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1. Introduction
Let H be a real Hilbert space and let C be a nonempty closed convex subset of H.

Let A: C — H be a nonlinear mapping. The classical variational inequality problem is
to fined x € C such that

(Ax,y—x)>0, VyeC. (1)
The set of solution of (1) is denoted by VI(C, A), i.e.,
VI(C, A)={xeC : (Ax, y—x) >0, VyeC}. (2)
Recall that the following definitions:
(1) A is called monotone if

(Ax — Ay, x—y)>0, Vx,yeC.

(2) A is called a-strongly monotone if there exists a positive constant o such that

(Ax—Ay, x—y) = a|x—y|>, VxyecC
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(3) A is called p-Lipschitzian if there exist a positive constant g such that

[Ax —Ay] < wfx—y

, Vx, yeC.
(4) A is called a-inverse strongly monotone, if there exists a positive real number o >0

such that

(Ax— Ay, x—y) > a|Ax— Ay|]*, Vx, yeC.

. . . . . 1 . . .
It is obvious that any a-inverse strongly monotone mapping B is  -Lipschitzian.

(5) A mapping T : C — C is called nonexpansive if | Tx - Ty ||<|| x - y || for all x, y
€ C. Next, we denote by Fix(7) the set of fixed point of T.

(6) A mapping f: C — C is said to be contraction if there exists a coefficient o €
(0, 1) such that

Ifx)—fW)| <efx—y

, Vx,yeC.

(7) A set-valued mapping U : H — 2" is called monotone if for all x, y € H, fe Ux
and g € Uy imply (x - y, f- g) = 0.

(8) A monotone mapping U/ : H — 2/ is maximal if the graph G(U) of U is not
properly contained in the graph of any other monotone mapping.

It is known that a monotone mapping U is maximal if and only if for (x, f) € H x H,
-y, f-g <0 for every (y, g € G(U) implies that fe Ux. Let B be a monotone map-
ping of C into H and let Ncx be the normal cone to C at x € C, thatis, Nex = {y € H :
(x - z,9) <0, Vze C}and define

_ ) Bx+Ncx, xe€C,
Ux_{@ x¢C.

Then U is the maximal monotone and 0 € Ux if and only if x € VI(C, B); see [1].
Let F be a bi-function of CxC into R, where R is the set of real numbers. The equili-
brium problem for F: C x C — R is to determine its equilibrium points, i.e the set

EP(F)={xe C:F(x, y) >0, Vy € C}.

Let J = {Fi}ier be a family of bi-functions from C x C into R. The system of equili-
brium problems for J = {F}ic; is to determine common equilibrium points for
J = {Fi}ie1, i.e the set

EP(J)={xeC:Fi(x, y) >0, VyeC, Viel}. (3)

Numerous problems in physics, optimization, and economics reduce into finding
some element of EP(F). Some method have been proposed to solve the equilibrium
problem; see, for instance [2-5]. The formulation (3), extend this formalism to systems
of such problems, covering in particular various forms of feasibility problems [6,7].
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Given any r >0 the operator Jf : H— C defined by
P 1
J;(x)={zeC : F(z, y)+ (y—z z—x)>0, Vy e C},
T

is called the resolvent of F, see [3]. It is shown [3] that under suitable hypotheses on
F (to be stated precisely in Sect. 2), JF : H — C is single- valued and firmly nonexpan-

sive and

satisfies
Fix(JF) = EP(F), Vr> 0.

Using this result, in 2007, Yao et al. [8], proposed the following explicit scheme with
respect to W-mappings for an infinite family of nonexpansive mappings:

Xn+1 = anf(xn) + Bnxn + )’an],ixn (4')

They proved that if the sequences {,}, {,}, {y,} and {r,} of parameters satisfy appro-
priate conditions, then, the sequences {x,} and {]fn X} both converge strongly to the
unique x* € N, Fix(T;) N EP(F), where Xx* € Pn Fix(1)nEpf (x*). Their results extend
and improve the corresponding results announced by Combettes and Hirstoaga [3]
and Takahashi and Takahashi [5].

Very recently, Jitpeera et al. [9], introduced the iterative scheme based on viscosity

and Cesaro mean

O(tn, V) + @) — () + | (¥ —tn, h —2xa) 20,  VyeC,
Yn = Snn + (1 — 8,)Pc(tn — AnBuy),

n .
X1 = oV f(%n) + Buxn + (1 — Bu)] — apA) nil Zi:o T'yn, ¥n >0,

where B : C — H is B-inverse strongly monotone, ¢: C — R U {} is a proper lower
semi-continuous and convex function, T° : C — C is a nonexpansive mapping for all i
=1,2,.,n{a,} B} 0.} (0, 1), 4,4 < (0, 2B) and {r,} < (0, ) satisfy the following
conditions

(i) lim,, 5o 0, = 0, Y po ) 0ty = 00,

(ii) lim,, ,.. 6, = O

(iii) 0 <lim inf,_,.. B, < lim sup,_.. B, <1.

(iv) A} € [a, b] < (0, 2B) and lim inf, ,.. | 4,41 -4, |= 0,

(v) lim inf, . r, >0 and lim inf, ,.. | 7,41 - 7, |= 0.

They show that if 6 = N, Fix(T') N VI(C, B) N MEP(¢, ¢) is nonempty, then the
sequence {x,} converges strongly to the z = Py(I - A + yf )z which is the unique solu-
tion of the variational inequality

(yf —A)z, x—2z) <0 Vyeo.

In this paper, motivated and inspired by Yao et al. [8,10-15], Lau et al. [16], Jitpeera
et al. [9], Kangtunyakarn [17] and Kim [18], Atsushiba and Takahashi [19], Saeidi [20],
Piri [21-23] and Piri and Badali [24], we introduce the following iterative scheme for
finding a common element of the set of solutions for a system of equilibrium problems
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J={F:k=1,2,3,...,M} for a family J ={F,:k=1,2,3,...,M} of equilibrium bi-
functions, systems of variational inequalities, the set of common fixed points for an
infinite family w = {7}, i = 1, 2, ...} of nonexpansive mappings and a left amenable
semigroup ¢ = {T; : t € S} of nonexpansive mappings, with respect to W-mappings
and a left regular sequence {y,} of means defined on an appropriate space of bounded
real-valued functions of the semigroup

Zy = I TT
Vn = nnPC(zn - CnAZn) + (1 - Un)PC(Zn - (Snan)r (5)
Xn+l = anf(Tp.anYn) + Bnxn + VnTp.anan n>1,

where A: C — H be -inverse monotone map and B : C — H be d-inverse monotone
map. We prove that under mild assumptions on parameters like that in Yao et al. [8],

the sequences {x,.} and { %nxn}fe‘il converge strongly to
x* e F = N Fix(T;) N Fix(¢) N EP(J) NVI(C, A) NVI(C, B), where x* = Pxf(x*).

