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Abstract
In this study, the different dynamical behaviors caused by different parameters of a
discrete-time eco-epidemiological model with disease in prey are discussed in
ecological perspective. The results indicate that when we choose the same
parameters and initial value and only vary the key parameters there appears a series
of dynamical behaviors. For example, only varying the death rate of the infected prey
(the carrying capacity of the environment for the prey population or the transmission
coefficient), there appear chaos, Hopf (flip) bifurcation, local stability, flip (Hopf )
bifurcation, and chaos; when only varying the predation coefficient there appear
chaos, Hopf bifurcation, local stability, Hopf bifurcation, and chaos. These results are
far richer than the corresponding continuous-time model and are rarely seen in
previous works. Numerical simulations not only illustrate our results but also exhibit
complex dynamical behaviors, such as period-doubling bifurcation in period-2,4,8,
quasi-periodic orbits, 3,5,11,16-period orbits and chaotic sets. Moreover, the
numerical simulations imply that when the death rate of the infected prey reaches a
fixed value the disease dies out. Also, when the predation coefficient parameter
reaches some value the disease dies out. These findings indicate that it is practicable
to control the disease transmitting in prey by changing the death rate of the infected
prey and the predation coefficient parameter.

Keywords: discrete eco-epidemiological model; predator-prey; flip bifurcation; Hopf
bifurcation; chaos; complex dynamical behavior

1 Introduction
Generally, the ecological models are used to study the competitive, cooperation, and prey-
predator relationships between different species in nature [–]. And the epidemicmodels
are used to detect the outbreak, transmission, and extinction characteristics of the differ-
ent diseases [–]. Actually, the prey (or predator) species may infect diseases, and the
diseases will spread among the prey and predator species. For example, in Salton Sea of
California, the Tilapia fish is infected by a virio class of bacteria,Vibro alginolyticus, which
spreads in the fish species and the infected fish becomemuch easier available for predation
for piscivorous birds [, ]. Then the dynamical behaviors of the prey-predator relation-
ship become more complex than before. For this case, we not only study the behavior
characteristics in the prey-predator process but also consider the disease spreading in the
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species. Therefore, the ecological theory should be combined with the epidemiological
theory to explain the above ecological phenomena. That is the eco-epidemiology theory.
In the last few decades, as a new branch of theoretical biology the eco-epidemiology has

received more andmore attention (for example, [–] and the references cited therein).
The reason is that the eco-epidemiology studied by different types ofmathematicalmodels
can help us to understand the natural world well from ecology and epidemic perspectives
[]. Furthermore, we can control the transmission of diseases among different species
through varying the key parameters when the dynamical behaviors of the corresponding
models have been discussed clearly [, ].
Most of the abovemodels aremainly based on the following cases: case , diseases trans-

mit only in prey species (for example, [–] and the references cited therein); case ,
diseases transmit only in predator species (for example, see [–] and the references
cited therein); case , diseases transmit both in prey and predator species (see []). The
dynamical behaviors of the models with disease are studied, such as the stability, periodic
solution, oscillation, bifurcation, and chaos. Their results indicated that the predators die
out and the prey tends to its carrying capacity; or the infected prey and the predators both
die out; or the predator and prey coexist.
The complex dynamical behaviors of discrete-time predator-prey models have already

received much attention by lots of studies: such as stability, permanence, existence of pe-
riodic solutions, bifurcation, and chaos phenomenons [–]. We obtain a series of bi-
furcations of a discrete-time predator-prey model when we only vary the parameter K
which is more complex than the corresponding continuous-time model (see []). And
the results are more reasonable in a biological perspective.
Until now, there are few papers to study the dynamical behaviors of discrete-time eco-

epidemiological models. How many eco-epidemiological phenomena can be explained
by discrete-time models which are not explained by continuous-time models? Is there
more complex dynamical behavior in a discrete-time eco-epidemiological model than the
continuous-time one as we obtained (see [])? In this paper, motivated by the above
works we will study a discrete-time predator-prey models with disease in prey which is
obtained from the corresponding continuous-time model. Let us consider the following
continuous-time predator-prey model with disease in prey described by differential equa-
tions studied by Xiao and Chen []:

dS
dt

= rS
(
 –

S + I
K

)
– βSI,

dI
dt

= βSI – cI –
bIY

mY + I
, (.)

dY
dt

= –dY +
kbIY
mY + I

,

where S(t), I(t), and Y (t) denote the population density of susceptible prey, infected prey
and the population density of predator at time t, respectively. r is the intrinsic birth rate of
the prey population,K is the carrying capacity of the environment for the prey population,
β is the transmission coefficient, c is the death rate of the infected prey, m is the ratio-
dependent rate, b is the predation coefficient, k is the coefficient in conversing prey into
predator, and d is the death rate constant of the predator. The parameters r, K , β , c, b,m,
d are positive constants and  < k ≤ . The reasons why the predators only eat infected
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prey can be found in []. And the authors obtained the permanence, global stability, and
Hopf bifurcation for model (.).
The following discrete-time model corresponding with model (.) is considered:

St+ = St exp
[
r
(
 –

St + It
K

)
– βIt

]
,

It+ = It exp
[
βSt – c –

bYt

mYt + It

]
, (.)

