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Abstract
In this paper, we notice the notions metric-like space and dislocated metric space are
exactly the same. After this historical remark, we discuss the existence and uniqueness
of a fixed point of a cyclic mapping in the context of metric-like spaces. We consider
some examples to illustrate the validity of the derived results of this paper.
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1 Introduction and preliminaries
Fixed point theory is one of the most dynamic research subjects in nonlinear sciences.
Regarding the feasibility of application of it to the various disciplines, a number of authors
have contributed to this theory with a number of publications. Themost impressing result
in this direction was given by Banach, called the Banach contraction mapping principle:
Every contraction in a complete metric space has a unique fixed point. In fact, Banach
demonstrated how to find the desired fixed point by offering a smart and plain technique.
This elementary technique leads to increasing of the possibility of solving various prob-
lems in different research fields. This celebrated result has been generalized in many ab-
stract spaces for distinct operators. In particular, Hitzler [] obtained one of interesting
characterizations of the Banach contraction mapping principle by introducing dislocated
metric spaces, which is rediscovered by Amini-Harandi [].

Definition . A dislocated (metric-like) on a nonempty set X is a function σ : X ×X →
[, +∞) such that for all x, y, z ∈ X:

(σ ) if σ (x, y) =  then x = y,
(σ) σ (x, y) = σ (y,x),
(σ) σ (x, y)≤ σ (x, z) + σ (z, y),

and the pair (X,σ ) is called a dislocated (metric-like) space.

The motivation of defining this new notion is to get better results in logic programming
semantics (see, e.g., [, ]). Following these initial reports, many authors paid attention
to the subject and have published several papers (see, e.g., [–]). Another interesting
generalization of the Banach contraction mapping principle was given by Kirk et al. []
via a cyclic mapping (see, e.g., [–]). In this remarkable paper, the mappings, for which
the existence anduniqueness of a fixed pointwere discussed, do not need to be continuous.
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A mapping T : A∪ B → A∪ B is called cyclic if T(A) ⊆ B and T(B)⊆ A.

Theorem . (See []) Let A and B be two nonempty closed subsets of a complete metric
space (X,d). Suppose that T : A∪ B → A∪ B is cyclic and satisfies the following:
(C) There exists a constant k ∈ (, ) such that

d(Tx,Ty) ≤ kd(x, y) for all x ∈ A, y ∈ B.

Then T has a unique fixed point that belongs to A∩ B.

Cyclic mappings and related fixed point theorems have been considered by many au-
thors (see, e.g., [–]). In this paper, we discuss the existence and uniqueness of fixed
point theory of a cyclic mapping with certain properties in the context of metric-like
spaces.
We recall some basic definitions and crucial results on the topic. In this paper, we follow

the notations of Amini-Harandi [].

Definition . (See []) Let (X,σ ) be a metric-like space and U be a subset of X. We say
U is a σ -open subset of X if for all x ∈ X there exists r >  such that Bσ (x, r) ⊆ U . Also,
V ⊆ X is a σ -closed subset of X if (X\V ) is a σ -open subset of X.

Lemma . Let (X,σ ) be a metric-like space and V be a σ -closed subset of X. Let {xn} be
a sequence in V . If xn → x as n→ ∞, then x ∈ V .

Proof Let x /∈ V . By Definition ., (X\V ) is a σ -open set. Then there exists r >  such that
Bσ (x, r) ⊆ X\V . On the other hand, we have limn→∞ |σ (xn,x) – σ (x,x)| =  since xn → x
as n→ ∞. Hence, there exists n ∈N such that

∣∣σ (xn,x) – σ (x,x)
∣∣ < r

for all n ≥ n. So, we conclude that {xn} ⊆ Bσ (x, r) ⊆ X\V for all n ≥ n. This is a contra-
diction since {xn} ⊆ V for all n ∈ N. �

Lemma . Let (X,σ ) be a metric-like space and {xn} be a sequence in X such that xn → x
as n→ ∞ and σ (x,x) = . Then limn→∞ σ (xn, y) = σ (x, y) for all y ∈ X.

Proof From (σ) we have

σ (x, y) – σ (xn,x) ≤ σ (xn, y) ≤ σ (xn,x) + σ (x, y).

Letting n → ∞ in the above inequalities, we get limn→∞ σ (xn, y) = σ (x, y). �

Lemma . Let (X,σ ) be a metric-like space. Then
(A) if σ (x, y) = , then σ (x,x) = σ (y, y) = ;
(B) if {xn} is a sequence such that limn→∞ σ (xn,xn+) = , then we have

lim
n→∞σ (xn,xn) = lim

n→∞σ (xn+,xn+) = ;

http://www.fixedpointtheoryandapplications.com/content/2013/1/222
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(C) if x 
= y, then σ (x, y) > ;
(D) σ (x,x)≤ 

n
∑i=n

i= σ (x,xi) holds for all xi,x ∈ X , where  ≤ i≤ n.

Proof We skip the proof (A) since it is evident.
(B) Due to the triangle inequality, we have σ (xn,xn) ≤ σ (xn,xn+) + σ (xn+,xn) = σ (xn+,

xn). So, we find

 ≤ lim
n→∞σ (xn,xn) ≤  lim

n→∞σ (xn,xn+) = .

Analogously, we derive

 ≤ lim
n→∞σ (xn+,xn+) ≤  lim

n→∞σ (xn,xn+) = .

(C) If x 
= y and σ (x, y) = , then by (σ ) we have x = y, which is a contradiction.
(D) Again from (σ) we get

σ (x,x)≤ σ (x,xi),

where  ≤ i≤ n. Then we observe that

i=n∑
i=

σ (x,x)≤ 
i=n∑
i=

σ (x,xi).