Compared to the similar works, our results have the merit of studying the solutions
of systems of equilibrium problems, systems of variational inequalities and fixed point
problems of amenable semigroup of nonexpansive mappings. Consequence for nonne-
gative integer numbers is also presented.

2. Preliminaries
Let S be a semigroup and let B(S) be the space of all bounded real valued functions

defined on S with supremum norm. For s € S and fe B(S), we define elements /f and

rf in B(S) by
(L)) = f(st),  (rf)(€) =f(ts), VteS§.

Let X be a subspace of B(S) containing 1 and let X* be its topological dual. An ele-
ment y of X* is said to be a mean on X if || 4 || = #(1) = 1. We often write p,(f(¢))
instead of u(f) for y € X* and fe X. Let X be left invariant (respectively right invar-
iant), i.e., [(X) € X (respectively r(X) € X) for each s € S. A mean g on X is said to
be left invariant (respectively right invariant) if u(lf) = u(f) (respectively u(rf) = u(f))
for each s € S and fe X. X is said to be left (respectively right) amenable if X has a
left (respectively right) invariant mean. X is amenable if X is both left and right amen-
able. As is well known, B(S) is amenable when S is a commutative semigroup, see [25].
A net {44} of means on X is said to be strongly left regular if

liDItn ”l;kﬂa — Ma “ =0,

for each s € S, where I is the adjoint operator of /.

Let S be a semigroup and let C be a nonempty closed and convex subset of a reflex-
ive Banach space E. A family ¢ = {T,: t € S} of mapping from C into itself is said to
be a nonexpansive semigroup on C if T, is nonexpansive and T, = 7,7, for each ¢, s €
S. By Fix(¢) we denote the set of common fixed points of ¢, i.e.

Fix(¢) = ﬂ{x € C: Tyx=x}.

teS
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Lemma 2.1. [25]Let S be a semigroup and C be a nonempty closed convex subset of a
reflexive Banach space E. Let ¢ = {T,: t € S} be a nonexpansive semigroup on H such
that {Ty : t € S} is bounded for some x € C, let X be a subspace of B(S) such that 1 €
X and the mapping t — (T, y*) is an element of X for each x € C and y* € E*, and p
is a mean on X. If we write T,x instead of [ Txdu(t), then the followings hold.

(i) T, is nonexpansive mapping from C into C.

(ii) T,x = x for each x € Fix(¢).

(iii) Tux € co{Tix : t € S} for each x € C.

Let C be a nonempty subset of a Hilbert space H and T': C — H a mapping. Then T
is said to be demiclosed at v € H if, for any sequence {x,} in C, the following implica-
tion holds:

Xy ~ueC, Tx,—v imply Tu=y,

where — (respectively —) denotes strong (respectively weak) convergence.

Lemma 2.2. [26]Let C be a nonempty closed convex subset of a Hilbert space H and
suppose that T : C — H is nonexpansive. then, the mapping I - T is demiclosed at zero.

Lemma 2.3. [27]For a given x € H,y e C,

y=Pcx & (y—x,z—y)>0, VzeC.
It is well known that Pc is a firmly nonexpansive mapping of H onto C and satisfies
[Pex — Pcyn2 < (Pcx — Pcy,x—y), Vx,y¢€H. (6)

Moreover, Pc is characterized by the following properties: Pcx € C and for all x € H,
ye C,

(x_Pery_PCX)SO. (7)
It is easy to see that (7) is equivalent to the following inequality
Hx—yHZ > |lx — Pex|” + Hy—chHZ. (8)

Using Lemma 2.3, one can see that the variational inequality (1) is equivalent to a
fixed point problem. It is easy to see that the following is true:

u e VI(C,A) & u=Pc(u—rAu), A+ > 0. 9)

Lemma 2.4. [28]Let {x,} and {y,} be bounded sequences in a Banach space E and let

{0} be a sequence in [0, 1] with 0 < liminfa, <limsupa, <1 Suppose x,,1 = O,

n—00 n—00
+(1-a,,)y, for all integers n > 0 and
lim sup(||yns1 — ¥u|| = I%n1 — xall) < 1.
n—-oo

Then, lim HYn — Xn H =0,
n— 00

Let F: C x C —> R be a bi-function. Given any r >0, the operator ]f ‘H— C
defined by

r 1
J;x=3z€C : F(z, y) + r(y—z,z—x)zO, VyeC

Page 5 of 22
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is called the resolvent of F, see [3]. The equilibrium problem for F is to determine its

equilibrium points, i.e., the set
EP(F) = {x € C: F(x,y) > 0,Vy € C}.

Let J = {Fi}ier be a family of bi-functions from C x C into R. The system of equili-
brium problems for 7 is to determine common equilibrium points for J = {Fi}ics. i€,
the set

EP(J) ={xe C:Fi(x,y) > 0,Vy e C,Vie I}.

Lemma 2.5. [3]Let C be a nonempty closed convex subset of H and F: C x C - R

satisfy
(A1) F(x,x) =0 forall x e C,
(Ay) F is monotone, i.e, F(x,y) + F(y, x) <0 for all x, ye C,
(Az) forall x,y, ze C, lim, ,o F(tz + (1 - )z, y) < F (x, y),
(Ay) for all x € C,y —> F(x, y) is convex and lower semi-continuous.