Yt+ = Yt exp

[
kbIt

mYt + It
– d

]
,

where r, K , β , c, b,m, d, and k are defined as inmodel (.). It is assumed that for the initial
values of model (.) S > , I > , Y > , and all the parameters are positive. Obviously, if
the initial value (S, I,Y) is positive, then the corresponding solution (St , It ,Yt) is positive
too.
In this paper, we will study the dynamical behaviors of model (.). The existence and

local stability of equilibria, flip bifurcation, Hopf bifurcation, and chaos will be discussed
by using the theory of difference equation. Moreover, by varying different parameters, the
different dynamical behaviors will be studied for the same equilibrium and these phenom-
ena also can be explained as regards their ecological significance. Finally, we will use the
numerical simulations to indicate the correctness and rationality of our results.
The organization of this paper is as follows. In Section  we discuss the existence and

local stability of equilibria in model (.). Furthermore, we study different bifurcations of
model (.) caused by different parameters. In Section  we present the numerical simu-
lations, which not only illustrate our results with the theoretical analysis, but also exhibit
the complex dynamical behaviors such as the invariant cycle, ,,,-periodic solutions,
flip bifurcation, Hopf bifurcation, and more than one attractors and chaotic sets. In the
last section we give a discussion.

2 Analysis of equilibria
For model (.), we always assume that any solution (St , It ,Yt) satisfies initial values S > ,
I > , and Y > , and all the parameters r, K , β , c, b,m, k, and d are positive. It is obvious
that any solutions of model (.) are nonnegative for all t ≥ .
Let R = Kβ

c , which is the basic reproductive rate of model (.). After some simple cal-
culations, we first have the following results on the existence of the nonnegative equilibria
of model (.).

Theorem 
() When R ≤ ,model (.) has only an equilibrium E(K , , ).
() When R > ,model (.) always has two equilibria E(K , , ) and

E( cβ ,
rK

r+Kβ
( – c

Kβ
), ). Furthermore, if kb > d andmk(Kβ – c) – (kb – d) > , besides

the two equilibria E(K , , ), E( cβ ,
rK

r+Kβ
( – c

Kβ
), ),model (.) has a positive

equilibrium E∗(S∗, I∗,Y ∗), where

S∗ =
cmk + kb – d

mkβ
, I∗ =

r
r +Kβ

(
K – S∗), Y ∗ =

kb – d
md

I∗.
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In order to obtain the stability of equilibria of model (.), we introduce the following
lemmas.

Lemma  [] Let F(w) = w +Bw+C,where B and C are constants. Suppose F() >  and
w, w are two roots of F(w) = . Then
() |w| <  and |w| <  if and only if F(–) >  and C < ;
() w = – and |w| �=  if and only if F(–) = , B �= , ;
() |w| <  and |w| >  if and only if F(–) < ;
() |w| >  and |w| >  if and only if F(–) >  and C > ;
() w and w are the conjugate complex roots and |w| = |w| =  if and only if

B – C <  and C = .

Lemma  [] Let the equation x + bx + cx + d = , where b, c,d ∈ R. Let further A =
b – c, B = bc – d, C = c – bd, and � = B – AC. Then:
() The equation has three different real roots if and only if � ≤ .
() The equation has one real root and a pair of conjugate complex roots if and only if

� > . Further, the conjugate complex roots are

w =
–b + Y



 + Y






± i

√
(Y



 – Y



 )


,

where

Y, = bA +
–B± √

B – AC


.

Now, we study the stability of equilibria E, E, and E∗ of model (.). We first consider
equilibrium E(K , , ). The Jacobian matrix of model (.) is

J(E) =

⎛
⎜⎝
 – r –K(β + r

K ) 
 eKβ–c 
  e–d

⎞
⎟⎠ .

The three eigenvalues of J(E) are

w =  – r, w = eKβ–c, w = e–d.

When R <  we have  < w <  and when R >  we have ω > . Hence, the local stability
of E(K , , ) is determined by w. Thus, we have the following result.

Theorem 
() When R < , we have the following conclusions.

(a) If  < r < , then E(K , , ) is a sink and locally asymptotically stable.
(b) If r = , then E(K , , ) is non-hyperbolic.

() When R <  and r >  or R > , E(K , , ) is unstable.

Furthermore, when R < ,  < r < , the global asymptotically stable of E(K , , ) is also
can be obtained. In fact, from the first equation of model (.) and the positivity of the
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solution, we obtain

St+ = St exp
[
r
(
 –

St + It
K

)
– βIt

]
< St exp

[
r
(
 –

St
K

)]
. (.)

Let

Ut =Ut exp

[
r
(
 –

Ut

K

)]
=Ut exp

[
r – r

Ut

K

]
. (.)

Since r < , by the conclusion (i) of Lemma  in [], we obtain

lim
t→∞Ut = K . (.)

Let U(u) = u exp[r – r u
K ], then according to simple computing, U is nondecreasing for

u ∈ (, Kr ]. Two cases are considered for the global asymptotically stable of E(K , , ).
Case : If  < r ≤ , the conclusion (ii) of Lemma  in [] shows that limt→∞ Ut ≤ K

r ,
and from Lemma  in [], we have St ≤ Ut for all t ≥ , where Ut is the solution of (.)
with S =U. Consequently,

lim supSt ≤ lim
t→∞Ut = K .