Hence, we derive that

σ (x,x)≤ 
n

i=n∑
i=

σ (x,xi). �

At first, we define the class of � and � by the following ways:

� =
{
ψ : [,∞)→ [,∞) such that ψ is non-decreasing and continuous

}

and

� =
{
φ : [,∞)→ [,∞) such that φ is lower semicontinuous

}
.

Definition . Let (X,σ ) be a metric-like space, m ∈ N, let A,A, . . . ,Am be σ -closed
nonempty subsets of X and Y =

⋃m
i=Ai. We say that T is called a cyclic generalized φ-ψ-

contractive mapping if
() Y =

⋃m
i=Ai is a cyclic representation of Y with respect to T ;

()

ψ(t) –ψ(s) + φ(s) >  for all t >  and s = t or s = 

and

ψ
(
σ (Tx,Ty)

) ≤ ψ
(
Mσ (x, y)

)
– φ

(
Mσ (x, y)

)
()

http://www.fixedpointtheoryandapplications.com/content/2013/1/222
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for any x ∈ Ai, y ∈ Ai+, i = , , . . . ,m, where Am+ = A, φ ∈ �, ψ ∈ � and

Mσ (x, y) =max

{
σ (x, y),σ (x,Tx),σ (y,Ty),

σ (x,Ty) + σ (y,Tx)


}
.

Let X be a nonempty set and T : X → X be a given map. The set of all fixed points of T
will be denoted by Fix(T), that is, Fix(T) = {x ∈ X;x = Tx}.

Theorem . Let (X,σ ) be a complete metric-like space, m ∈ N, let A,A, . . . ,Am be
nonempty σ -closed subsets of X and Y =

⋃m
i=Ai. Suppose that T : Y → Y is a cyclic

generalized φ-ψ-contractive mapping. Then T has a fixed point in
⋂n

i=Ai. Moreover, if
σ (x, y)≥ σ (x,x) for all x, y ∈ Fix(T), then T has a unique fixed point in

⋂n
i=Ai.

Proof Let x be an arbitrary point of Y . So, there exists some i such that x ∈ Ai .
Since T(Ai ) ⊆ Ai+, we conclude that Tx ∈ Ai+. Thus, there exists x in Ai+ such
that Tx = x. Recursively, Txn = xn+, where xn ∈ Ain . Hence, for n ≥ , there exists
in ∈ {, , . . . ,m} such that xn ∈ Ain . In case xn = xn+ for some n = , , , . . . , then it
is clear that xn is a fixed point of T . Now assume that xn 
= xn+ for all n. Hence, by
Lemma .(C) we have σ (xn–,xn) >  for all n. We shall show that the sequence {σn} is
non-increasing where σn = σ (xn,xn+). Assume that there exists some n ∈N such that

σ (xn–,xn ) ≤ σ (xn ,xn+).

Hence

ψ
(
σ (xn–,xn )

) ≤ ψ
(
σ (xn ,xn+)

)
. ()

By taking x = xn– and y = xn in condition () together with (), we get

ψ
(
σ (xn,xn+)

)
= ψ

(
σ (Txn–,Txn)

)

≤ ψ

(
max

{
σ (xn–,xn),σ (xn–,Txn–),σ (xn,Txn),

σ (xn–,Txn) + σ (xn,Txn–)


})

– φ

(
max

{
σ (xn–,xn),σ (xn–,Txn–),σ (xn,Txn),

σ (xn–,Txn) + σ (xn,Txn–)


})

≤ ψ

(
max

{
σ (xn–,xn),σ (xn,xn+),

σ (xn–,xn+) + σ (xn,xn)


})

– φ

(
max

{
σ (xn–,xn),σ (xn,xn+),

σ (xn–,xn+) + σ (xn,xn)


})
. ()

On the other hand, from Lemma .(D) we have

σ (xn,xn) ≤ σ (xn–,xn) + σ (xn,xn+),

and by (σ) we have

σ (xn–,xn+) ≤ σ (xn–,xn) + σ (xn,xn+).

http://www.fixedpointtheoryandapplications.com/content/2013/1/222
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That is,

max
{
σ (xn–,xn),σ (xn,xn+)

} ≤ max

{
σ (xn–,xn),σ (xn,xn+),

σ (xn–,xn+) + σ (xn,xn)


}

≤ max

{
σ (xn–,xn),σ (xn,xn+),

σ (xn–,xn) + σ (xn,xn+)


}

= max
{
σ (xn–,xn),σ (xn,xn+)

}
.

Then

max

{
σ (xn–,xn),σ (xn,xn+),

σ (xn–,xn+) + σ (xn,xn)


}
=max

{
σ (xn–,xn),σ (xn,xn+)

}
.

Therefore from () we get

ψ
(
σ (xn,xn+)

) ≤ ψ
(
max

{
σ (xn–,xn),σ (xn,xn+)

})
– φ

(
max

{
σ (xn–,xn),σ (xn,xn+)

})
.

Now, if max{σ (xn–,xn),σ (xn,xn+)} = σ (xn,xn+), then

ψ
(
σ (xn,xn+)

) ≤ α
(
σ (xn,xn+)

)
– β

(
σ (xn,xn+)

)
,

a contradiction. Hence, we have

ψ
(
σ (xn,xn+)

) ≤ ψ
(
σ (xn–,xn)

)
– φ

(
σ (xn–,xn)

)
()

for all n ∈N. By taking x = xn– and y = xn in () and keeping () in mind, we deduce that

ψ
(
σ (xn–,xn )

) ≤ ψ
(
σ (xn–,xn )

)
– φ

(
σ (xn–,xn )

)
,

a contradiction. Hence, we conclude that σn < σn– holds for all n ∈ N. Thus, there exists
r ≥  such that limn→∞ σn = r. We shall show that r =  by the method of reductio ad
absurdum. For this purpose, we assume that r > . By (), together with the properties of
φ, ψ , we have

