
αf (t) = ∇n

�b�
–(n–α)f (t) =

(–)n∇n

�(n – α)

b∑
s=t+(n–α)

(
s – σ (t)

)(n–α–)f (s), t ∈ b–(n–α)N. ()

(iii) The (nabla) left fractional difference of order α >  (starting from a) is defined by

∇α
a f (t) = ∇n∇–(n–α)

a f (t) =
∇n

�(n – α)

t∑
s=a+

(
t – ρ(s)

)n–α–f (s), t ∈Na+. ()

(iv) The (nabla) right fractional difference of order α >  (ending at b) is defined by

b∇αf (t) = ��n
b∇–(n–α)f (t) =

(–)n�n

�(n – α)

b–∑
s=t

(
s – ρ(t)

)n–α–f (s), t ∈ b–N. ()

Regarding the domains of the fractional type differences, we observe that
(i) The delta left fractional difference �α

a maps functions defined on Na to functions
defined on Na+(n–α).

(ii) The delta right fractional difference b�
α maps functions defined on bN to functions

defined on b–(n–α)N.
(iii) The nabla left fractional difference ∇α

a maps functions defined on Na to functions
defined on Na+n.

(iv) The nabla right fractional difference b∇α maps functions defined on bN to
functions defined on b–nN.

http://www.advancesindifferenceequations.com/content/2013/1/36


Abdeljawad Advances in Difference Equations 2013, 2013:36 Page 6 of 16
http://www.advancesindifferenceequations.com/content/2013/1/36

Lemma . [] For any α > , the following equality holds:

�–α
a �f (t) = ��–α

a f (t) –
(t – a)α–

�(α)
f (a).

Lemma . [] For any α > , the following equality holds:

b�
–α∇�f (t) = ∇�b�

–αf (t) –
(b – t)α–

�(α)
f (b).

Lemma . [] For any α > , the following equality holds:

∇–α
a+∇f (t) = ∇∇–α

a f (t) –
(t – a + )α–

�(α)
f (a). ()

The result of Lemma . was obtained in [] by applying the nabla left fractional sum
starting from a, not from a+. Next, we will provide the version of Lemma . by applying
the definition in this article. Actually, the nabla fractional sums defined in this article and
those in [] are related. For more details, we refer to [].

Lemma . For any α > , the following equality holds:

∇–α
a ∇f (t) = ∇∇–α

a f (t) –
(t – a)α–

�(α)
f (a). ()

Proof By the help of the following by parts identity:

∇s
[
(t – s)α–f (s)

]
= ∇s(t – s)α–f (s) +

(
t – ρ(s)

)α–∇sf (s)

= –(α – )
(
t – ρ(s)

)α–f (s) +
(
t – ρ(s)

)α–∇sf (s), ()

we have

∇–α
a ∇f (t) =


�(α)

t∑
s=a+

(
t – ρ(s)

)α–∇sf (s)

=


�(α)

[
(t – s)α–f (s)

∣∣t
a + (α – )

t∑
s=a+

(
t – ρ(s)

)α–f (s)

]
()

= –
(t – a)α–

�(α)
f (a) +


�(α – )

t∑
s=a+

(
t – ρ(s)

)α–f (s). ()

On the other hand,

∇∇–α
a f (t)

=


�(α)

t∑
s=a+

∇t
(
t – ρ(s)

)α–f (s) =


�(α – )

t∑
s=a+

(
t – ρ(s)

)α–f (s). ()
�

http://www.advancesindifferenceequations.com/content/2013/1/36
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Remark . Let α >  and n = [α] + . Then, by the help of Lemma ., we have

∇∇α
a f (t) = ∇∇n(∇–(n–α)

a f (t)
)
= ∇n(∇∇–(n–α)

a f (t)
)

()

or

∇∇α
a f (t) = ∇n

[
∇–(n–α)

a ∇f (t) +
(t – a)n–α–

�(n – α)
f (a)

]
. ()

Then, using the identity

∇n (t – a)n–α–

�(n – α)
=
(t – a)–α–

�(–α)
, ()

we infer that () is valid for any real α.

By the help of Lemma ., Remark . and the identity ∇(t – a)α– = (α – )(t – a)α–, we
arrive inductively at the following generalization.