Given r >0, define the operator J¥ : H — C, the resolvent of F, by
P 1
Ji(x)={zeC : F(z,;y)+ (y—z z—x)>0, Vy e C}L.
T

Then,

(1) JEis single valued,

(2) JEis firmly nonexpansive, i.e,
(3) Fix(F) = EP(F),

(4) EP(F) is closed and convex.
Let Ty, Ty, ... be an infinite family of mappings of C into itself and let 1;, A,, ... be a

Jix = Jy|* < UFx —JEy,x = p)for all %, y < H,

real numbers such that 0 < A; <1 for every i € N. For any n € N, define a mapping
W, of C into C as follows:

Un,n+1 =1,
Un,n = )\nTnUn,nJrl + (1 - )\n)Ir
Un,nfl = )\nflTnflun,n + (1 - )\nfl)lr

Unjpe = M TiUp e + (1 — M), (10)
Unj—1 = =1 Trm1Unpe + (1 — Ap—1)1,

Un,2 = )»2T2Un3 + (1 —_ )\2)[,
Wn = Un,l = )\1T1Un,2 + (1 — )\.I)I

Such a mapping W, is called the W-mapping generated by T}, T», ..., T,, and A1, Ao,
vy Ay

Lemma 2.6. [29]Let C be a nonempty closed convex subset of a Hilbert space H, {T; :
C — C} be an infinite family of nonexpansive mappings with N2 Fix(T;) # 0, {A;} be a
real sequence such that 0 < A; < b <1, Vi > 1. Then

(1) W, is nonexpansive and Fix(Wy) = N, Fix(T;) for each n > 1,
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(2) for each x € C and for each positive integer j, the limit lim,,_,., U, ; exists.
(3) The mapping W : C — C defined by

Wx = lim Wyx = lim U,1x, Vxe€C,

n—o00 n—oo

is a nonexpansive mapping satisfying Fix(W) = N2, Fix(T;)and it is called the W-
mapping generated by Ty, Ts, ... and Ay, Ay, ...

Lemma 2.7. [30]Let C be a nonempty closed convex subset of a Hilbert space H, {T; :
C — C} be a countable family of nonexpansive mappings with 02 Fix(T;) # 9,{A;} be a
real sequence such that 0 < A; < b <1, Vi > 1. If D is any bounded subset of C, then

lim sup ||Wx — Wyx|| = 0.

n—o0 xeD

Lemma 2.8. [31]Let {a,} be a sequence of nonnegative real numbers such that

apy1 = (1 - bn)an +bycy, n=0,

where {b,} and {c,} are sequences of real numbers satisfying the following conditions:

(i) (b} < [0, 1], 3 by = 00,
n=0

. o0
(ii) either IMSUPCn <04 3™ b, c,| < o00.
n—oo n=0

Then, lim a, =0
n—oo
Lemma 2.9. [32]Let (E, {., .)) be an inner product space. Then for all x, y, z € E and
o, B, v, € [0, 1] such that o + B + y = 1, we have

ex+ By + vz|* =alixl® + Bly|* + v Izl
—aplx—y|* —aylx—zl? - By |y —z|’.

Notation Throughout the rest of this paper the open ball of radius » centered at 0 is
denoted by B,. For a subset A of H we denote by coA the closed convex hull of A. For
¢ >0 and a mapping T : D — H, we let F(T; D) be the set of e-approximate fixed
points of 7T, i.e., F(T ; D) = {x € D:|| x - Tx || < ¢j. Weak convergence is denoted by
— and strong convergence is denoted by —.

3. Strong convergence

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H, A: C —
H a B-inverse strongly monotone, B : C — H a y-inverse strongly monotone, S a semigroup
and ¢ = {T, : t € S} be a nonexpansive semigroup from C into C such that
Fix(¢) = NiesFix(T,) # @. Let X be a left invariant subspace of B(S) such that 1 € X, and
the function t — (T, y) is an element of X for each x € C andy e H, {y,} a left regular
sequence of means on X such that lim,, ., ||t4,11 - pull = 0. Let T ={Fr:k=1,2,...,M}be
a finite family of bi-functions from C x C into R which satisfy (A1)-(A4) and {T;}70, an infi-
nite family of nonexpansive mappings of C into C such that Ti(Fix(¢) NEP(J)) C Fix(¢)
for each i € N and F =N Fix(T;) NFix(¢) NEP(J) NVI(C,A)NVI(C,B) #9. Let
{o.}, B}, ¥} and {n,} be a sequences in (0, 1). Let {{,} a sequence in (0, 23), {0,.} a
sequence in (0, 27), {rk,n}ﬁ’i 1 be sequences in (0, ) and {A,,} a sequence of real numbers such

that 0 < A,, < b <1. Assume that,
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(By) lim, 5. 1, = N € (0, 1), lim,, e @0, = 0 and Y ;21 an = 00,

(By) 0 <lim inf,_,.. B, < lim sup,_,.. B, <1,

(B3) 0ty + B+ Yu =1,

(Ba) limy,yeo | G - o |= limysee | 61 - 9 [= 0,

(Bs) lim inf, ., r¢,, >0 and lim,, e, (rgpe1 - 1) = 0 for ke {1, 2, - - -, M.

Let f be a contraction of C into itself with coefficient a € (0, 1) and given x; € C
arbitrarily. If the sequences {x,}, {y,,} and {z,} are generated iteratively by x; € C and

Zy =M X,
Vn = nnPC(zn - gnAZn) + (1 - nn)PC(zn - anan)r
Xne1 = onf (T, Wayn) + Buxn + Yu T, Wayn, nx>1,

(11)

then, the sequences {x,}, {y,} and { ,F;ffnxn}ﬁz"i Lconverge strongly to x* € F, which is the
unique solution of the system of variational inequalities:
(f(x*) —x*, x* —y) =0, VyelF,
(Bx*, y—x*) >0 VyeC,
(Ax*, y—x*) >0 VyeC.

Proof. Since A is a B-inverse strongly monotone map, for any x, y € C, we have

| = ga)x — (1 = GAYy|
=[x =) = calAx —ap)|?
= e =y = 28ulx —y, Ax— Ay) + 2] Ax — Ay|)?
= yI* = 268l Ax — ay|* + ¢ | ax — ay|®
Jx = ¥[)? + &u(gn — 28) | Ax — Ay|?
Jx—v]®

Il IA

IA

It follows that
” (I - é‘nA)x - (I - CnA)y” = ”x - }’” . (12)

Since B is a B-inverse strongly monotone map, repeating the same argument as

above, we can deduce that
|1 =8.B)x — (I—8,B)y| < |x—7v]. (13)

Let p € F, in the context of the variational inequality problem the characterization
of projection (9) implies that p = Pc(p - {,Ap) and p = Pc(p - 0,Bp). Using (12) and
(13), we get

[vn = bl = [mnPc(zn — ¢aAza) + (1 = 14)Pc(2n — 84Bzn) — p|
= ” NnlPc(zn — $nAzn) — Pe(p — £nAD)]
+(1 - 7ln)[PC(‘Zn - Snan) - Pc(P - ‘SnBP)] ” (14)
< Nn ”PC(Zn - g'nAzn) - Pc(P - é‘nAp) ”
+ (1 = 1) | Pc(zn — 84Bzn) — Pc(p — 8xBp) |
= Mn ”Zn —P” +(1—mn) ”Zn - P” = ”Zn - P” :

Page 8 of 22
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By taking v,, = Pc(z, - (,Az,), W, = Pclz, - 0,Bz,) and JF = f;"n o JBR R for ke {1,

T2,n" T,

2, .., M} and J?2 =1 for all n € N, we shall equivalently write scheme (11) as follows:

Zn = TMxn,
Yn = NV + (1 — nn)wy,
Xn+l = Ofnf(TuanYn) + BuXn + VnTuanan n>1.

