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Abstract

Doping an impure element with a larger atomic volume into crystalline structure of buck crystals is normally
blocked because the rigid crystalline structure could not tolerate a larger distortion. However, this difficulty may be
weakened for nanocrystalline structures. Diamonds, as well as many semiconductors, have a difficulty in effective
doping. Theoretical calculations carried out by DFT indicate that vanadium (V) is a dopant element for the n-type
diamond semiconductor, and their several donor state levels are distributed between the conduction band and
middle bandgap position in the V-doped band structure of diamond. Experimental investigation of doping
vanadium into nanocrystalline diamond films (NDFs) was first attempted by hot filament chemical vapor deposition
technique. Acetone/H2 gas mixtures and vanadium oxytripropoxide (VO(OCH2CH2CH3)3) solutions of acetone with V
and C elemental ratios of 1:5,000, 1:2,000, and 1:1,000 were used as carbon and vanadium sources, respectively. The
resistivity of the V-doped NDFs decreased two orders with the increasing V/C ratios.
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Background
Doping an impure element with a larger atomic volume
into crystalline structure of buck crystals is normally
blocked because the rigid structure could not tolerate a
larger distortion. However, this difficulty may be over-
come to some extent for nanocrystalline materials due
to its weakened structure with large a surface-to-volume
ratio. As a typical example, carbon nanotubes have been
doped with silicon, sulfur [1], etc. Diamond is a super-
functional material with many promising properties,
which has been utilized in many commercial applica-
tions such as electrochemical electrodes, heterojunction,
photodiode, radiation detectors, and high-frequency
SAW devices [2-5]. Diamond films have high electrical
resistivity when undoped and could be effectively p-
type doped by boron [6,7]. However, the realization of
n-type doping of diamond films, based on device appli-
cation, has met a serious obstacle of tough impurity
doping problem [8]. The ideal n-type diamond films for
electronic applications are hard to be acquired in
experiments with the doping of Li, Na, N, P, S, As, Sb,
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etc [9-12]. Finding a well-established substitutional
donor for n-type diamond films is a worldwide issue,
owing to the extremely small lattice space between C-C
atoms within the diamond structure. Previous studies
on most impurity elements which have been reported
are in the main group, and the subgroup element is
rarely seen in papers because of its complicated atom
structure with larger atomic sizes and its acquisition
difficulty.
The research purpose of this paper is to perform first

principle calculations to study the electronic properties
of V-doped diamond, and attempt to dope vanadium
into nanocrystalline diamond films (NDFs), and to test if
the V element can be used as dopant species which
could be carried through bubbling in acetone by hydro-
gen during chemical vapor deposition process.
Methods
First principle calculations were performed to study the
electronic properties of V-doped diamond with a dop-
ing concentration of 0.69%. The calculations are carried
out by DFT implemented in the Dmol3 package
[13,14]. One V atom is used to substitute a carbon in
the diamond supercell with 144 atoms. The structure
considered is fully relaxed to an accuracy where the
n Open Access article distributed under the terms of the Creative Commons
g/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
roperly cited.

https://core.ac.uk/display/192827692?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:yfzhang@sjtu.edu.cn
http://creativecommons.org/licenses/by/2.0


Table 1 Changes of the atomic structure of V-doped
diamond

Type of diamond film Bond length (Å) Bond angle (degrees)

Undoped 1.544, 1.544, and 1.544 109.5, 109.5, and 109.5

V-doped 1.804, 1.804, and 1.804 110.2, 110.2, and 110.2

Figure 2 Schematic of a hot filament chemical vapor
deposition reactor.
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self-consistent field procedure was done with a conver-
gence criterion of 10−5 a.u. The all-electron Kohn-
Sham wave functions were expanded in the local
atomic orbital (double numerical polarization) basis set
and generalized gradient approximation of Perdew-
Burke-Ernzerhof for the exchange-correlation potential
[15]. The Monkhorst-Pack scheme is used in the Bril-
louin zone with 3 × 3 × 3 for all the geometry
optimization and total energies' calculations [16]. After
structural relaxation, the three adjacent V-C bonds
were extended from about 1.544 to 1.804 Å, respect-
ively, owing to the large atomic radius of vanadium. In
addition, three bond angles of C-V-C changed from
109.5° to 110.2°, respectively. The detailed changes of
the atomic structure are collected in Table 1. They in-
crease approximately 16.8% for bond length and 0.6%
for bond angles as compared with those of the unre-
laxed structure. The structure of V-doped diamond has
a strong distortion which may suggest the difficulty of
doping V atom into the diamond. The band structure
of V-doped diamond is shown in Figure 1. It is clear
that there are several n-type local states distributed be-
tween the conduction band and the middle bandgap
position in the V-doped band structure of diamond.
Such local states (impurity level) originate from the
contribution of spin-up and spin-down electrons which
make the band structure complex. Furthermore, the
presence of the impurity level may make a complex
electron transition from valence band to conduction
band under an external electronic field which is favor-
able for the amelioration of the electrical conductivity
of diamond. From the results of theoretical calculations,
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Figure 1 The band structures of undoped and V-doped diamonds.
it is encouraged to ameliorate the electrical conductivity
of diamond by V doping.
Experimental test of doping vanadium into NDFs was

investigated by hot filament chemical vapor deposition
(HFCVD) technique. The HFCVD NDFs were deposited
on (100)-oriented silicon substrate by a conventional
HFCVD system that used tantalum wire as a filament.
Acetone and hydrogen (C/H= 1.5%) mixture gases (total
flow 250 sccm) were used as carbon source gases and
were maintained at a process pressure of 4 kPa in the
chamber which was vacuumized prior to the experiment.
Silicon substrates were scratched manually with dia-
mond powder (average grain size of approximately 0.5 to
1.0 μm) for 20 min in order to enhance the nucleation
density, then cleaned ultrasonically in acetone and deio-
nized water, and finally dried in an oven at 80°C. The
-4