Theorem . For any real number α and any positive integer p, the following equality
holds:

∇–α
a ∇pf (t) = ∇p∇–α

a f (t) –
p–∑
k=

(t – a)α–p+k

�(α + k – p + )
∇kf (a), ()

where f is defined on Na and some points before a.

Lemma . For any α > , the following equality holds:

b∇–α��f (t) = ��b∇–αf (t) –
(b – t)α–

�(α)
f (b). ()

Proof By the help of the following discrete by parts formula:

�s
[(

ρ(s) – ρ(t)
)α–f (s)

]
= (α – )

(
s – ρ(t)

)α–f (s) +
(
s – ρ(t)

)α–
�f (s), ()

we have

b∇–α
a�f (t)

= –


�(α)

b–∑
s=t

(
s – ρ(t)

)α–
�f (s)

=


�(α)

[
–

b–∑
s=t

�s
((

ρ(s) – ρ(t)
)α–f (s)

)
+ (α – )

b–∑
s=t

(
s – ρ(t)

)α–f (s)

]
()

=


�(α – )

b–∑
s=t

(
s – ρ(t)

)α–f (s) –
(b – t)α–

�(α)
f (b). ()

http://www.advancesindifferenceequations.com/content/2013/1/36
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On the other hand,

��b∇–αf (t)

= –


�(α)

b–∑
s=t

�t
(
s – ρ(t)

)α–f (s) =


�(α – )

b–∑
s=t

(
s – ρ(t)

)α–f (s), ()

where the identity

�t
(
s – ρ(t)

)α– = –(α – )
(
s – ρ(t)

)α–

and the convention that ()α– =  are used. �

Remark . Let α >  and n = [α] + . Then, by the help of Lemma ., we can have

a�b∇αf (t) = a���n(
b∇–(n–α)f (t)

)
= ��n(��b∇–(n–α)f (t)

)
()

or

��b∇αf (t) = ��n
[
b∇–(n–α)��f (t) +

(b – t)n–α–

�(n – α)
f (b)

]
. ()

Then, using the identity

��n (b – t)n–α–

�(n – α)
=
(b – t)–α–

�(–α)
, ()

we infer that () is valid for any real α.

By the help of Lemma ., Remark . and the identity �(b – t)α– = –(α – )(b – t)α–,
if we follow inductively, we arrive at the following generalization.

Theorem . For any real number α and any positive integer p, the following equality
holds:

b∇–α��pf (t) = ��p
b∇–αf (t) –

p–∑
k=

(b – t)α–p+k

�(α + k – p + )��kf (b), ()

where f is defined on bN and some points after b.

The following theorem modifies Theorem . when f is only defined at Na.

Theorem . For any real number α and any positive integer p, the following equality
holds:

∇–α
a+p–∇pf (t) = ∇p∇–α

a+p–f (t) –
p–∑
k=

(t – (a + p – ))α–p+k

�(α + k – p + )
∇kf (a + p – ), ()

where f is defined on only Na.

http://www.advancesindifferenceequations.com/content/2013/1/36
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The proof follows by applying Remark . inductively.
Similarly, in the right case we have the following theorem.

Theorem . For any real number α and any positive integer p, the following equality
holds:

b–p+∇–α��pf (t) = ��p
b–p+∇–αf (t) –

p–∑
k=

(b – p +  – t)α–p+k

�(α + k – p + ) ��kf (b – p + ), ()

where f is defined on bN only.

3 Dual identities for right fractional sums and differences
The dual relations for left fractional sums and differences were investigated in []. In-
deed, the following two lemmas are dual relations between the delta left fractional sums
(differences) and the nabla left fractional sums (differences).

Lemma . [] Let  ≤ n –  < α ≤ n and let y(t) be defined on Na. Then the following
statements are valid.

(i) (�α
a )y(t – α) = ∇α

a y(t) for t ∈Nn+a.
(ii) (�–α

a )y(t + α) = ∇–α
a y(t) for t ∈Na.

Lemma . [] Let  ≤ n –  < α ≤ n and let y(t) be defined on Nα–n. Then the following
statements are valid.