ψ(r) = lim sup
n→∞

ψ(σn) ≤ lim sup
n→∞

[
ψ(σn–) – φ(σn–)

] ≤ ψ(r) – φ(r),

which yields that φ(r)≤ . This is a contradiction. Hence, we obtain that

lim
n→∞σn = lim

n→∞σ (xn,xn+) = . ()

We shall show that {xn} is a σ -Cauchy sequence. To reach this goal, we shall follow the
standard techniques that can be found in, e.g., []. For the sake of completeness, we shall
adopt the techniques used in []. First, we prove the following claim:
(K) For every ε > , there exists n ∈N such that if r,q ≥ n with r – q ≡ (m), then

σ (xr ,xq) < ε.

http://www.fixedpointtheoryandapplications.com/content/2013/1/222


Karapınar and Salimi Fixed Point Theory and Applications 2013, 2013:222 Page 6 of 19
http://www.fixedpointtheoryandapplications.com/content/2013/1/222

Suppose, on the contrary, that there exists ε >  such that for any n ∈ N, we can find
rn > qn ≥ n with rn – qn ≡ (m) satisfying

σ (xqn ,xrn ) ≥ ε. ()

Now, we take n > m. Then, corresponding to qn ≥ n, we can choose rn in such away that it
is the smallest integer with rn > qn satisfying rn – qn ≡ (m) and σ (xqn ,xrn )≥ ε. Therefore,
σ (xqn ,xrn–m) ≤ ε. By using the triangular inequality, we obtain

ε ≤ σ (xqn ,xrn ) ≤ σ (xqn ,xrn–m) +
m∑
i=

σ (xrn–i,xrn–i+ ) < ε +
m∑
i=

p(xrn–i,xrn–i+ ).

Passing to the limit as n→ ∞ in the last inequality and taking () into account, we obtain
that

lim
n→∞σ (xqn ,xrn ) = ε. ()

Again, by (σ), we derive that

ε ≤ σ (xqn ,xrn )

≤ σ (xqn ,xqn+) + σ (xqn+,xrn+) + σ (xrn+,xrn )

≤ σ (xqn ,xqn+) + σ (xqn+,xqn ) + σ (xqn ,xrn ) + σ (xrn ,xrn+) + σ (xrn+,xrn )

= σ (xqn ,xqn+) + σ (xqn ,xrn ) + σ (xrn ,xrn+).

Taking () and () into account, we get

lim
n→∞σ (xqn+,xrn+) = ε. ()

By (σ), we have the following inequalities:

σ (xqn ,xrn+) ≤ σ (xqn ,xrn ) + σ (xrn ,xrn+) ()

and

σ (xqn ,xrn ) ≤ σ (xqn ,xrn+) + σ (xrn ,xrn+). ()

Letting n → ∞ in () and (), we derive that

lim
n→∞σ (xqn ,xrn+) = ε. ()

Again by (σ) we have

σ (xrn ,xqn+) ≤ σ (xrn ,xrn+) + σ (xrn+,xqn+) ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/222
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and

σ (xrn+,xqn+) ≤ σ (xrn+,xrn ) + σ (xrn ,xqn+). ()

Letting n→ ∞ in () and (), we derive that

lim
n→∞σ (xrn ,xqn+) = ε. ()

Since xqn and xrn lie in different adjacently labeled sets Ai and Ai+ for certain  ≤ i ≤ m,
by using (), (), (), (), () together with the fact that T is a generalized cyclic φ-ψ-
contractive mapping, we find that

ψ
(
σ (xqn+,xrn+)

)
= ψ

(
σ (Txqn ,Txrn )

)

≤ ψ

(
max

{
σ (xqn ,xrn ),σ (xqn ,Txqn ),σ (xrn ,Txrn ),

σ (xqn ,Txrn ) + σ (xrn ,Txqn )


})

– φ

(
max

{
σ (xqn ,xrn ),σ (xqn ,Txqn ),σ (xrn ,Txrn ),

σ (xqn ,Txrn ) + σ (xrn ,Txqn )


})

= ψ

(
max

{
σ (xqn ,xrn ),σ (xqn ,xqn+),σ (xrn ,xrn+),

σ (xqn ,xrn+) + σ (xrn ,xqn+)


})

– φ

(
max

{
σ (xqn ,xrn ),σ (xqn ,xqn+),σ (xrn ,xrn+),

σ (xqn ,xrn+) + σ (xrn ,xqn+)


})
.

Regarding the properties of φ, ψ in the last inequality, we obtain that

ψ(ε) ≤ ψ(ε) – φ(ε),

a contradiction. Hence, the condition (K) is satisfied. Fix ε > . By the claim, we find n ∈N

such that if r,q ≥ n with r – q ≡ (m),

σ (xr,xq) ≤ ε


. ()

Since limn→∞ σ (xn,xn+) = , we also find n ∈N such that

σ (xn,xn+) ≤ ε

m
()

for any n≥ n. Suppose that r, s ≥ max{n,n} and s > r. Then there exists k ∈ {, , . . . ,m}
such that s – r ≡ k(m). Therefore, s – r + ϕ ≡ (m) for ϕ = m – k + . So, we have for
j ∈ {, . . . ,m}, s + j – r ≡ (m)

σ (xr,xs) ≤ σ (xr,xs+j) + σ (xs+j,xs+j–) + · · · + σ (xs+,xs).