We shall divide the proof into several steps.
Step 1. The sequence {x,,} is bounded.

Proof of Step 1. Let p € F . Since for each ke {1, 2, ..., M}, ]Sfﬂ is nonexpansive we

have

| Zxn = p| = | T = T

‘ < |x—p|, Vee(1,2 ..., M) (15)

Thus, by Lemmas 2.1, 2.5 and (14), we have

s —p]
< ot (T, Wapn) = P + B |20 = 0] + v | Ty W Ty — 1
< | f (T, Waya) = F©) | + [£(0) = o1 + Bu |0 = 0| + v v — |
< oot [xn — pf| + an [f(P) = p| + (Bu+ ) [0 — 1|
= [1 = (1 = )] |xa = p + o [f(P) — 1]

1
L el

< max {1 -

By induction,

HXn—pllsmax{Hxl—p ; 1ia ||f(p)—pH}, n=1.

Step 2. Let {u,} be a bounded sequence in H. Then

: I I
lim Hjml”n — T, upn

n—00

=0, (16)

for every ke {1, 2, ..., Mj}.
Proof of Step 2. This assertion is proved in [27, Step 2].
Step 3. Let {u,} be a bounded sequence in H. Then

lim Wy, — Waug|l = 0 and lim,, o ||T,L Uy — Tunun “ =0.

n—00

n+1

This assertion is proved in [21, Step 3].
Step 4. lim,, o, || 41 - %, || = 0.
Proof of Step 4. Setting x,,,1 = B,x, + (1 - B,)t, for all n = 1, we have

el — In
1 1
= 1— Bunt [Xne2 = Brs1Xni1] — 1- 8, [%ns1 — Bnxal
Oyl Qnil Op
- T W, — (T W, _ T. W,
1— Bun If( M n+1Yn+1) f( n n)’n)] + (1 — But 1— ,Bn>f( M n)’n)
Vi
+ " [Tl’-n+1 Wn+1)’n+1 - Tun Wnyn]
1- ﬂn+1
Vn+1 Yn
+ — T, Wayn.
|:1_,3n+1 1_I3n:| s Y
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Therefore, we have

ltne1 — tall
Onyl
=< [o ||Tun+1 WhetVne1 — T, Wiy ” + ”TMW1 Wai1Vni1 — T, Wayn ”]
1- ﬁn+1
o o
1 s = 1 gy | T ¢ [T

+ ||Tun+1 WitVner — Ty, Wayn ” .
On the other hand

1Tt W1 ¥t — Ty, W |
=< |Tun+1 WiVne1 — Tppoy WhatVn ”
+ ”Tu«m Whaa¥n = Tu,s Wayn ”
+ ”Tum Wiyn = Ty, Wan H
< Jymer = vall + [Wieryn = Wan || + [ Toe,s Waipn = T, War |

Observing that z, = JMxn, zZna1 = T %n and TMx, = JIM TM=1x, we get

1

o =z = T ) + Fu(an 1) 20, Ve G (17)
Mn
and
1 M—1
(Y — Zn+1/%n+1 — jn+1 xn+1> + FM(Zn+1/ }/) Z 0/ V}/ [S C/ (18)
7‘M,‘n+1

Take y = z,,; in (17) and y = z, in (18), by using (A,), it follows that

T™,n

M—-1 M—1
<Z"+1 — Zns Zn — jn Xn — (Zn+1 - jn+1 xn+1)> >0,

T™M,n+1
and hence

M—-1 M—1
(Z‘n+1 — &Zn, Zp — jn Xn — Zp+1 + jn+1 Xn+1

Tm, -
+ (1 - " ) (Z‘n+1 - jri\fl lxn+1)> > 0,

TM,n+1
Thus, we have
1zne1 — znll

| T ey — TM | + M

1- ||zn+1 - j,i\fl_lxnﬂ ”

7‘M,‘n+1

= “jri\fl_lxrwl - j,ffl_lxn || + ||jri\f1_1xn _ jr{vlf]xnn

T [
TM/n+1
< Xpe1 — xull + “ j,{\fflxn — J,f”’lxn ”
1= ™ e = T ]
TM/n+1

Since v,, = Pc(z, - {,Az,) and w, = Pc(z, - 0,Bz,), it follows from the definition of
{y,} that



Piri Fixed Point Theory and Applications 2012, 2012:99
http://www.fixedpointtheoryandapplications.com/content/2012/1/99

||}’n+1 —Vn ||

= [ mnervner + (1 = Be)Wnat — 0V — (1 — 1) |

= [ ne1 (Wner — vn) + (Mne1 = 00)vn + (1 = Npat Wi
—(1 = Npe1 )W + (M — Mot )0 |

< Mt W1 = vall + Mner — 0l (llvall + Nlwnll)
+(1 = pe1) lwner — wall

= st |Pc(zner — Ene1Azni1) — Po(zn — $nAzn) |
+ M1 — Ml (vl + lwnll)
+(1 = 9ns1) | Pc(@ner — Sne1Bzni1) — Pe(zn — 84Bzn) |

= Tn+1 ||Pc(Zn+1 — Cne1AZni1) — Polzn — Cni1Azy)
+Pc(zn — Eni1Azn) — Pc(zn — EnAzy) ||
+ M1 — Ml (vl + lwnll)
+(1 = 7ns1) | Pc(@ne1r — Sne1Bzni1) — Pc(zn — 8pi1Bzn)
+Pc(2zn — 8ns1Bzn) — Pc(zn — 8nBzy) ||

< Nnet 1Znet = Zall + st 1na1 — Sal |AZy ||
+ M1 — Ml (vnll + lwall) + (1 = 9041) 112041 — 2l
+(1 = 141) 18541 — 8l | Bzy |l

< Nzns1 — znll + Mus1 [Sne1 — Enl 1Azl

+ My = Nl ([0nll + [lwnll) + [8ns1 — 8ul [|Bznll -

Therefore,
||tn+1 - tn” - ||xn+1 _xn”
= e [||Yn+1 —Vn ” + ”T;Ln,,l Wii1Vne1 — Ty, Wi ”]
1- ﬂn+1

+ Onil _ Qn ‘
1- ﬂn+1 1- ﬂn

| T e = T | +

[”]((Tunwnyn)” + ”Tunwnyn ”]

T™,n
1 —

||Zn+l - jrffflxn+l ”
™M, n+1

+1ns1 [Sne1 = Sal 1AZnll + [Mner — 1l (onll + llwn )
+8ne1 — Ol [ Bzyll + ” Wii1¥n — Wan ” + ”T;Ln,,l Wayn — T;ann)’n” .