-2

0

2

4

E
(e

V
)

 spin up
 spin down

G F Q Z G

V-doped 0.69%



Zhang et al. Nanoscale Research Letters 2012, 7:441 Page 3 of 5
http://www.nanoscalereslett.com/content/7/1/441
substrate temperature was stabilized at 850°C by main-
taining the distance between the Ta filament and the
substrate with 7 mm. The deposition time was 3 h, with
a diamond deposition rate of about 1 μm/h. Figure 2
shows the schematic of the HFCVD reactor.
For doping experiments, vanadyl acetylacetonate (VO

(C5H7O2)2) powder, which was dissolved in acetone, was
used at first as the source of vanadium for dissolubility
and less toxicity. However, we found that during the ex-
periment, the color of the liquid mixture changed from
light green to dark green, and we measured the weight
of the residual vanadyl acetylacetonate only to find that
it was almost the same as that of the powder prior to de-
position. It clearly means that little powder was carried
out into the chamber. Based on the above consideration,
the vanadium source selected was vanadium oxytriprop-
oxide (VO(OCH2CH2CH3)3), which was in a liquid state
at room temperature and was diffluent in acetone. How-
ever, we also found that when the V/C ratio was 1:1,000,
it had already been saturated, so this ratio was the max-
imum in the experiment. At this time, the color of the li-
quid mixture was clarified as red-brown, and it never
Figure 3 SEM images of NDF samples for different V/C ratios. (a) Und
changed throughout the process, which could confirm
that V was successfully being introduced into the cham-
ber in sufficient amounts.
Different dilutions were used to vary the V/C ratio in the

reactor gas phase, which was 0 (sample 1, undoped),
1:5,000 (sample 2), 1:2,000 (sample 3), 1:1,000 (sample 4).
All these samples were grown on 2×2-cm2 silicon sub-
strates, and the depositional conditions were also the same.
The deposited NDF morphology had been character-

ized using field emission scanning electron microscopy
(ULTRA 55, Carl Zeiss AG, Oberkochen, Germany).
Laser Raman spectroscopy (325-nm excitation) was used
to evaluate the average sizes of nanocrystals in NDFs.
Resistivity measurements were carried out by an Agilent
voltmeter (Agilent Technologies, Inc., Santa Clara, CA,
USA). X-ray fluorescence measurements were to probe
the V concentration in the sample films.

Results and discussion
Scanning electron microscopy (SEM) micrographs of the
films deposited under the mentioned conditions are
shown in Figure 3a,b,c,d, which corresponds to samples
oped, (b) 1:5,000, (c) 1:2,000, and (d) 1:1,000.
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Figure 4 Raman spectra of NDF samples for different V/C
ratios. (a) Undoped, (b) 1:5,000, (c) 1:2,000, and (d) 1:1,000.
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1, 2, 3, and 4, respectively. A nanocrystalline morphology
is intuitively observed. Morphology difference at the
NDF sample surface with different vanadium doping
concentrations cannot be obviously distinguished.
Raman scattering spectra features pertaining to differ-

ent carbon phases with the effects of different V/C
ratios are observed in Figure 4. The characteristic
Raman peak of nanocrystalline diamond films appears
around 1,331.61 cm−1 with full width at half maximum
(FWHM), which is scattered from the diamond phase.
For samples 1, 2, 3, and 4, the FWHM are 6.2, 8.1, 9.2,
and 11.7 cm−1, respectively. By estimation of crystal size
from that Raman scattering spectra [17], the grain sizes
of the nanocrystalline diamond films are 11.2, 8.6, 7.6,
and 6.0 nm. This result indicated that the nanocrystal-
line structures are not changed significantly due to the
increasing V/C ratio from 0 to 1:1,000 in the reactor
gas phase.
The resistivity values of the NDF samples correspond

to the different V/C ratios in the gas phase of HFCVD
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Figure 5 Resistivity of NDF samples for different V/C ratios. (a)
Undoped, (b) 1:5,000, (c) 1:2,000, and (d) 1:1,000.
which were measured at room temperature, as seen in
Figure 5. All measurements were carried out between
two contacts of parallel Ag electrodes with the same
dimensions (0.5 mm). It can be seen that about a two-
order decrease of magnitude of resistivity was induced
due to the increasing V/C ratio from 0 to 1:1,000. This
value is large enough for judging that it is caused by the
effect of doping V. Further analysis by X-ray fluores-
cence spectra showed that the doping concentration of
V are 0, 17, 56, 98 ppm which correspond to samples 1,
2, 3, and 4, respectively. These measurement results have
supposed the realistic doping of V into the nanocrystal-
line diamond structure, but the doping concentration is
suppressed to a limited extent.

Conclusions
Theoretical calculation reveals that V is a dopant
element for the n-type diamond semiconductor, but
strong structural distortion is a significant difficulty for
doping V into the diamond lattice. Experiments have
demonstrated a way to doping V into NDFs in
HFCVD conditions. The results from experiments indi-
cated that doping an impure element with a larger
atomic volume into the nanocrystalline-structured
materials may be a possible way to synthesize normally
difficult-to-dope semiconductors and that nanocrystal-
line structures could tolerate impurity induced by lar-
ger distortions.
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