By () and () and from the last inequality, we get

σ (xr,xs) ≤ ε


+ j× ε

m
≤ ε


+m× ε

m
= ε.

http://www.fixedpointtheoryandapplications.com/content/2013/1/222
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This proves that {xn} is a σ -Cauchy sequence. Since ε is arbitrary, {xn} is a Cauchy se-
quence. Since Y is σ -closed in (X,σ ), then (Y ,σ ) is also complete, there exists x ∈ Y =⋃m

i=Ai such that limn→∞ xn = x in (Y ,σ ); equivalently

σ (x,x) = lim
n→∞σ (x,xn) = lim

n,m→∞σ (xn,xm) = . ()

In what follows, we prove that x is a fixed point of T . In fact, since limn→∞ xn = x and,
as Y =

⋃m
i=Ai is a cyclic representation of Y with respect to T , the sequence {xn} has

infinite terms in each Ai for i ∈ {, , . . . ,m}. Suppose that x ∈ Ai, Tx ∈ Ai+, and we take a
subsequence xnk of {xn} with xnk ∈ Ai– (the existence of this subsequence is guaranteed
by the above-mentioned comment). By using the contractive condition, we can obtain

ψ
(
σ (Tx,Txnk )

)

≤ ψ

(
max

{
σ (x,xnk ),σ (x,Tx),σ (xnk ,Txnk ),

σ (x,Txnk ) + σ (xnk ,Tx)


})

– φ

(
max

{
σ (x,xnk ),σ (x,Tx),σ (xnk ,Txnk ),

σ (x,Txnk ) + σ (xnk ,Tx)


})
.

Passing to the limit as n→ ∞ and using xnk → x, lower semi-continuity of ϕ, we have

ψ
(
σ (x,Tx)

) ≤ ψ
(
σ (x,Tx)

)
– φ

(
σ (x,Tx)

)
.

So, σ (x,Tx) =  and, therefore, x is a fixed point ofT . Finally, to prove the uniqueness of the
fixed point, suppose that y, z ∈ X are two distinct fixed points of T . The cyclic character
of T and the fact that y, z ∈ X are fixed points of T imply that x, y ∈ ⋂m

i=Ai. Suppose that
x 
= y and for all u,w ∈ Fix(T), σ (u,w)≥ σ (u,u). Using the contractive condition, we obtain

ψ
(
σ (Tx,Ty)

) ≤ ψ

(
max

{
σ (x, y),σ (x,Tx),σ (y,Ty),

σ (x,Ty) + σ (y,Tx)


})

– φ

(
max

{
σ (x, y),σ (x,Tx),σ (y,Ty),

σ (x,Ty) + σ (y,Tx)


})
.

Then we have

ψ
(
σ (x, y)

) ≤ ψ
(
σ (x, y)

)
– φ

(
σ (x, y)

)
,

which is a contradiction. Thus, we derive that σ (y, z) =  ⇐⇒ y = z, which finishes the
proof. �

If in Theorem .we takeAi = X for all  ≤ i≤ m, thenwe deduce the following theorem.

Theorem . Let (X,σ ) be a complete metric-like space and T be a self-map on X .Assume
that there exist φ ∈ � and ψ ∈ � such that

ψ
(
σ (Tx,Ty)

) ≤ ψ
(
Mσ (x, y)

)
– φ

(
Mσ (x, y)

)

http://www.fixedpointtheoryandapplications.com/content/2013/1/222
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for all x, y ∈ X, where

Mσ (x, y) =max

{
σ (x, y),σ (x,Tx),σ (y,Ty),

σ (x,Ty) + σ (y,Tx)


}
.

Then T has a fixed point. Moreover, if σ (x, y) ≥ σ (x,x) for all x, y ∈ Fix(T), then T has a
unique fixed point.

If in Theorem . we take ψ(t) = t and φ(t) = ( – r)t, where r ∈ [, ), then we deduce
the following corollary.

Corollary . Let (X,σ ) be a complete metric-like space, m ∈ N, let A,A, . . . ,Am be
nonempty σ -closed subsets of X and Y =

⋃m
i=Ai. Suppose that T : Y → Y is an operator

such that
(i) Y =

⋃m
i=Ai is a cyclic representation of X with respect to T ;

(ii) there exists r ∈ [, ) such that

σ (Tx,Ty)≤ rmax

{
σ (x, y),σ (x,Tx),σ (y,Ty),

σ (x,Ty) + σ (y,Tx)


}

for any x ∈ Ai, y ∈ Ai+, i = , , . . . ,m,where Am+ = A.Then T has a fixed point z ∈ ⋂m
i=Ai.

Moreover, if σ (x, y)≥ σ (x,x) for all x, y ∈ Fix(T), then T has a unique fixed point.

Example . LetX =Rwith themetric-like σ (x, y) =max{|x|, |y|} for all x, y ∈ X. Suppose
A = [–, ] and A = [, ] and Y =

⋃
i=Ai. Define T : Y → Y by

Tx =

⎧⎨
⎩

–x
 if x ∈ [–, ],
–x
 if x ∈ [, ].

It is clear that
⋃

i=Ai is a cyclic representation of Y with respect to T . Let x ∈ A = [–, ]
and y ∈ A = [, ]. Then

σ (Tx,Ty) = max

{∣∣∣∣–x
∣∣∣∣,

∣∣∣∣–y




∣∣∣∣
}
=max

{
–x

,
y



}
≤ max

{
–x

,
y


}

=


max{–x, y} = 


σ (x, y),

and so

σ (Tx,Ty)≤ 

max

{
σ (x, y),σ (x,Tx),σ (y,Ty),

σ (x,Ty) + σ (y,Tx)


}
.

Hence, the conditions of Corollary . (Theorem .) hold and T has a fixed point in
A ∩A. Here, x =  is a fixed point of T .

If in the above corollary we take Ai = X for all  ≤ i ≤ m, then we deduce the following
corollary.

http://www.fixedpointtheoryandapplications.com/content/2013/1/222
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Corollary . Let (X,σ ) be a complete metric-like space and T be a self-map on X . As-
sume that there exists r ∈ [, ) such that

σ (Tx,Ty)≤ rmax

{
σ (x, y),σ (x,Tx),σ (y,Ty),

σ (x,Ty) + σ (y,Tx)


}

holds for all x, y ∈ X. Then T has a fixed point. Moreover, if σ (x, y) ≥ σ (x,x) for all x, y ∈
Fix(T), then T has a unique fixed point.