This together with conditions (B;), (B4), Steps 2 and 3 imply that

lim SUP(||tn+1 - tn” - ||xn+1 - xn”) = 0.
n—-oo
Hence by Lemma 2.4, we obtain lim,, ,.. || ¢, - x,, || = 0. Consequently,

lim ||xn+1 _xn” = (1 - ,Bn) ”tn _xn” =0.
n—o00

Step 5. lim,_ oo Hj,f“lxn — Tkx, || =0,Y%e {0,1,2,.,M-1}
Proof of Step 5. Let p€ F and ke {1, 2, .., M - 1}. Since ]Z’i*;n is firmly nonexpan-

sive, we obtain

-

T T = Teip| = (e, i =, Tivu =)

Thel,n Thel,n

M

]F}M j,?xn - jr{zxn

Thel,n

.’

] -

psbeo|

Thel,n
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It follows that
|72 = p]* < fn = p* = | T 0 = Tk
Using Lemma 2.9, (14) and (19), we obtain

Jaer =
< o[ (T, Wavn) = p[1* + Ballsw = p11* + v T, Wara =
< o[ (Tu, Waya) = p* + Ballsn = 0 + vy — p[°
< o[ (T, Warn) = p||* + Bullxn — 0> + 720 — p|)?
= o [F(T, Wapn) = p[* + Balla = p|* + vl T — |
= o |f (T, Wayn) — p[|* + B0 — p|?

2
Fy Frsa k+1 Fum Fiesa
]TM:” e ']rkiz,njn Yn — ]rM,n e ']rm,np

+¥n

2
jr}zwlyn - PH

< an|[f(Tys Wan) = b + Bullta — ] + 7
< [F (T, Wapn) = > + Bull s — 0] +

< e [f (T, Wayn) = pI* + Bulln = ]
yal Jon — p* - \ Ty — Tl 1.

Ty — PH2

Then, we have
Lﬁﬂlxn_jrizxn 2
< e[ (T, Wara) = p* + Ballxn — p[1°

+(1 = an = ) |50 = p[” = Jxwr —p|1°
= anl [ (T, Wara) =1 = n = 1+ %0 = p* = s = |

< | (T Wra) = p|* = 20 — p|)*]
+ [l — X | [”xn - P” + ”xml —P”]

Yn

It is easily seen that lim inf, ,.. %, >0. So we have

lim 715, - Tt - 0.

Step 6. lim,_, Hxn —T,, an,f‘”’yn H =0.
Proof of Step 6. Observe that
[ = T, W Ty

260 — Xpa1 Il + || Xna1 — Ty, W Ty |

= e |+ ot lf (Tye, W) = Ty, W Tyl
+Bulxn — Ty, anrfAYn]
= ner I+ | £ (T, W) | + [Ty, W T3]
+Bn ”xn — Ty, Wa T

IA

IA

’

hence
%0 = T, W T3y |

< 1- 8, lXne1 — Xnll + X i”ﬁn[”f(Tﬂanyn)” + ||T,LanJ,f‘4yn ||]

(19)

Page 12 of 22
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It follows from conditions (B;), (B,) and Step 4, that

lim ||x, — Ty, Wa T Myn| = 0.

n—oo
Step 7. lim,,_,.. || x,, - Tx,, | = 0, for all t € S.
Proof of Step 7. Let p € F and set My = max{ ||x1 — p|| , 1ia ||f(p) — p||} and D = {y
€ H:|y-p| < M,}, we remark that D is bounded closed convex set, {y,} € D and it
is invariant under {]F" :k=1,2,..,M,¥n € N}, ¢ and W, for all » € N. We will show

Thn

that

lim sup sup ||T,Lny — TtT,L"yH =0, VteS (20)
eD

n—oo y

Let € >0. By [33, Theorem 1.2], there exists >0 such that
coFs(Ty; D) + Bs C F.(T; D), VteS. (21)

Also by [33, Corollary 1.1], there exists a natural number N such that

" 1 N 1 N
Z Tlisy =T ( Z Tlisy)
N+1 - N+1 P

i=0

<3, (22)

forall t,se Sand y € D. Let t € S. Since {u,} is strongly left regular, there exists Nj
e N such that ||un — l:‘i,un” < (Mofl\p\l) for m 2 Noand i = 1, 2, .., N. Then, we have

sup
yeD

N
1
Tpy—[ Na+1 ; Tyisydian(s)

N
1
(T, v, 2) — <f N+l ; thsydﬂn(s)zz>

= sup sup
yeD |izll=1
N N
1 1 (23)
= sup su Ty, z) — Ty,
yell)) IIZHB N+1 ;(PM):( Y, %) N+1 ;(M”d tisYs &)
N
< sup sup |(un)s(Tsy, 2) — (Lipen)s(Tsy, 2)]
N+1 gyeg ||zu£)1 (in)s{Tsy (Faten)e{Tsy
< max_|un —Lipa| (Mo + [|p]) <8, Vn = No.
i=1,2,...N
By Lemma 2.1 we have
R -
fN+1§thsydun(s)eco:N+1§Tlf(Tsy):seS]. (24)

It follows from (21), (22), (23) and (24) that

N
1
TunYECO{NJrl;Tﬂ's)’:SES}+BS

C coFs(Ty; D) + Bs C F¢(Ty; D),
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for all y € D and n = Ny. Therefore,

limsup sup | Ty(T,.,y) — Tu,¥

n—-oo yeD

<e.