Then, for any constant ε >  sufficiently small there exists an integer T >  such that if
t ≥ T , then St ≤ K + ε.
For t > T and the second equation of model (.), we have

It+ = It exp
[
βSt – c –

bYt

mYt + It

]
< It exp

[
β(K + ε) – c

]
.

Since R = βK
c < , the above ε can be chosen satisfied β(K+ε)

c <  and β(K + ε) – c < . Then
limt→∞ It = . From the third equation ofmodel (.) limt→∞ Yt = .Hence, limt→∞ St = K .
Equilibrium E(K , , ) is global asymptotically stable.
Case : If  < r < , by some simple computing we can easily obtain

St+ < St exp
[
r
(
 –

St
K

)]
≤ K

r
exp[r – ].

It means that St ≤ K
r exp[r–]. For the second equation ofmodel (.), if β K

r exp[r–]–c <
, then R

exp[r–]
r < . We can easily obtain limt→∞ It = . Consequently, by the other two

equations of model (.) we have limt→∞ Yt =  and limt→∞ St = K . The global asymptot-
ically stability of equilibrium E(K , , ) is also obtained.
From the above discussion, we have the following result.

Theorem If one of the following conditions hold, equilibrium E(K , , ) is global asymp-
totically stable.
() R <  and  < r ≤ ;
() R

exp[r–]
r <  and  < r < .
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Next, we consider equilibrium E( cβ ,
rK

r+Kβ
(– c

Kβ
), ). The Jacobianmatrix of model (.)

is

J(E) =

⎛
⎜⎝
 – rS

K –S(β + r
K ) 

βI  –b
  ebk–d

⎞
⎟⎠ .

The corresponding characteristic equation of J(E) is

f (w) =
(
w – ekb–d

)(
w + pw + q

)
,

where

p = –
(
 –

rS
K

)
, q =  –

rS
K

+ βSI
(

β +
r
K

)
.

Obviously, f (w) has one eigenvalue w = ekb–d and
() if bk < d, then  < w < ;
() if bk = d, then w = ;
() if bk > d, then w > .
Let g(w) = w + pw + q. We denote by ω, the two roots of equation g(ω) = . By simple

computing, we obtain g() > . Further,

g(–) =  –
cr
Kβ

+
cr(Kβ – c)

Kβ
.

From g(–) = , we have

Kβ =
cr(c + )
 + cr

,

which equals

rc + (r –Kβr)c – Kβ = .

Solving this equation we have

c� c =
Kβr – r –

√
(Kβr – r) + Kβr

r
,

c� c =
Kβr – r +

√
(Kβr – r) + Kβr

r
.

Obviously, c < . When Kβ > cr(c+)
+cr or  < c < c, we have F(–) > . When q = , we have

Kβ =  + c. Hence, when Kβ <  + c, we obtain q <  and when Kβ >  + c, we obtain q < .
Moreover, when p �= , , we obtainKβ �= cr, cr. When p –q < , we obtain (r–)c < .
Hence, by Lemma , we have
() if cr(c+)

+cr < Kβ <  + c, then |w,| < ;
() if Kβ = cr(c+)

+cr and Kβ �= cr, cr, then w = – and |w| �=  (or w = – and |w| �= );
() if Kβ < cr(c+)

+cr , then |w| <  and |w| >  (or |w| >  and |w| < );

http://www.advancesindifferenceequations.com/content/2014/1/265
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() if Kβ >max{ cr(c+)+cr ,  + c}, then |w,| > ;
() if Kβ =  + c and (r – )c < , then w, are the conjugate complex roots with

|w| = |w| = .
From the above discussion, we have the following result.

Theorem  Let R > , then we have the following conclusions.
() E( cβ ,

rK
r+Kβ

( – c
Kβ

), ) is a sink and locally asymptotically stable if

bk < d, (r – )c < ,
cr(c + )
 + cr

< Kβ <  + c;

() E( cβ ,
rK

r+Kβ
( – c

Kβ
), ) is non-hyperbolic if one of the following conditions holds:

(A) bk = d;
(B) Kβ = cr(+c)

+cr and Kβ �= cr, cr;
(C) Kβ =  + c and (r – )c < ;

() E( cβ ,
rK

r+Kβ
( – c

Kβ
), ) is unstable if one of the following conditions holds:

(A) bk �= d and Kβ >max{ cr(c+)+cr ,  + c} (or Kβ < cr(+c)
+cr );

(B) bk > d and cr(c+)
+cr < Kβ <  + c, rc <  + c.

From the above discussion we also obtain:
() For equilibrium E(K , , ), if (b, c,d,k,m, r,β ,K ) ∈ M, where

M =
{
(b, c,d,k,m, r,β ,K ) : r = ,Kβ ≥ c,b, c,d,k,m,β ,K > 

}
,

then one of the three eigenvalues of matrix J(E) is – and the others are neither –
nor . Therefore, there may be a flip bifurcation at equilibrium E(K , , ), if r varies
in the small neighborhood of r =  and (b, c,d,k,m, ,β ,K ) ∈M.