Example . Let X = R with the metric-like σ (x, y) = max{x, y} for all x, y ∈ X. Let T :
X → X be defined by

Tx =

⎧⎪⎪⎨
⎪⎪⎩


x

 if  ≤ x < /,

( – x)/ if / ≤ x ≤ ,

x if x > .

Proof To show the existence and uniqueness point of T , we need to consider the following
cases.
• Let  ≤ x, y < /. Then

σ (Tx,Ty) =


max

{
x, y

} ≤ 

max{x, y} = 


σ (x, y).

• Let /≤ x, y≤ . Then

σ (Tx,Ty) =


max{ – x,  – y} ≤ 


max{x, y} = 


σ (x, y).

• Let x, y > . Then

σ (Tx,Ty) =


max{x, y} ≤ 


max{x, y} = 


σ (x, y).

• Let  ≤ x < / and /≤ y≤ . Then

σ (Tx,Ty) =max

{


x, ( – y)/

}
≤ 


max{x, y} = 


σ (x, y).

• Let  ≤ x < / and y > . Then

σ (Tx,Ty) =max

{


x,



y
}

≤ 

max{x, y} = 


σ (x, y).

• Let /≤ x≤  and y > . Then

σ (Tx,Ty) =max

{
( – x)/,



y
}

≤ 

max{x, y} = 


σ (x, y),

and so

σ (Tx,Ty)≤ 

max

{
σ (x, y),σ (x,Tx),σ (y,Ty),

σ (x,Ty) + σ (y,Tx)


}
.
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Hence, we conclude that all the conditions of Corollary . (Theorem .) hold and hence
T has a fixed point  in [,∞). �

By Corollary . we deduce the following result.

Corollary . Let (X,σ ) be a complete metric-like space, m ∈ N, let A,A, . . . ,Am be
nonempty σ -closed subsets of X and Y =

⋃m
i=Ai. Suppose that T : Y → Y is an operator

such that
(i) Y =

⋃m
i=Ai is a cyclic representation of X with respect to T ;

(ii) there exists r ∈ [, ) such that

∫ σ (Tx,Ty)


ρ(t)dt ≤ r

∫ max{σ (x,y),σ (x,Tx),σ (y,Ty), σ (x,Ty)+σ (y,Tx)
 }


ρ(t)dt

for any x ∈ Ai, y ∈ Ai+, i = , , . . . ,m, where Am+ = A, and ρ : [,∞) → [,∞) is a
Lebesgue-integrable mapping satisfying

∫ ε

 ρ(t)dt >  for ε > . Then T has a fixed point
z ∈ ⋂m

i=Ai. Moreover, if σ (x, y) ≥ σ (x,x) for all x, y ∈ Fix(T), then T has a unique fixed
point.

If in the above corollary we take Ai = X for all  ≤ i ≤ m, then we deduce the following
corollary.

Corollary . Let (X,σ ) be a complete metric-like space and let T : X → X be a mapping
such that for any x, y ∈ X,

∫ σ (Tx,Ty)


ρ(t)dt ≤ r

∫ max{σ (x,y),σ (x,Tx),σ (y,Ty), σ (x,Ty)+σ (y,Tx)
 }


ρ(t)dt,

where ρ : [,∞) → [,∞) is a Lebesgue-integrable mapping satisfying
∫ ε

 ρ(t)dt for ε > 
and the constant β ∈ [,  ). Then T has a unique fixed point.

Definition . Let T : X → X and ψ : X → [,∞) and γ ∈ [, ]. A mapping T is said to
be a γ -ψ-subadmissible mapping if

ψ(x)≤ γ implies ψ(Tx)≤ γ , x ∈ X.

Example . Let T :R →R and ψ :R→R+ be defined by Tx = x and ψ(x) = 
e

x. Then
T is a γ -ψ-subadmissible mapping where γ = 

 . Indeed, if ψ(x) = 
e

x ≤ 
 , then x ≤ ,

and hence Tx ≤ . That is, ψ(Tx) = 
e

Tx ≤ 
 .

Example . LetT : [–π ,π ] → [–π ,π ] andψ : [–π ,π ] →R+ be defined byTx = π
 sin(x)

and ψ(x) = |x – 
π | + 

 . Then T is a γ -ψ-subadmissible mapping where γ = 
 . Indeed, if

ψ(x) = |x – 
π | + 

 ≤ 
 , then x = 

π , and hence Tx = 
π . That is, ψ(Tx) = 

 .

Let� be the class of all the functions ϕ : [, +∞)  → [, +∞) that are a continuous with
the following property:

ϕ(x, y, z) =  if and only if x = y = z = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/222
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Definition . Let (X,σ ) be a metric-like space, m ∈ N, let A,A, . . . ,Am be σ -closed
nonempty subsets of (X,dp) and Y =

⋃m
i=Ai. Assume that T : Y → Y is a γ -ψ-subadmis-

sible mapping where γ = 
 . Then T is called a ψ-cyclic generalized weakly C-contraction

if
() Y =

⋃m
i=Ai is a cyclic representation of Y with respect to T ;

()

σ (Tx,Ty) ≤ ψ(x)σ (x,Tx) +ψ(Tx)σ (y,Ty) +ψ
(
Tx

)
σ (x,Ty) +ψ

(
Tx

)
σ (y,Tx)

– ϕ

(
σ (x,Tx),σ (x,Ty),



[
σ (x,Ty) + σ (y,Tx)

])
()

for any x ∈ Ai, y ∈ Ai+, i = , , . . . ,m, where Am+ = A and ϕ ∈ �.