(i) �α
α–ny(t) = (∇α

α–ny)(t + α) for t ∈N–n.
(ii) �

–(n–α)
α–n y(t) = (∇–(n–α)

α–n y)(t – n + α) for t ∈N.

We remind that the above two dual lemmas for left fractional sums and differences were
obtained when the nabla left fractional sum was defined by

∇–α
a f (t) =


�(α)

t∑
s=a

(
t – ρ(s)

)α–f (s), t ∈Na. ()

Now, in a way analogous to Lemma . and Lemma ., for the right fractional summa-
tions and differences, we obtain the following lemmas.

Lemma . Let y(t) be defined on b+N. Then the following statements are valid.
(i) (b�α)y(t + α) = b+∇αy(t) for t ∈ b–nN.
(ii) (b�–α)y(t – α) = b+∇–αy(t) for t ∈ bN.

Proof We prove only (i). The proof of (ii) is similar and easier.

(
b�

α
)
y(t + α) = (–)n∇n

b�
–(n–α)y(t + α)

=
(–)n∇n

�(n – α)

b∑
s=t+n

(s – t –  – α)(n–α–)y(s)

=
(–)n�n

�(n – α)

b∑
s=t

(s – t –  + n – α)(n–α–)y(s). ()

http://www.advancesindifferenceequations.com/content/2013/1/36
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Using the identity tα = (t + α – )(α), we arrive at

(
b�

α
)
y(t + α) =

(–)n�n

�(n – α)

b∑
s=t

(
s – ρ(t)

)n–α–y(s)

= (–)n�n
b+∇–(n–α)y(t) = b+∇αy(t). ()

�

Lemma . Let  ≤ n –  < α ≤ n and let y(t) be defined on n–αN. Then the following
statements are valid.

(i)

n–α�αy(t) = n–α+∇αy(t – α), t ∈ nN.

(ii)

n–α�–(n–α)y(t) = n–α+∇–(n–α)y(t + n – α), t ∈ N.

Proof We prove (i), the proof of (ii) is similar. By the definition of right nabla difference,
we have

n–α+∇αy(t – α) = a�
n 
�(n – α)

n–α∑
s=t–α

(
s – ρ(t – α)

)n–α–y(s)

= a�
n 
�(n – α)

n–α∑
s=t–α

(
s – ρ(t – α)

)n–α–y(s)

= ∇n
b


�(n – α)

n–α∑
s=t+n–α

(
s – ρ(t + n – α)

)n–α–y(s). ()

By using (), it follows that

n–α+∇αy(t – α) = ∇n
b


�(n – α)

n–α∑
s=t+n–α

(
s – σ (t)

)(n–α–)y(s) = n–α�αy(t). ()
�

Note that the above two dual lemmas for right fractional differences cannot be obtained
if we apply the definition of the delta right fractional difference introduced in [] and [].

Lemma . [] Let α > , μ > . Then

b–μ�–α(b – t)(μ) =
�(μ + )

�(μ + α + )
(b – t)(μ+α). ()

The following commutative property for delta right fractional sums is Theorem in [].

Theorem . Let α > , μ > . Then, for all t such that t ≡ b – (μ + α) (mod ), we have

b�
–α

[
b�

–μf (t)
]
= b�

–(μ+α)f (t) = b�
–μ

[
b�

–αf (t)
]
, ()

where f is defined on bN.

http://www.advancesindifferenceequations.com/content/2013/1/36
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Proposition . Let f be a real-valued function defined on bN, and let α,β > . Then

b∇–α
[
b∇–β f (t)

]
= b∇–(α+β)f (t) = b∇–β

[
b∇–αf (t)

]
. ()

Proof The proof follows by applying Lemma .(ii) and Theorem . above. Indeed,

b∇–α
[
b∇–β f (t)

]
= b∇–α

b–�
–β f (t – β)

= b–�
–α

b–�
–β f

(
t – (α + β)

)
= b–�

–(α+β)f
(
t – (α +μ)

)
= b∇–(α+β)y(t). ()

�

The following power rule for nabla right fractional differences plays an important role.