() For equilibrium E( cβ ,
rK

r+Kβ
( – c

Kβ
), ), if (b, c,d,k,m, r,β ,K ) ∈N , where

N =
{
(b, c,d,k,m, r,β ,K ) : Kβ =

cr( + c)
 + cr

,Kβ �= cr, cr,

b, c,d,k,m, r,β ,K > 
}
,

then one of the three eigenvalues of matrix J(E) is – and the others are neither –
nor . Therefore, there may be a flip bifurcation at equilibrium E, if K , β , c, and r
vary in the small neighborhood of Kβ = cr(+c)

+cr and (b, c,d,k,m, r,β ,K ) ∈N .
Further, if (b, c,d,k,m, r,β ,K ) ∈ P, where

P =
{
(b, c,d,k,m, r,β ,K ) : Kβ =  + c, (r – )c < ,

b, c,d,k,m, r,β ,K > 
}
,

then there are two conjugate eigenvalues w and w of matrix J(E) with |w| = |w| = .
Therefore, there may be a flip bifurcation at equilibrium E, if K , β , and c vary in the small
neighborhood of Kβ =  + c and (b, c,d,k,m, r,β ,K ) ∈ P.

Remark  From the above discussion, we further see that when we choose the same pa-
rameters and the initial value of model (.); then Kβ shows a continuous increase from

http://www.advancesindifferenceequations.com/content/2014/1/265
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some fixed value above  to cr(+c)
+cr then to  + c, then a series of different dynamical be-

haviors of equilibrium E( cβ ,
rK

r+Kβ
(– c

Kβ
), ) will appear: chaos → flip bifurcation→ local

stability → Hopf bifurcation → chaos (see Figures  and ) which is the same result as
in [].

Remark  Furthermore, we see that when we choose the same parameters and the initial
value of model (.), then c shows a continuous increase from some fixed value above
 to Kβ –  then to c, then a series of different dynamical behaviors at equilibrium
E( cβ ,

rK
r+Kβ

( – c
Kβ

), ) will appear: chaos → Hopf bifurcation → local stability → flip bi-
furcation → chaos too (see Figure ). This phenomenon is rarely seen in previous work.

The above dynamical behaviors of model (.) will be displayed by the numerical simu-
lations in Section .
Now, we consider the endemic equilibrium E∗(S∗, I∗,Y ∗). The Jacobian matrix of model

(.) at endemic equilibrium E∗(S∗, I∗,Y ∗) is

J
(
E∗) =

⎛
⎜⎜⎝
 – rS∗

K –S∗(β + r
K ) 

βI∗  + bI∗Y∗
(mY∗+I∗) – bI∗

(mY∗+I∗)

 bkmY∗
(mY∗+I∗)  – bkmI∗Y∗

(mY∗+I∗)

⎞
⎟⎟⎠ .

Let d = bkI∗
mY∗+I∗ . By simple computing, J(E∗) is written in the following form:

J
(
E∗) =

⎛
⎜⎝
a a 
a a a
 a a

⎞
⎟⎠ ,

where

a =  –
r(cmk + bk – d)

mkKβ
, a = –

(r +Kβ)(cmk + bk – d)
mkKβ

,

a =
r[mkKβ – (cmk + bk – d)]

mk(r +Kβ)
, a =  +

d(bk – d)
bmk

,

a = –
d

bk
, a =

(bk – d)

bmk
, a =  –

d(bk – d)
bk

.

The corresponding characteristic equation of J(E) can be written as

F(w) = w + bw + bw + b = , (.)

where

b = –(a + a + a),

b = a(a + a) + aa – aa – aa,

b = –a(aa – aa) + aaa.

Let

A = b – b, B = bb – b, C = b – bb

http://www.advancesindifferenceequations.com/content/2014/1/265
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and

� = B – AC.

Further, we see that the derivative of F(w) is

F ′(w) = w + bw + b.

Obviously, the equation F ′(w) =  has two roots:

w∗
, =




(
–b ±

√
b – b

)
.

Furthermore,

∣∣w∗
,

∣∣ = 


(
b ± b

√
b – b – b

)
.

When� ≤ , by Lemma , we see that equation (.) has three real rootsw,w, andw.
From this, we can easily prove that two roots w∗

, of the equation F ′(w) =  also are real.
When � > , by Lemma , we see that equation (.) has one real root w and a pair of

conjugate complex roots w,:

w, =
–b + Y



 + Y






± i

√
(Y



 – Y



 )


,

with

Y, = bA +
–B± √

B – AC


.

Further, we have

F() =  + b + b + b

=  + a(a + a – aa + aa – )

+ aa(a – ) – (a + a – aa + aa)

=
dr(cmk + kb – d)(kb – d)[mkKβ – (cmk + kb – d)]

bmkKβ
> 

and

F(–) = – + b – b + b

= – – a(a + a + aa – aa + )

+ aa(a + ) – (a + a + aa – aa)

=
rc∗c∗∗
mkKβ

–
rc∗(a + )(mkKβ – c∗)

mkKβ
– c∗∗,

http://www.advancesindifferenceequations.com/content/2014/1/265
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where

c∗ = cmk + kb – d,

c∗∗ = a + a + aa – aa + 

=  +
d(kb – d)( –mk)

bmk
.

Since F() > , on the dynamical properties of equilibrium E∗(S∗, I∗,Y ∗), we have the
following result, which can be found in [].