Theorem . Let (X,σ ) be a complete metric-like space, m ∈ N, let A,A, . . . ,Am be
nonempty σ -closed subsets of (X,p) and Y =

⋃m
i=Ai. Suppose that T : Y → Y is a ψ-cyclic

generalized weakly C-contraction. If there exists x ∈ Y such that ψ(x) ≤ 
 , then T has a

fixed point z ∈ ⋂n
i=Ai.Moreover, if ψ(z)≤ 

 , then z is unique.

Proof Let x ∈ Y be such that ψ(x) ≤ 
 . Since T is a sub ψ-admissible mapping with

respect to 
 , then ψ(Tx) ≤ 

 . ψ(Tnx) ≤ 
 for all n ∈ N ∪ . Also, there exists some

i such that x ∈ Ai . Now T(Ai ) ⊆ Ai+ implies that Tx ∈ Ai+. Thus there exists x
in Ai+ such that Tx = x. Similarly, Txn = xn+, where xn ∈ Ain . Hence, for n ≥ , there
exists in ∈ {, , . . . ,m} such that xn ∈ Ain and xn+ ∈ Ain+. In case xn = xn+ for some
n = , , , . . . , then it is clear that xn is a fixed point of T . Now assume that xn 
= xn+
for all n. Since T : Y → Y is a cyclic generalized weak C-contraction, we have that for all
n ∈N

∗,

σ (xn,xn+)

= σ (Txn–,Txn)

≤ ψ(xn–)σ (xn–,Txn–) +ψ(Txn–)σ (xn,Txn) +ψ
(
Txn–

)
σ (xn–,Txn)

+ψ
(
Txn–

)
σ (xn,Txn–)

– ϕ

(
σ (xn–,Txn–),σ (xn,Txn),



[
σ (xn–,Txn) + σ (xn,Txn–)

])

= ψ(xn–)σ (xn–,xn) +ψ(xn)σ (xn,xn+) +ψ(xn+)σ (xn–,xn+) +ψ(xn+)σ (xn,xn)

– ϕ

(
σ (xn–,xn),σ (xn,xn+),



[
σ (xn–,xn+) + σ (xn,xn)

])

≤ 


[
σ (xn–,xn) + σ (xn,xn+) + σ (xn–,xn+) + σ (xn,xn)

]

– ϕ

(
σ (xn–,xn),σ (xn,xn+),



[
σ (xn–,xn+) + σ (xn,xn)

])
,

and so

σ (xn,xn+) ≤ 


[
σ (xn–,xn) + σ (xn,xn+) + σ (xn–,xn+) + σ (xn,xn)

]
. ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/222
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On the other hand, from (σ) we have

σ (xn–,xn+) ≤ σ (xn–,xn) + σ (xn,xn+),

and by Lemma .(D) we have

σ (xn,xn) ≤ σ (xn–,xn) + σ (xn,xn+).

Then by () we get

σ (xn,xn+) ≤ 

[
σ (xn–,xn) + σ (xn,xn+)

]
.

Therefore,

σ (xn,xn+) ≤ σ (xn–,xn) ()

for any n ≥ . Set tn = ϕ(xn,xn–). On the occasion of the facts above, {tn} is a non-
increasing sequence of nonnegative real numbers. Consequently, there exists L ≥  such
that

lim
n→∞σ (xn,xn+) = L. ()

We shall prove that L = . Since σ (xn,xn)≤ ϕ(xn,xn+), then limn→∞ σ (xn,xn) ≤ L. Sim-
ilarly, limn→∞ σ (xn–,xn+) ≤ L. Then

lim
n→∞

[
σ (xn,xn) + σ (xn–,xn+)

] ≤ L.

On the other hand, by taking limit as n→ ∞ in (), we have

L ≤ 


[
L + lim

n→∞
[
σ (xn,xn) + σ (xn–,xn+)

]]
,

which implies

L ≤ lim
n→∞

[
σ (xn,xn) + σ (xn–,xn+)

]
.

Hence,

lim
n→∞

[
σ (xn,xn) + σ (xn–,xn+)

]
= L.

Now, from () we have

tn+ ≤ ψ(xn–)tn +ψ(xn)tn+ +ψ(xn+)σ (xn–,xn+) +ψ(xn+)σ (xn,xn)

– ϕ

(
tn, tn+,



[
σ (xn–,xn+) + σ (xn,xn)

])

≤ 


[
tn + tn+ + σ (xn–,xn+) + σ (xn,xn)

]

– ϕ

(
tn, tn+,



[
σ (xn–,xn+) + σ (xn,xn)

])
.
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By taking limit as n→ ∞ in the above inequality, we deduce

L ≤ L – ϕ(L,L, L),

and so ϕ(L,L, L) = . Since ϕ(x, y, z) =  ⇐⇒ x = y = z = , we get L = . Due to
limn→∞ σ (xn,xn) ≤ L and limn→∞ σ (xn–,xn+) ≤ L, we have

lim
n→∞σ (xn,xn) = lim

n→∞σ (xn–,xn+) = lim
n→∞σ (xn,xn+) = . ()

We shall show that {xn} is a σ -Cauchy sequence. At first, we prove the following fact:
(K) For every ε > , there exists n ∈N such that if r,q ≥ n with r – q ≡ (m), then

σ (xr ,xq) < ε.
Suppose to the contrary that there exists ε >  such that for any n ∈ N, we can find

rn > qn ≥ n with rn – qn ≡ (m) satisfying

σ (xqn ,xrn ) ≥ ε. ()

Following the related lines of the proof of Theorem ., we have

lim
n→∞σ (xqn ,xrn ) = ε;

lim
n→∞σ (xqn+,xrn+) = ε;

lim
n→∞σ (xqn ,xrn+) = ε

and

lim
n→∞σ (xrn ,xqn+) = ε. ()