Since € >0 is arbitrary, we get (20).
Let t € S and € >0. Then, there exists 0 >0, which satisfies (21). From condition (B,),

(20) and Step 6, there exists N; € N such that o, < 4[f40, T,y € Fs(T;, D) for all y €

D and ||x, — Ty, Wyyn| < § for all # = Ni. We note that

o [[f (T, Wapn) = Ty, Wi |
< | F (T, Wapn) = F@) | + £ () = p]| + [0 = T, Wy ]

)
= anle[yn = o[+ [F(0) = + [0 = yall] = 2Mo =,

for all n > N;. Therefore, we have

Xns1 = Ty, Wiyn + &n(f (T, Wayn) — Ty, Wnn)
+ Bn (xn - Tun Wn)’n)
€ Fs(T;; D) + Bs + Bs C Fs(T; D) + Bs C F.(Tt; D),
2 2

for all m > N;. This shows that
Xy — Tixull <&, V¥n=>Nj.

Since € >0 is arbitrary, we get lim,,_,.. || x,, - Ty(x,) || = 0.

Step 8. The weak w-limit set of {x,}, w,{x,}, is a subset of F.

Proof of Step 8. Let z € w,ix,} and let {x,,} be a subsequence of {x,} weakly conver-
ging to z, we need to show that z € F. Noting Step 5, with no loss of generality, we
may assume that J,fmxnm —z,Vk €{1,2,...,M}. At first, note that by (4,) and given y
€ Cand ke {1, 2, .., M}, we have

(1=t L G = Thm)) 2 Rl )

k+1,ny,
Step 5 and condition(Bs) imply that

k+1 k
jnm X — jnmxnm

Tkt 1,1,

Since mexnm — z, from the lower semi-continuity of Fy,; on the second variable, we

have Fi1(y,z) <O forall ye Cand forall ke {0,1,2,.., M-1}. FortwithO0<z¢<1
andye C,lety, =ty + (1-¢)z Since ye Cand ze C, we have y, € C and hence F;
+1(¥s 2) £ 0. So from the convexity of Fi,; on second variable, we have

0= Fk+1(yt/ yt) < tFk+1 (Ytr Y) + (1 - t)Fk+1(yt/Z) < tFk+1 (Yz, Y) < Fk+1 (Yz, Y)
hence Fi,1(y, y) 2 0. therefore, we have Fy,1(z, y) 2 0 for all ye Cand ke {0, 1, 2,
..y M-1}. Therefore z € M} EP(F;) = EP(J).

Since Xn, — Z, it follows by Step 7 and Lemma 2.2 that z € Fix(T}) for all t € S.
Therefore, z € Fix(¢). We will show z € Fix(W). Assume z ¢ Fix(W) Since

Page 14 of 22
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z € Fix(¢) NEP(J), by our assumption, we have Tz € Fix(¢),Vi € N and then W,z €
Fix(¢). Hence by Lemma 2.1, T,,, Wnz = Wz, therefore by Lemma 2.5, we get

Ty, WnIMz =Wz, VneN. (25)

Now, by (25), Step 6, Lemma 2.6 and Opial’s condition, we have

lim inf [%n,, — 2

< liminf |x,, — We|

n—

= li}?_])ioglf(”xnm - Tllnm an"Z‘lA:xnm ”

+ ||T,4

< lim inf (
n—o00

Wi, T2 %n, = Ty Wi T2 | + || T, W, Tz — We|))
0 = Ty, W, Tk, | + [, — 2] + [ W, = — We])

nm

< linrgioglf Hxnm —z|| .

oo
This is a contradiction. So we get z € Fix(W) = () Fix(T;).
i=1

Now, let us show that z € VI(C, A) n VI(C, B). Observe that,
Jns =]

< | f(Ts W) = || + B % = p* + v | Ty WaT My — 1|

< [ f (T, Wayn) = p|* + Ballxn = || * + v |yn — p||”

= | f (T Warn) = b||* + Bal%n = p|I* + v | 1P (2n — £nAAzn) (26)
+(1 = 7)Pc(zn — 8,Bza) — p|*

= o[£ (T, Wapn) = 0> + Bl = 0> + vir [ 1a[Pc(zn — CnA2)
—Pc(p = &uAP)] + (1 = na)[Pc(an — 8nBzn) — Pe(p — 8uBp)] |-

From (26), we have

Jn1 =

< [ (T, W) = p||* + Bulla — |
¥l | (2 = P) = &a(Aza — AP) | + (1 = 1) |20 — 1|

= o[ (T, W) = p[I* + B — 0
wyn(1 = ) 2n = | + varl |2 — p||* + €2 | Azn — Ap|?
—28n(Azn — Ap, 20 — P)]

< [f (T, W) = p|* + Balln =
+¥u(1 = n) |20 = p|* + yamal |20 — 0| + £ | Aza — Ap|?
~20uB | Az — Ap, 2w — p|*]

= £ (T, Warn) = p||* + Bull s — |
Yz — o] + &ultn — 28) | A2y — A

< o= o[+ el (T, Wayn) = p* = 0 = 0[]
+8n(¢n — 28) | Azw — Ap|?
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which implies that
—tu(n — 2B) | Azn — Ap|?
< [lln =l + Jner = o1 llw = sl

st | (T W) = p|* = [l — ] )-

Therefore, from step 4 and condition B;, we obtain

Jlim [|Az, —Ap| = 0. (27)

On the other hand from (26), we have
s —p[®
< an [T, Warn) = o + Baln = p[* + v [ a2 — o]
+(1 = m)|[ G = p) = 8u(Bz — Bp) ||
= o | F (T, Wayn) = p[|* + Ballxa = | * + v2 [nn lzn —p|
+(1 = ) (Jen = P = 280(Bzy — Bp, 2, — p) + 82| Bz — Bp[)]
< an[f (T, Warn) = oI + Buln = p[* + v [ 1]}z — o
(1= n0)([z0 = p||* = 2807 Bz — Bp|* + 82 Bzw — Bp|*)]
= o[ (T, Wapn) = P> + Bulltn = 2> + vull2n —
+8,(8n = 21)¥n(1 = 1) | Bzw — Bp|*
< Jow = pI* + ctnl [ (T, W) = > = 00 — 0]
+8n(85 — 27) Bz — Bp[®
which implies that
—~6(8n — 27) || Bzo — Bp|*
< [fxn = p] + |xner = P11 xn — xe |
sl | (T, Wapn) = 0" = |0 = p[°]
Therefore, from step 4 and condition B;, we obtain
lim | Bz, — Byl = o. (28)
From (6) and (12), we have
lva —p|?