Theorem  Let bk > d and mk(Kβ – c) – (bk – d) > , then we have the following conclu-
sions.
() If one of the following conditions hold, then E∗(S∗, I∗,Y ∗) is a sink and locally

asymptotically stable.
(A) � ≤ , F(–) < , and – < w∗

, < .
(B) � > , F(–) < , and |w,| < .

() E∗(S∗, I∗,Y ∗) is non-hyperbolic if F(–) =  or � > , |w,| = .
() If the above conditions () and () do not hold, then E∗(S∗, I∗,Y ∗) is unstable.

The above discussion indicates that it is hard to obtain the values of parameters b, k, r, β ,
andK when there exists a bifurcation at endemic equilibrium E∗(S∗, I∗,Y ∗) formodel (.).
From the ecological perspective, the predation coefficient parameter b and the coefficient
in conversing prey into predator k are important for determining the dynamical behav-
iors when there exists an endemic equilibrium E∗(S∗, I∗,Y ∗) of model (.). Therefore, we
will use the Matlab software to give the simulations as regards the complex dynamical
behaviors of model (.) caused by the changing of b and k in Section .

3 Numerical simulations
In this section, we will give the bifurcation diagrams of model (.) to confirm the above
theoretical analysis and show the new interesting complex dynamical behaviors by numer-
ical simulation. Moreover, different dynamical behaviors caused by different parameters
are discussed in the ecological perspective. For equilibrium E(K , , ), we choose param-
eter r. For equilibrium E( cβ ,

rK
r+Kβ

(– c
Kβ

), ), we choose four key parameters r, c,K , and β .
Finally, the key parameters b and k are selected for positive equilibrium E∗(S∗, I∗,Y ∗).

Example  For detecting the dynamical behaviors of model (.) impacted by parameter
r (the intrinsic birth rate of St), we choose b = ., c = ., d = ., k = ., m = .,
β = ., K = , and r ∈ [., ] and initial value (S, I,Y) = (, ., .). It is obvious that
(b, c,d,k,m,β ,K , r) = (., ., ., ., ., ., , ) ∈ M. Then equilibrium E(K , , ) =
E(, , ) and the flip bifurcation appears (Figure ).
Figure (A) suggests that when  < r <  equilibrium E(K , , ) is local stable and when

r = , E(K , , ) loses its stability. When r >  there exists a flip bifurcation. Moreover,
a chaotic set is emergedwith the increasing of r. However, the infected prey and the preda-
tor are always in extinction for any value of r, which can be seen from Figure (B) and (C).
This result is agreement of the ecological perspective that when the infected prey is in
extinction the predator certainly becomes in extinction.

http://www.advancesindifferenceequations.com/content/2014/1/265
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(A) Flip bifurcation of St with r ∈ [., ] (B) Dynamical behavior of It with r ∈ [., ]

(C) Dynamical behavior of Yt with r ∈ [., ]

Figure 1 The dynamical behaviors of St – r, It – r, and Yt – r with b = 0.2, c = 0.6, d = 0.12, k = 0.1,
m = 0.2, β = 0.05, K = 8, and r ∈ [0.01, 4], and the initial value (S0, I0,Y0) = (4, 0.5, 0.1) for model (1.2).

(A) Flip bifurcation of St with r ∈ [., ] (B) Flip bifurcation of It with r ∈ [., ]

(C) Dynamical behavior of Yt with r ∈ [., ]

Figure 2 The dynamical behaviors of St – r, It – r, and Yt – r with b = 0.15, c = 0.1, d = 0.2, k = 0.2,
m = 0.3, β = 0.05, K = 4, and r ∈ [0.001, 7], and the initial value (S0, I0,Y0) = (2, 1, 0.5) for model (1.2).

Example  For detecting the dynamical behaviors of model (.) with equilibrium
E( cβ ,

rK
r+Kβ

(– c
Kβ

), ) impacted by parameter r, we choose b = ., c = ., d = ., k = .,
m = ., β = ., K = , and r ∈ [., ], and the initial value (S, I,Y) = (, , .). It
is obvious that (b, c,d,k,m,β ,K , r) = (., ., ., ., ., ., ,  ) ∈ N . Then we have
equilibrium E( cβ ,

rK
r+Kβ

( – c
Kβ

), ) = E(, r
r+. , ), and there exists a flip bifurcation (Fig-

ure ).
Figure  shows that equilibrium E(, r

r+. , ) is stable when . ≤ r < 
 and loses

stability when r = 
 . Further, when r > 

 there appears a flip bifurcation and chaos at
equilibrium E(, r

r+. , ). And a -periodic solution ofmodel (.) appears when r ≈ ..
However, Yt is in extinction for any value r ultimately (Figure (C)).

http://www.advancesindifferenceequations.com/content/2014/1/265
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(A) Hopf bifurcation of St with c ∈ [., .] (B) Dynamical behaviors of Yt with c ∈ [., .]

(C) Hopf bifurcation of It with c ∈ [., .] (D) The local amplification of It with c ∈ [., .]

Figure 3 The dynamical behaviors of St – c, It – c, and Yt – c with b = 0.1, d = 0.6, k = 0.1,m = 0.5,
r = 0.1, β = 0.2, K = 10, and c ∈ [0.01, 2.5] and the initial value (S0, I0,Y0) = (6, 2, 1) for model (1.2).