Since xqn and xrn lie in different adjacently labeled sets Ai and Ai+ for certain  ≤ i ≤ m,
using the fact that T is a ψ-cyclic generalized weakly C-contraction, we have

σ (xqn+,xrn+) = σ (Txqn ,Txrn )

≤ ψ(xqn )σ (xqn ,Txqn ) +ψ(Txqn )σ (xrn ,Txrn )

+ψ
(
Txqn

)
σ (xqn ,Txrn ) +ψ

(
Txqn

)
σ (xrn ,Txqn )

– ϕ

(
σ (xqn ,Txqn ),σ (xrn ,Txrn ),



[
σ (xqn ,Txrn ) + σ (xrn ,Txqn )

])

≤ 


[
σ (xqn ,xqn+) + σ (xrn ,xrn+) + σ (xqn ,xrn+) + σ (xrn ,xqn+)

]

– ϕ

(
σ (xqn ,xqn+),σ (xrn ,xrn+),



[
σ (xqn ,xrn+) + σ (xrn ,xqn+)

])
.

Now, by taking limit as n→ ∞ in the above inequality, we derive that

ε ≤ 

[ +  + ε + ε] – ϕ(, , ε) ≤ 


ε,
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which is a contradiction. Hence, condition (K) holds. We are ready to show that the se-
quence {xn} is Cauchy. Fix ε > . By the claim, we find n ∈ N such that if r,q ≥ n with
r – q ≡ (m),

σ (xr,xq) ≤ ε


. ()

Since limn→∞ σ (xn,xn+) = , we also find n ∈N such that

σ (xn,xn+) ≤ ε

m
()

for any n≥ n. Suppose that r, s ≥ max{n,n} and s > r. Then there exists k ∈ {, , . . . ,m}
such that s – r ≡ k(m). Therefore, s – r + ϕ ≡ (m) for ϕ = m – k + . So, we have, for
j ∈ {, . . . ,m}, s + j – r ≡ (m),

σ (xr,xs) ≤ σ (xr,xs+j) + σ (xs+j,xs+j–) + · · · + σ (xs+,xs).

By () and () and from the last inequality, we get

σ (xr,xs) ≤ ε


+ j× ε

m
≤ ε


+m× ε

m
= ε.

This proves that {xn} is a σ -Cauchy sequence.
Since Y is σ -closed in (X,σ ), then (Y ,σ ) is also complete, there exists z ∈ Y =

⋃m
i=Ai

such that limn→∞ xn = z in (Y ,p); equivalently

σ (z, z) = lim
n→∞σ (z,xn) = lim

n,m→∞σ (xn,xm) = . ()

In what follows, we prove that x is a fixed point of T . In fact, since limn→∞ xn = z and,
as Y =

⋃m
i=Ai is a cyclic representation of Y with respect to T , the sequence (xn) has

infinite terms in each Ai for i ∈ {, , . . . ,m}. Suppose that x ∈ Ai, Tx ∈ Ai+, and we take a
subsequence xnk of (xn) with xnk ∈ Ai– (the existence of this subsequence is guaranteed
by the above-mentioned comment). By using the contractive condition, we can obtain

σ (xnk+ ,Tx) = σ (Txnk ,Tx)

≤ ψ(xnk )σ (xnk ,Txnk ) +ψ(Txnk )σ (x,Tx)

+ψ
(
Txnk

)
σ (xnk ,Tx) +ψ

(
Txnk

)
σ (x,Txnk )

– ϕ

(
σ (xnk ,Txnk ),σ (x,Tx),



[
σ (xnk ,Tx) + σ (x,Txnk )

])

≤ 


[
σ (xnk ,xnk+) + σ (x,Tx) + σ (xnk ,Tx) + σ (x,xnk+)

]

– ϕ

(
σ (xnk ,xnk+),σ (x,Tx),



[
σ (xnk ,Tx) + σ (x,xnk+)

])
.

Passing to the limit as n→ ∞ and using xnk → x, lower semi-continuity of ϕ, we have

σ (x,Tx)≤ 

σ (x,Tx) – ϕ

(
,σ (x,Tx),



σ (x,Tx)

)
≤ 


σ (x,Tx).
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So, σ (x,Tx) =  and, therefore, x is a fixed point of T . Finally, to prove the uniqueness
of the fixed point, suppose that y, z ∈ X are fixed points of T . The cyclic character of T
and the fact that y, z ∈ X are fixed points of T imply that y, z ∈ ⋂m

i=Ai. Also, suppose that
ψ(y) ≤ 

 . By using the contractive condition, we derive that

σ (y, z) = σ (Ty,Tx)

≤ ψ(y)σ (y,Ty) +ψ(Ty)σ (z,Tz) +ψ
(
Ty

)
σ (y,Tz) +ψ

(
Ty

)
σ (z,Ty)

– ϕ

(
σ (y,Ty),σ (z,Tz),



[
σ (y,Tz) + σ (z,Ty)

])
.

Then

σ (y, z) ≤ 


[
σ (y, z) + σ (y, y)

]
– ϕ

(
,,



[
σ (y, z) + σ (z, y)

])

≤ 


[
σ (y, z) + σ (y, z)

]
– ϕ

(
,,



[
σ (y, z) + σ (z, y)

])

=


σ (y, z) – ϕ

(
,,



[
σ (y, z) + σ (z, y)

]) ≤ 

σ (y, z).

This gives us σ (y, z) = , that is, y = z. This finishes the proof. �

Corollary . Let (X,σ ) be a complete metric-like space, m ∈ N, let A,A, . . . ,Am be
nonempty σ -closed subsets of X and Y =

⋃m
i=Ai. Suppose that T : Y → Y is an operator

such that
(i) Y =

⋃m
i=Ai is a cyclic representation of X with respect to T ;

(ii) there exists β ∈ [,  ) such that

σ (Tx,Ty)≤ β
[
σ (x,Tx) + σ (y,Ty) + σ (x,Ty) + σ (y,Tx)

]
()

for any x ∈ Ai, y ∈ Ai+, i = , , . . . ,m, where Am+ = A. Then T has a fixed point z ∈⋂n
i=Ai.