= ”PC(zn — {nAzn) — Pc(p — £nAD) ”2
= ((Zﬂ - é‘nAZn) - (P - {nAP), Un — P)
1
- [l = 60z = 0 = caap) |+ =
[ en = Gza) = (= utp) = (0 = p)|]
1
= [lan = o1+ o = I = ow = wal?

¥280(2n — U, Azn — Ap) — £2[| Az, — Ap||2] .
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So we obtain

”Un —P||2 = ||Zn —P||2 —llzn — Vn||2

+ 280 (2n — va, Azy — AD) — 52| Az, — Ap|.
By using the same method as (29), we have

Jwn =p|* < Nz = p||” = lzn — wall?

+28,(2n — Wy, Bz, — Bp) — 82| Bz, — Bp||”.
From (29), (30) and definition of y,, we have,

lvn — o’
= ||77n[PC(Zn — {nAzy) — Pl

+(1 = m)[Pe(zn — uBan) — 1|

(s =) + (1 = na)(wa — )|

< tallvw = p[” + (1= na) Jwn —p[®

< nallzn = PI* = ll2n — vall® + 28u(zn — v, Azo — Ap)
—22||Azn — Ap|*)+ (1 = m)[|2n = p||” = l120 — wall?
+28,(2n — W, Bzy — Bp) — 82| Bz, — Bp|’]

< |20 = 0| + nal=N2n — vall® + 280 12w — vall | A2 — Ap)|
_gr%”Azﬂ _AP||2] + (1 - 7771)[_||Zn - wn”z

28, llzn — wall | Ben — Bp|| — 82| Bzs — By’
By (31), we have

|1xns1 — pII?
< nlf (T, Wayn) =PI + Bullxa — plI> + ¥l T, W Ty — plI?
< anllf (Tp, Wayn) = pII> + Bullxn — plI> + vallzn — plI?
+Yutinl—12n — vl > + 28ullzn — val| ||Azy — Apl|
— L llAzy = APIIP] + ya(1 = na)[—1lzn — wall?
+28nl| |20 — wall [|Bzn — Bpl| — 8;1Bzn — Bpl|*]
< anllf (Tp, Wayn) = pII> + Bullxn — pII> + yallxn — plI>
~Vatnll2n = Vall> + Vattn[28nl12n — vall 1Az, — Apl|
— 52 11Azy — AP = ya(1 — 1)1z — wall?
+¥n(1 = 0)[284]| 1zn — wall ||Bzn — Bpl| — 8711Bzs — Bpl|*]
= [1x0 = plI* + @n[llf (T, Wayn) — pII> = llxa — plI?]
—Vatnll2n = Vall> + Vattn[28nl12n — val| [|A2, — Apl|
— 52 11Azy — ApIIP] = vu(1 = nu)llzn — wall?
+¥n(1 = 1) (284l 12w — wl| |Bzy — Bp|| — 821|Bzn — Bpl I,

(30)
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which implies that

Vatinllzn — val|?
< 110 = Pl + [1%ns1 — Pl xner — Xnll
+ [ [1f (T, Wayn) = plI* = l1%0 — pII?]
+Vnttn[ 280120 — val| 1|Az0 — Apl| — ¢ || A2y — Ap|[?]
+¥n(1 = 10)[284| 12w — wal| ||Bzy — Bpl| — 821|Bz, — Bpl|*],

and

Yu(1 = 1) 120 — wyl|?
< [llxn = plI + 1101 — pHTXne1 — Xnl]
+Ynnn| 28120 — vall [1Azn — Al — ¢211AZy — Apl|?]
+¥n(1 = 1) (28] [1zn — wall ||Bzy — Bpl| — 8;1|Bzn — Bp||*].

Therefore, from 0 <lim inf, ,.. %, < lim sup,, .. ¥, <1, condition By, step 4, (27) and

(28) we get
lim ||z, —v,]| =0 and lim ||z, — wy|| = 0. (32)
n—oo n—oo

Let U : H — 2" be a set-valued mapping is defined by

Ax+ Ncx, x € C,

l“={ﬁ xdC,

where Ncwx is the normal cone to C at x € C. Since A is monotone. Thus U is maxi-
mal monotone see [1]. Let (x, y) € G(U), hence y - Ax € Ncx and since v,, = Pc(z,, -
(,Az,) therefore, (x - v,, y - Ax) > 0. On the other hand from (7), we have

(X — Uy, vy — (zn - CnAzn)) >0,

Uy —Z
<x—v,,, "g_ "+Azn>20
n

Therefore, we have

(x_Vnir )/)
> (X — vy, Ax)
Vp, .

> (X — Uy, Ax) — <x—vm, meoom +Azm>

n;

Un, — Zn,
= <x—vni, Ax— " —Azn,.>
Eny
Vp, — Zn,
= (X — Up,, Ax — Avy) + (x — vy, AUy, — Azy,) — <x— Vn,s IC '>
ni

v

Un. — Zn.
(x — vy, Avy, — Azy,) — <x — Up,, ’g ’>
n;

Zn,

Vp —
Z(x_vni/ Av‘ﬂ,‘_Az‘ﬂi>_||x_v‘ﬂi||‘ l{
ni
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From (32), we get lim;_, oo||Vy, — 24,/| = 0. Noting that X», = 2 and A is é—lipschit—
zian, we obtain

(x —z,9) > 0. (33)

Since U is maximal monotone, we have ze U0, and hence ze VI(C, A). Let V: H —
2" be a set-valued mapping is defined by

Bx + Ncx, x € C,
Vx‘{@, xdC

where Ncx is the normal cone to C at x € C. Since B is monotone. Thus U is maxi-
mal monotone see [1]. Repeating the same argument as above, we can derive z € VI
(C, B). Therefore, z € F.