Example  For detecting the dynamical behaviors of model (.) with equilibrium
E( cβ ,

rK
r+Kβ

( – c
Kβ

), ) impacted by parameter c (the different death rate of infected prey),
we choose two subcases of the parameters.
Subcase . Choosing (b,d,k,m, r,β ,K ) = (., ., ., ., ., ., ) and c ∈ [., .]

and the initial value (S, I,Y) = (, , ). It is obvious that (b,d,k,m, r,β ,K , c) = (., .,
., ., ., ., , ) ∈ P. Then we have equilibrium E( cβ ,

rK
r+Kβ

( – c
Kβ

), ) = E(c, 
 ( –

c), ) and there exists a Hopf bifurcation (Figure ).
From Figure , we find that there exists a Hopf bifurcation and chaos of model (.)

when  < c≤ ; When  < c <  the number of St is increasing and when c≥  the number
of St is stable at . The number of It is decreasing when  < c <  and It is becoming in
extinction ultimately when c ≥ . The number of Yt is always in extinction for any value
of c ultimately.
Subcase . Choosing b = ., d = ., k = ., m = ., r = , β = ., K = , and c ∈

[., .], and the initial value (S, I,Y) = (, , ). It is obvious that (b,d,k,m, r,β ,K , c) =
(., ., ., ., , ., , ), (., ., ., ., , ., , .) ∈ P,N , respectively. Then
we have equilibrium E( cβ ,

rK
r+Kβ

( – c
Kβ

), ) = E(c,  – c, ) and there exist two bifur-
cation values of c from the result of Theorem . After some computing, we find that when
c =  and c = . the Hopf bifurcation and flip bifurcation at equilibrium E(c,  – c, )
appears, respectively (Figure ).
From Figure (A)-(C), we find that there exist a Hopf bifurcation and chaos of model

(.)when  < c≤ .When  < c < . the number of St is increasing, while the number of
It is decreasing.When c≥ . there appear the flip bifurcation and chaos of model (.).
It becomes in extinction when c ≈ . (Figure (C)). Moreover, a -, - and -periodic
solution appears when c≈ ., c≈ ., and c≈ ., respectively (Figure (B)). How-
ever, Yt becomes in extinction because of bk < d (Figure (D)).

Example  For detecting the dynamical behaviors of model (.) with equilibrium
E( cβ ,

rK
r+Kβ

(– c
Kβ

), ) impacted by parameter K (the carrying capacity), we choose b = .,
c = ., d = ., k = ., m = ., r = ., β = ., and K ∈ [, ], and the initial values

http://www.advancesindifferenceequations.com/content/2014/1/265
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(A) Dynamical behaviors of St with c ∈ [., .] (B) The local amplification of St with c ∈ [., .]

(C) Dynamical behaviors of It with c ∈ [., .] (D) Dynamical behaviors of Yt with c ∈ [., .]

Figure 4 The dynamical behaviors of St – c, It – c, and Yt – c with b = 0.2, d = 0.2, k = 0.2,m = 0.5, r = 3,
β = 0.2, K = 10, and c ∈ [0.5, 2.5], and the initial value (S0, I0,Y0) = (6, 2, 1) for model (1.2).

(A) Hopf bifurcation of St with K ∈ [, ] (B) Hopf bifurcation of It with K ∈ [, ]

(C) Dynamical behavior of Yt with K ∈ [, ]

Figure 5 The dynamical behaviors of St – K , It – K , and Yt – K with b = 0.1, c = 0.4, d = 0.2, k = 0.2,
m = 0.5, r = 0.2, β = 0.2, and K ∈ [2, 8], and the initial values (S0, I0,Y0) = (1, 0.5, 0.2) for model (1.2).

(S, I,Y) = (, ., .). It is obvious that (b, c,d,k,m, r,β ,K ) = (., ., ., ., ., .,
., ) ∈ P. Then we have equilibrium E( cβ ,

rK
r+Kβ

( – c
Kβ

), ) = E(,  – 
+K , ), and there

exists a Hopf bifurcation (Figure ).
From Figure (A) and (B), we see that equilibrium E(, – 

+K , ) is stable when  ≤ K <
 and loses stability when K = . Further, when K >  there appears a Hopf bifurcation of
equilibrium E(,  – 

+K , ). However, Yt is in extinction for any values of K ultimately.

Example  For detecting the dynamical behaviors of model (.) with equilibrium
E( cβ ,

rK
r+Kβ

( – c
Kβ

), ) impacted by parameter β (the transmission coefficient), we choose
b = ., c = ., d = ., k = ., m = ., r = , K = , β ∈ [., .], and the initial
value (S, I,Y) = (, , ). It is obvious that (b, c,d,k,m, r,K ,β) = (., ., ., ., ., ,

http://www.advancesindifferenceequations.com/content/2014/1/265
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(A) Dynamical behaviors of St with β ∈ [., .] (B) Dynamical behaviors of It with β ∈ [., .]

(C) Dynamical behavior of Yt with β ∈ [., .]

Figure 6 The dynamical behaviors of St – β , It – β , and Yt – β with b = 0.15, c = 0.5, d = 0.2, k = 0.2,
m = 0.3, r = 4, K = 4, β ∈ [0.125, 0.42], and the initial value (S0, I0,Y0) = (2, 1, 1) for model (1.2).