Proof Let ψ(t) = 
 and β ∈ [,  ). Here, it suffices to take the function ϕ : [, +∞)  →

[, +∞) defined by ϕ(a,b, c, e) = (  –β)(a+b+c+e). Obviously, ϕ satisfies that ϕ(a,b, c, e) =
 if and only if a = b = c = e = , and ϕ(x, y, z, t) = (  – β)(x + y + z + t) = ϕ(x + y + z + t, ).
Then we apply Theorem . to finish the proof. �

Example . Let X = R with the metric-like σ (x, y) = max{|x|, |y|} for all x, y ∈ X. Sup-
pose A = [–, ] and A = [, ] and Y =

⋃
i=Ai. Define T : Y → Y by

Tx =

⎧⎨
⎩
– 

x if x ∈ [–, ],

– 
x if x ∈ [, ].

It is clear that
⋃

i=Ai is a cyclic representation of Y with respect to T .
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Let x ∈ A = [–, ] and y ∈ A = [, ]. Then

σ (Tx,Ty) = max

{∣∣∣∣– 


x
∣∣∣∣,

∣∣∣∣– 


y
∣∣∣∣
}
=max

{
–




x,



y
}

≤ max

{
–x


,
y


}

=



max{–x, y} = 


σ (x, y),

and so

σ (Tx,Ty)≤ 


[
σ (x,Tx) + σ (y,Ty) + σ (x,Ty) + σ (y,Tx)

]
.

Hence, the conditions of Corollary . (Theorem .) hold and T has a fixed point in
A ∩A. Here, x =  is a fixed point of T .

If in Theorem . we take Ai = X for all  ≤ i≤ m, then we deduce the following theo-
rem.

Theorem . Let (X,σ ) be a complete metric-like space and let T : X → X be a sub-ψ-
admissible mapping such that

σ (Tx,Ty) ≤ ψ(x)σ (x,Tx) +ψ(Tx)σ (y,Ty) +ψ
(
Tx

)
σ (x,Ty) +ψ

(
Tx

)
σ (y,Tx)

– ϕ

(
σ (x,Tx),σ (x,Ty),



[
σ (x,Ty) + σ (y,Tx)

])

for any x, y ∈ X, where ψ ∈ � and ϕ ∈ �. Then T has a unique fixed point in X.

Corollary . Let (X,σ ) be a complete metric-like space and let T : X → X be a sub-ψ-
admissible mapping such that

σ (Tx,Ty)≤ β
[
σ (x,Tx) + σ (y,Ty) + σ (x,Ty) + σ (y,Tx)

]

for any x, y ∈ X, where β ∈ [,  ). Then T has a unique fixed point in X.

Example . Let X = R+ with the metric-like σ (x, y) = max{x, y} for all x, y ∈ X. Let T :
X → X be defined by

Tx =

⎧⎨
⎩


 (x

 + x) if  ≤ x < ,

x

 if x ≥ .

Proof To show the existence and uniqueness point ofT , we investigate the following cases:
• Let  ≤ x, y < . Then we get

σ (Tx,Ty) =max

{



(
x + x

)
,



(
y + y

)} ≤ 

max{x, y} = 


σ (x, y).

• Let x, y≥ . So we have

σ (Tx,Ty) =



max
{
x, y

} ≤ 


max{x, y} ≤ 

max{x, y} = 


σ (x, y).
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• Let  ≤ x <  and y≥ . Then we obtain

σ (Tx,Ty) =max

{



(
x + x

)
,



y
}

≤ max

{


x,




y
}

≤ 

max{x, y} = 


σ (x, y),

and hence

σ (Tx,Ty)≤ 

[
σ (x,Tx) + σ (y,Ty) + σ (x,Ty) + σ (y,Tx)

]
.

Then all the conditions ofCorollary . (Theorem.) are satisfied. Thus,T has a unique
fixed point X. Indeed,  is the unique fixed point of T . �

Corollary . Let (X,σ ) be a complete metric-like space, m ∈ N, let A,A, . . . ,Am be
nonempty σ -closed subsets of X and Y =

⋃m
i=Ai. Suppose that T : Y → Y is an operator

such that
(i) Y =

⋃m
i=Ai is a cyclic representation of X with respect to T ;

(ii) there exists β ∈ [,  ) such that

∫ σ (Tx,Ty)


ρ(t)dt ≤ β

∫ σ (x,Tx)+σ (y,Ty)+σ (x,Ty)+σ (y,Tx)


ρ(t)dt

for any x ∈ Ai, y ∈ Ai+, i = , , . . . ,m, where Am+ = A, and ρ : [,∞) → [,∞) is a
Lebesgue-integrablemapping satisfying

∫ ε

 ρ(t)dt for ε > .ThenT has a unique fixed point
z ∈ ⋂m

i=Ai.

If in Corollary ., we take Ai = X for i = , , . . . ,m, we obtain the following result.

Corollary . Let (X,σ ) be a complete metric-like space and let T : X → X be a mapping
such that for any x, y ∈ X,

∫ σ (Tx,Ty)


ρ(t)dt ≤ β

∫ σ (x,Tx)+σ (y,Ty)+σ (x,Ty)+σ (y,Tx)


ρ(t)dt,

where ρ : [,∞) → [,∞) is a Lebesgue-integrable mapping satisfying
∫ ε

 ρ(t)dt for ε > 
and the constant β ∈ [,  ). Then T has a unique fixed point.
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26. Petruşel, G: Cyclic representations and periodic points. Stud. Univ. Babeş-Bolyai, Math. 50, 107-112 (2005)
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