Proposition . Let α > , μ > –. Then, for t ∈ bN, we have

b∇–α(b – t)μ =
�(μ + )

�(α +μ + )
(b – t)α+μ. ()

Proof By the dual formula (ii) of Lemma ., we have

b∇–α(b – t)μ = b–�
–α(b – r)μ

∣∣
r=t–α

=


�(α)

b–∑
s=t

(s – t + α – )(α–)(b – s)μ. ()

Then, by the identity tα = (t + α – )(α–) and using the change of variable r = s – μ + , it
follows that

b∇–α(b – t)μ =


�(α)

b–μ∑
r=t–μ+

(
r – σ (t – α –μ + )

)(α–)(b – r)μ

=
(
b–μ�–α(b – u)μ

)∣∣
u=–α–μ++t , ()

which, by Lemma ., leads to

b∇–α(b – t)μ =
�(μ + )

�(α +μ + )
(b – t + α +μ – )(α+μ)

=
�(μ + )

�(α +μ + )
(b – t)α+μ. ()

�

Similarly, for the nabla left fractional sum, we can have the following power formula and
exponent law.

Proposition . Let α > , μ > –. Then, for t ∈Na, we have

∇–α
a (t – a)μ =

�(μ + )
�(α +μ + )

(t – a)α+μ. ()

Proposition . Let f be a real-valued function defined on Na, and let α,β > . Then

∇–α
a

[∇–β
a f (t)

]
= ∇–(α+β)

a f (t) = ∇–β
a

[∇–α
a f (t)

]
. ()
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Proof The proof can be achieved as in Theorem . [], by expressing the left-hand side
of (), interchanging the order of summation and using the power formula (). Alter-
natively, the proof can be done by following the proof of Proposition . with the help of
the dual formula for left fractional sum in Lemma . after its arrangement according to
our definitions. �

4 Integration by parts for fractional sums and differences
In this section we state the integration by parts formulas for nabla fractional sums and
differences obtained in [], then use the dual identities to obtain delta integration by
part formulas.

Proposition . [] For α > , a,b ∈ R, f defined on Na and g defined on bN, we have

b–∑
s=a+

g(s)∇–α
a f (s) =

b–∑
s=a+

f (s)b∇–αg(s). ()

Proof By the definition of the nabla left fractional sum, we have

b–∑
s=a+

g(s)∇–α
a f (s) =


�(α)

b–∑
s=a+

g(s)
s∑

r=a+

(
s – ρ(r)

)α–f (r). ()

If we interchange the order of summation, we reach (). �

By the help of Theorem ., Proposition ., () and that ∇–(n–α)
a f (a) = , the authors

in [] obtained the following left important tools which led to a nabla integration by parts
formula for fractional differences.

Proposition . [] For α >  and f defined in a suitable domain Na, we have

∇α
a ∇–α

a f (t) = f (t), ()

∇–α
a ∇α

a f (t) = f (t), when α /∈N, ()

and

∇–α
a ∇α

a f (t) = f (t) –
n–∑
k=

(t – a)k

k!
∇kf (a), when α = n ∈N. ()

By the help of Theorem ., Proposition ., () and that b∇–(n–α)f (b) = , the authors
in [] also obtained the following right important tool.

Proposition . [] For α >  and f defined in a suitable domain bN, we have

b∇α
b∇–αf (t) = f (t), ()

b∇–α
b∇αf (t) = f (t), when α /∈N, ()

and

b∇–α
b∇αf (t) = f (t) –

n–∑
k=

(b – t)k

k! ��kf (b), when α = n ∈N. ()
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Proposition . [] Let α >  be non-integer and a,b ∈ R such that a < b and b ≡
a (mod ). If f is defined on bN and g is defined on Na, then

b–∑
s=a+

f (s)∇α
a g(s) =

b–∑
s=a+

g(s)b∇αf (s). ()

The proofwas achieved bymaking use of Proposition . and the tools of Proposition .
and Proposition ..
Now, by the above nabla integration by parts formulas and the dual identities in

Lemma . adjusted to our definitions and Lemma ., we can obtain delta integration
by parts formulas.