(A) Dynamical behaviors of St with K ∈ [, ] (B) Dynamical behaviors of It with K ∈ [, ]

(C) Dynamical behavior of Yt with K ∈ [, ]

Figure 7 The dynamical behaviors of St – K , It – K , and Yt – K with b = 0.15, c = 0.5, d = 0.2, k = 0.2,
m = 0.3, r = 4, β = 0.25, K ∈ [2, 7], and the initial value (S0, I0,Y0) = (1, 0.5, 0.2) for model (1.2).

,.), (., ., ., ., ., , , .) ∈ N ,P, respectively. Then we have equilib-
rium E( cβ ,

rK
r+Kβ

( – c
Kβ

), ) = E( 
β ,

β–
β , ). From conclusion () of Theorem , the two

bifurcation values are computed as β = . and β = . from Kβ = cr(+c)
+cr and

Kβ =  + c, respectively. Further, the interval [., .] includes the two bifurcation
values. Therefore, there appears two bifurcations: flip bifurcation and a Hopf bifurcation.
Figure (A) and (B) verifies it. In detail, when β changes from . to ., there appears
chaos, flip bifurcation, local stability, Hopf bifurcation, and chaos of St and It . However,
Yt becomes in extinction because of bk < d (Figure (C)). On the other hand, the same
results appear for K ∈ [, ] with b = ., c = ., d = ., k = .,m = ., r = , β = .,
and the initial value (S, I,Y) = (, ., .) (Figure ).

http://www.advancesindifferenceequations.com/content/2014/1/265
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(A) Dynamical behaviors of St with b ∈ [., .] (B) The local amplification of St with b ∈ [., .]

(C) Dynamical behavior of It with b ∈ [., .] (D) Dynamical behaviors of Yt with b ∈ [., .]

(E) The local amplification of Yt with b ∈ [., .].

Figure 8 The dynamical behaviors of St – b, It – b, and Yt – bwith c = 0.1, d = 0.02, k = 0.3,m = 0.4,
r = 1.2, β = 0.25, K = 6, and b ∈ [0.15, 0.7], and the initial value (S0, I0,Y0) = (2, 1.5, 1) for model (1.2).

Example  For detecting the dynamical behaviors of model (.) with endemic equilib-
rium E∗(S∗, I∗,Y ∗) impacted by parameter b (the predation coefficient), we choose c = .,
d = ., k = ., m = ., r = ., β = ., K = , and b ∈ [., .], and the initial
value (S, I,Y) = (, ., ). It is obvious that the parameters c = ., d = ., k = .,
m = ., r = ., β = ., K = , and b = ., ., respectively, satisfy the condi-
tions of conclusion () of Theorem . Then we have endemic equilibrium E∗(S∗, I∗,Y ∗) =
( b– , –b , (b–)(–b) ). Obviously, when  < b < 

 there exists an endemic equi-
librium E∗(S∗, I∗,Y ∗) of model (.).
From Figure  we see that when . < b < b∗ there appear chaos and a Hopf bifurcation

for model (.); when b∗ ≈ . < b < b∗∗ ≈ . the endemic equilibrium E∗(S∗, I∗,Y ∗)
is stable; when b∗∗ ≈ . < b < b∗∗∗ ≈ . there appear Hopf bifurcation and chaos.
Furthermore, St reaches the K value when b∗∗∗ ≈ . < b, which can be seen from
Figure (A) and (B). However, It and Yt become in extinction when b ≈ . from Fig-
ure (C)-(E).

Example  For detecting the dynamical behaviors of model (.) with endemic equi-
librium E∗(S∗, I∗,Y ∗) impacted by parameter k (the coefficient in conversing prey into
predator), we choose b = ., c = ., d = ., m = ., r = ., β = ., K = , and
k ∈ [., ], and the initial value (S, I,Y) = (, ., ). It is obvious that parameters
b = ., c = ., d = ., m = ., r = ., β = ., K = , and k = . satisfy the condi-
tions of conclusion () of Theorem . Then we have endemic equilibrium E∗(S∗, I∗,Y ∗) =

http://www.advancesindifferenceequations.com/content/2014/1/265
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(A) Dynamical behaviors of St with k ∈ [., ] (B) Dynamical behaviors of It with k ∈ [., ]

(C) Dynamical behaviors of Yt with k ∈ [., ] (D) The local amplification of Yt with k ∈ [., .]

Figure 9 The dynamical behaviors of St – k, It – k, and Yt – k with b = 0.3, c = 0.1, d = 0.04,m = 0.3,
r = 1.2, β = 0.25, K = 6, and k ∈ [0.15, 1], and the initial value (S0, I0,Y0) = (2, 1.5, 1) for model (1.2).

(A) k = . (B) k = .

(C) k = .

Figure 10 The phase portraits of model (1.2) with k = 0.2, 0.34, 0.4 corresponding to Figure 9.

( k– , –k , (k–)(–k) ). Obviously, when . ≤ k ≤  there exists an endemic
equilibrium E∗(S∗, I∗,Y ∗).
Figure  shows that when . < k < k∗ ≈ . there exist chaos and a Hopf bifurcation

for St , It , and Yt . With the increasing of k from k∗ ≈ . to , the numbers of St and Yt are
increasing while It is decreasing. And this result agrees with the ecological significance.