Step 9. There exists a unique x* € C such that

lim sup(f(x*) — x*, x, — x*) < 0.
n—o0o

Proof of Step 9. Note that fis a contraction mapping with coefficient o € (0, 1). Then
[IPEf(x) — PrfW)I < lIf(x) —fWII <allx—yl|| for all x, y € H. Therefore Pr is a
contraction of H into itself, which implies that there exists a unique element x* € H
such that x* = Pxf(x*). at the same time, we note that x* € C. Using Lemma 2.3, we

have

(f(x*) —x*,x*—2) >0, VzelF. (34)
We can choose a subsequence {xp,} of {x,} such that
lim sup(f(x*) — x*, x, — &™) = lim (f(x*) — x*, x, — x¥).
n— 00 k— 00

Since {xp,} is bounded, therefore, {x,,} has subsequence {xnkj} such that Xy, — z",

With no loss of generality, we may assume that x,, — z*. Applying Step 8 and (34),

we have

limsup(f(x*) — x*, x, — x*) = (f(x*) — x*, 2" —x*) < 0.
n—oo

Step 10, The sequences {x,} converges strongly to x*, which is obtained in Steep 9.
Proof of Step 10. We have

[t — (1
= |letn(f (T, Wayn) — &%) + Bulxn — x*) + ¥u(T, Wy — X*)Hz
1B (%0 = x*) + Ya(Tyuy Wayn = X + 200 (f (T, W) — x*, X1 — &)
[Bullxn — x* 1 + Yl Ty, Wiy — x*|1]7
+20u (f (T, Wayn) — f(X), X1 — X°) + 200 (f (x*) — X, xpe1 — &™)

< [Bullxn — x* |1 + yullyn — x*11]?

+2anat[lyn — x| |lxner — x¥[] + 200 (f (x") — &%, xpa1 — x7)

IA

IA

IA

2
[Bullxn — x* 1] + Vallxn — x*|1]
+200 [y — &) [[xne1 — X5 + 20, (F(x*) — &%, X1 — x¥)

2 2 2 2
(1 = o) llxn — 2|17 + aner[||xn — ™17 + (%001 — 2"[17]

20, (f(x*) — &%, xpp1 — x¥)
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Which implies that

2
[Xne1 — x|
< (1 —(Yn)z +ana|| *“2 zan (f( *) * *)
Xp — X + X)) — X%, X1 — X
- 1 — oy " 1 — oo sl (35)
2-2a .2
=|l1—-a, [lxn — X*||7 + atnTh,
1— o,
where
oy 2
Tp = %0 — x*[|* + (F(x*) — X%, Xpoy — x%),
1 —aya 1—a,a

By Step 9, and condition (B;), we get lim sup, .. 7, < 0. Now applying Lemma 2.8 to
(35), we conclude that x, — x*. Consequently, from ||]£ﬁnxn —x*|| < ||lx, — x*||, we
have ]fkk,nxn — x*, forall ke {1, 2, .., M}.

Corollary 3.2. (see Yao et al. [8]) Let C be a nonempty closed convex subset of a real
Hilbert space H, F a bi-functions from CxC into R which satisfy (A;) - (A4) and
(i} an infinite family of nonexpansive mapping of C into C such that
NX Fix(T;) N EP(F) # 0. Let {o,,}, {B.} and {y,} are three sequences in (0, 1) such that
o, + B+ Y, =1 and {r,} < (0, ). Suppose the following conditions are satisfied:

(By) lim,, 5. @0, = 0 and > o) o = 00,

(By) 0 <lim inf,_,.. B, < lim sup,_,.. B, <1,

(B3) lim inf,_,., r,, >0 and lim,,_,.. (r,..1 - 1,,) = 0.

Let f be a contraction of C into itself with coefficient a € (0, 1) and given x; € C
arbitrarily. Then the sequence {x,} generated by

Xne1 = nf (Xn) + BuXn + YaWnJl xp, > 1.

converge strongly to x* € N2 Fix(T;) N EP(F), where X* € Pr rix(r)nep(p)f (x*) .

Proof. Take A =B =0, ¢ = {I}, F; = Fand F; = 0 for ke {2, .., M} in Theorem 3.1,
then we have Ty, =1 and y, =z, = ]fmxn, So from Theorem 3.1 the sequence {x,} con-
verges strongly to x* € N2 Fix(T;) N EP(F), where x* € P rix(r,)nEp(F)f (X¥) .

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H,
J ={Fr:k=1,2,...,M}be a finite family of bi-functions from C x C into R which
satisfy (A1)-(A4), T a nonexpansive mappings on C such that Fix(T) NEP(J) # 0. Let
{a,}, {B.} and {y,} are three sequences in (0, 1) such that o,, + B, + ¥, = 1 and
{rk,,,}kA’I= 1 be sequences in (0, «). Suppose the following conditions are satisfied:

(By) lim,, 5. @0, = 0 and Y o op = 00,

(By) 0 <lim inf,_,., B, < lim sup,_,.. B, <1,

(B3) lim inf, ., ¢, >0 and lim,, e, (ripe1 - 1) = 0 for ke {1, 2, ..., M}.

Let f be a contraction of H into itself and given x, € H arbitrarily. If the sequences
{x,.} generated iteratively by

[} k

1 n—1
Xnt = nf (%) + Bk + ¥ Z( . ) TR T2 I X, =

k=0
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Then, sequences {x,} and {]2”/nxn}f€"i | converge strongly to x* € Fix(T) N EP(J), where

x* = Prix(r)nep(7)f (x*).
Proof- Let S = {0, 1, ..}, ¢ = {T*: i S} and T° = I. For f = (xo, x1, ) € B(S), define

12 (n—1\*
,un(f)=nZ( , )xk, Vn e N.

k=0

Then {u,} is a regular sequence of means on B(S) such that lim,, ;.. || ., - ¢ || = 0;
for more details, see [34]. Next for each x € H and #n € N, we have

k
1 -1
Tux= > <n ) Tkx.

N0 n

Take A =B =0, T; = for all i € N in Theorem 3.1 then we have y, = z, and W,, =
I for all n € N. Therefore, it follows from Theorem 3.1 that the sequences {x,} and

Uik,nxn}i\il converge strongly, as n — o to a point x* € Fix(T) NEP(J), where

x* = Prix(rynep()f (x).

Remark 3.4. Theorem 3.1 improve [8, Theorem 1.2] in the following aspects.

(a) Our iterative process (11) is more general than Yao et al. process (14) because it
can be applied to solving the problem of finding a common element of the set of solu-
tions of systems of equilibrium problems and systems of variational inequalities.

(b) Our iterative process (11) is very diffident from Yao et al. process (14) because
there are left amenable semigroup of nonexpansive mappings.

(c) Our method of proof is very different from the on in Yao et al. [8] for example
we use Corollary 1.1 and Theorem 1.2 of Bruck [33] fore the proof of Theorem 3.1.
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