Proposition . Let α > , a,b ∈ R such that a < b and b ≡ a (mod ). If f is defined on Na

and g is defined on bN, then we have

b–∑
s=a+

g(s)
(
�–α

a+f
)
(s + α) =

b–∑
s=a+

f (s)b–�–αg(s – α). ()

Proposition . Let α >  be non-integer and assume that b≡ a (mod ). If f is defined on
bN and g is defined on Na, then

b–∑
s=a+

f (s)�α
a+g(s – α) =

b–∑
s=a+

g(s)b–�αf (s + α). ()

5 Higher-order fractional difference initial value problemwithin Riemann
Let α >  be non-integer, n = [α] +  and a(α) = a + n – . Consider the fractional initial
difference equation

∇α
a(α)–y(t) = f

(
t, y(t)

)
, t = a(α) + ,a(α) + , . . . ,

∇–(n–α)
a(α)– y(t)

∣∣
t=a(α) = y

(
a(α)

)
= c.

()

Apply the sum operator ∇–α
a(α) to both sides of () to get

∇–α
a(α)

{
∇α

a(α)y(t) +∇n (t – a(α) + )n–α–

�(n – α)
y
(
a(α)

)}
= ∇–α

a(α)f
(
t, y(t)

)
. ()

Applying (), we reach

y(t) +∇–α
a(α)∇n (t – a(α) + )n–α–

�(n – α)
y
(
a(α)

)
= ∇–α

a(α)f
(
t, y(t)

)
. ()

Now, set gα(t) = (t–a(α)+)n–α–

�(n–α) y(a(α)), then by Theorem . with p = n and f (t) = gα(t), we
have

∇–α
a(α)∇ngα(t) = ∇n∇–α

a(α)gα(t) –
n–∑
k=

(t – a(α))α–n+k

�(α + k – n + )
∇kgα

(
a(α)

)
. ()
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Noting that ∇kgα(a(α)) = y(a(α)) for k = , , . . . ,n – , by the power formula (), we
conclude that

∇–α
a(α)∇ngα(t) =  –∇n (t – a(α) + )α–y(a(α))

�(α)
–

n–∑
k=

(t – a(α))α–n+k

�(α + k – n + )
y
(
a(α)

)
. ()

Then the substitution in () will lead to the following solution representation:

y(t) = ∇n (t – a(α) + )α–y(a(α))
�(α)

+
n–∑
k=

(t – a(α))α–n+k

�(α + k – n + )
c +∇–α

a(α)f
(
t, y(t)

)
. ()

As a particular case, if  < α < , then a(α) = a and hence

y(t) =
(t – a + )α–

�(α)
y(a) +∇–α

a f
(
t, y(t)

)
, ()

which is the result obtained in [].
If  < α < , then n =  and a(α) = a +  and the initial value problem () becomes

∇α
a y(t) = f

(
t, y(t)

)
, t = a + ,a + , . . . ,

∇–(–α)
a y(t)

∣∣
t=a+ = y(a + ) = c.

()

From (), the solution is

y(t) =
(t – a)α–c
�(α – )

+
(t – a – )α–c

�(α – )
+
(t – a – )α–c

�(α)
+∇–α

a+f
(
t, y(t)

)
. ()

Combining the first two terms then

y(t) =
(t – a)α–c
�(α – )

+
(t – a – )α–c

�(α)
+∇–α

a+f
(
t, y(t)

)
. ()

Again combining, we reach

y(t) =
(t – a)α–c

�(α)
+∇–α

a+f
(
t, y(t)

)
. ()

If we proceed inductively, we can state the following.

Theorem . Let α >  be non-integer, n = [α] +  and a(α) = a + n – . Then the solution
of the fractional initial difference equation

∇α
a(α)–y(t) = f

(
t, y(t)

)
, t = a(α) + ,a(α) + , . . . ,

∇–(n–α)
a(α)– y(t)

∣∣
t=a(α) = y

(
a(α)

)
= c,

()

is given by

y(t) =
(t – a(α) + )α–c

�(α)
+∇–α

a(α)f
(
t, y(t)

)
. ()
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The surprise in Theorem . is that the higher-order Riemann fractional difference ini-
tial value problem of non-integer order needs only one initial condition which is not the
case for the higher-order difference equation (i.e., of positive integer order). Also, the so-
lution consists of two terms, which is not the case for fractional Cauchy problems into
Riemann.