For better understanding of the above results, we only provide phase portraits (see Fig-
ure ) of model (.) under the condition k = ., ., . in Example . The other cases
are similar to Example  and we omit them here.

Remark  From Subcase  of Example , when we choose the same parameters and the
initial value, then we vary the parameter c we see that there appears a series complex

http://www.advancesindifferenceequations.com/content/2014/1/265
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dynamical behavior in equilibrium E( cβ ,
rK

r+Kβ
( – c

Kβ
), ) of model (.), such as chaos →

flip bifurcation → local stability → Hopf bifurcation → chaos too.

Remark  From Example , when we choose the same parameters and the initial value,
then when we vary the parameter b we see that there appears a series complex dynamical
behaviors in equilibrium E∗(S∗, I∗,Y ∗) ofmodel (.), such as chaos→Hopf bifurcation→
local stability → Hopf bifurcation → chaos too.

Remark  The predation coefficient b of predator plays an important role in biological
disease prevention and cure which can be seen in Example . And this is significant in the
actual situation of ecology.

Open problem  Whether there exist some special population models when we fix same
parameters and vary one special parameter there appears a series bifurcations and chaos.

Open problem  From the above discussion, whether there exists chaos → flip bifurca-
tion → local stability → flip bifurcation → chaos in some special population model when
some parameters are fixed at the same values and one parameter is varied continuously.
This will be our future study.

4 Discussion
The study about discrete-time eco-epidemiological model is payed little attention in pre-
vious works. In this paper, we discussed the dynamical behaviors of a discrete-time eco-
epidemiological model (.). The threshold parameter R is obtained which controls the
development of the disease. When R < ,  < r ≤  (or R

exp[r–]
r < ,  < r < ) the suscep-

tible prey reaches the carrying capacity, while the infected prey and the predator become
in extinction. It implies that the disease dies out in the prey population. When R >  and
kb < d the susceptible prey and infected prey coexist, while the predator becomes in extinc-
tion. This implies that the disease persists in the prey and the paradoxical phenomenon is
obtained that sufficient enrichment of resources leads to extinction of the predator.
Further, the different complex dynamical behaviors of model (.) caused by different

parameters have been investigated using the difference equation theories in ecological
perspective: such as flip bifurcation, Hopf bifurcation, chaos, and more complex dynami-
cal behaviors. This is far richer than the corresponding continuous-time model (.). The
results now are given in detail.
. For the parameters b (the predation coefficient), k (the coefficient in conversing prey

into predator) and d (the death rate constant of the predator), when they satisfy bk < d the
predator Yt always becomes in extinction, which agrees with the ecological phenomenon.
. For equilibrium E( cβ ,

rK
r+Kβ

( – c
Kβ

), ) of model (.), we choose four key parameters
r, K , β , c that directly influence the dynamical behaviors of model (.).When they vary at
different values model (.) appears local stability, flip bifurcation, Hopf bifurcation, and
chaos. Further, themost interesting aspect is choosing the same parameters and the initial
value ofmodel (.); thenK or β shows a continuous increase from some fixed value above
 to cr(+c)

+cr then to  + c, then there appears a series of dynamical behaviors: chaos → flip
bifurcation → local stability → Hopf bifurcation → chaos too which is the same result as
in []. Hence, there is an interesting open problem when we fix the same parameters and
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vary one special parameter: whether there exist series bifurcations and chaos for other
population models.
Moreover, whenwe choose the same parameters and the initial value ofmodel (.); then

c has a continuous increase from some fixed value above  to Kβ – then to c, then there
appears a series of dynamical behaviors: chaos → Hopf bifurcation → local stability →
flip bifurcation→ chaos too (Figure ). This phenomenon is rarely seen in previous work.
. For positive equilibrium E∗(S∗, I∗,Y ∗) of model (.), we choose the key parameters b

(the predation coefficient) and k (the coefficient in conversing prey into predator) to de-
tect the variation of the dynamical behaviors. When the parameter b changes at different
values and other parameters are fixed at the same values there appears a series of dynam-
ical behaviors: chaos → Hopf bifurcation → local stability → Hopf bifurcation → chaos
too, which can be seen from Figure . When parameter k increases the number of It is de-
creasing while St and Yt are increasing and there appears Hopf bifurcation of model (.)
when k = k∗ (Figure ).
Generally, the predation ability and conversing prey into predator ability are important

to influence the numbers of predator and infected prey. In this study, the results imply that
when the parameter b or k is increasing, then the number of predator Yt is increasing,
while It is decreasing. And this will be of significance in controlling the disease of prey in
an eco-epidemiological model.
However, there are still many interesting and challenging questions which need to be

studied for model (.). For example, we only obtain the local stability, bifurcations, and
chaos dynamical behaviors of model (.). We can ask the questions: Whether the global
asymptotic stability ofmodel (.) can be obtained. And ifmodel (.) occurswith different
functional responses or different types of incidence rate then how to study the dynamical
behaviors. Furthermore, if the susceptible prey is preyed in model (.), whether there
exist complex dynamical behaviors. We will investigate them in our future work.
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