6 The Q-operator and fractional difference equations
If f (s) is defined on Na ∩ bN and a ≡ b (mod ), then (Qf )(s) = f (a + b– s). The Q-operator
generates a dual identity by which the left-type and the right-type fractional sums and
differences are related. Using the change of variable u = a + b – s, in [] it was shown that

�–α
a Qf (t) =Qb�

–αf (t), ()

and hence

�α
aQf (t) =

(
Qb�

αf
)
(t). ()

The proof of () follows by the definition, () and by noting that

–Q∇f (t) = �Qf (t).

Similarly, in the nabla case, we have

∇–α
a Qf (t) =Qb∇–αf (t), ()

and hence

∇α
a Qf (t) =

(
Qb∇αf

)
(t). ()

The proof of () follows by the definition, () and that

–Q�f (t) = ∇Qf (t).

It is remarkable to mention that the Q-dual identity () cannot be obtained if the defi-
nition of the delta right fractional difference introduced by Bastos et al. in [] or by Atıcı
et al. in [] is used. Thus, the definition introduced in [] and [] is more convenient.
Analogously, the Q-dual identity () indicates that the nabla right Riemann fractional
differences presented in this article are also more convenient.
It is clear from the above argument that theQ-operator agrees with its continuous coun-

terpart when applied to left and right fractional Riemann integrals Riemann derivatives.
More generally, this discrete version of the Q-operator can be used to transform the dis-
crete delay-type fractional functional difference dynamic equations to advanced ones. For
details in the continuous counterparts, see [].
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13. Atıcı, FM, Şengül, S: Modelling with fractional difference equations. J. Math. Anal. Appl. 369, 1-9 (2010)
14. Bastos, NRO, Ferreira, RAC, Torres, DFM: Discrete-time fractional variational problems. Signal Process. 91(3), 513-524

(2011)
15. Abdeljawad, T, Baleanu, D: Fractional differences and integration by parts. J. Comput. Anal. Appl. 13(3), 574-582

(2011)
16. Anastassiou, GA: Principles of delta fractional calculus on time scales and inequalities. Math. Comput. Model. 52,

556-566 (2010)
17. Anastassiou, GA: Nabla discrete calculus and nabla inequalities. Math. Comput. Model. 51, 562-571 (2010)
18. Anastassiou, GA: Foundations of nabla fractional calculus on time scales and inequalities. Comput. Math. Appl. 59,

3750-3762 (2010)
19. Bohner, M, Peterson, A: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003)
20. Abdeljawad, T, Atıcı, F: On the definitions of nabla fractional operators. Abstr. Appl. Anal. 2012, Article ID 406757

(2012). doi:10.1155/2012/406757
21. Boros, G, Moll, V: Irresistible Integrals: Symbols, Analysis and Experiments in the Evaluation of Integrals. Cambridge

University Press, Cambridge (2004)
22. Graham, RL, Knuth, DE, Patashnik, O: Concrete Mathematics. A Foundation for Computer Science, 2nd edn.

Addison-Wesley, Reading (1994)
23. Spanier, J, Oldham, KB: The Pochhammer Polynomials (x)n . An Atlas of Functions, pp. 149-156. Hemisphere,

Washington (1987)
24. Atıcı, FM, Eloe, PW: Gronwall’s inequality on discrete fractional calculus. Comput. Math. Appl. 64(10), 3193-3200

(2012). doi:10.1016/j.camwa.2011.11.029
25. Abdeljawad Maraaba, T, Baleanu, D, Jarad, F: Existence and uniqueness theorem for a class of delay differential

equations with left and right Caputo fractional derivatives. J. Math. Phys. 49, Article ID 083507 (2008)

doi:10.1186/1687-1847-2013-36
Cite this article as: Abdeljawad: Dual identities in fractional difference calculus within Riemann. Advances in Difference
Equations 2013 2013:36.

http://www.advancesindifferenceequations.com/content/2013/1/36
http://dx.doi.org/10.1155/2012/406757
http://dx.doi.org/10.1016/j.camwa.2011.11.029

	Dual identities in fractional difference calculus within Riemann
	Abstract
	Keywords

	Introduction
	Deﬁnitions and essential lemmas
	Dual identities for right fractional sums and differences
	Integration by parts for fractional sums and differences
	Higher-order fractional difference initial value problem within Riemann
	The Q-operator and fractional difference equations
	Competing interests
	References


