
RESEARCH Open Access

A variable-parameter normalized mixed-norm
(VPNMN) adaptive algorithm
Azzedine Zerguine

Abstract

Since both the least mean-square (LMS) and least mean-fourth (LMF) algorithms suffer individually from the
problem of eigenvalue spread, so will the mixed-norm LMS-LMF algorithm. Therefore, to overcome this problem
for the mixed-norm LMS-LMF, we are adopting here the same technique of normalization (normalizing with the
power of the input) that was successfully used with the LMS and LMF separately. Consequently a new normalized
variable-parameter mixed-norm (VPNMN) adaptive algorithm is proposed in this study. This algorithm is derived by
exploiting a time-varying mixing parameter in the traditional mixed-norm LMS-LMF weight update equation. The
time-varying mixing parameter is adjusted according to a well-known technique used in the adaptation of the
step-size parameter of the LMS algorithm. In order to study the theoretical aspects of the proposed VPNMN
adaptive algorithm, our study also addresses its convergence analysis, and assesses its performance using the
concept of energy conservation. Extensive simulation results corroborate our theoretical findings and show that a
substantial improvement, in both convergence time and steady-state error, can be obtained with the proposed
algorithm. Finally, the VPNMN algorithm proved its usefulness in a noise cancellation application where it showed
its superiority over the normalized least-mean square algorithm.

Keywords: LMS algorithm, NLMS algorithm, LMF algorithm, mixed-norm algorithms, normalized mixed-norm
algorithms

1 Introduction
Due to its simplicity, the least mean-square (LMS) [1,2]
algorithm is the most widely used algorithm for adaptive
filters in many applications. The least mean-fourth
(LMF) [3] algorithm was also proposed later as a special
case of the more general family of steepest descent algo-
rithms [4] with 2k error norms, k being a positive
integer.
But for both of these algorithms, the convergence

behavior depends on the condition number, i.e., on the
ratio of the maximum to the minimum eigenvalues of
the input signal autocorrelation matrix, R = E[xnxTn ]
where xn is the input signal. This is clearly seen from
their respective time constants [1,3]

τiLMS =
1

μλi
, i = 0, 1, . . . ,N − 1, (1)

and

τiLMF =
1

6μσ 2
η λi

, i = 0, 1, . . . ,N − 1, (2)

where σ 2
η is the noise power, li is the ith eigenvalue of

the autocorrelation matrix of the input signal, µ is the
step size used in the adaptation scheme and N is the
number of coefficients in the adaptive filter. As seen

from (1) and (2), the ratio of

(
τmax

τmin

)
is constant for

both algorithms and is given by the eigenvalue spread

(i.e., condition number),
λmax

λmin
i.e.,

τmax

τmin
=

λmax

λmin
. (3)

To remove the dependency of the convergence of the
LMS algorithm on the condition number, the normal-
ized least-mean square (NLMS) [5] was introduced. As
reported in [5], a great improvement in convergence is
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obtained through the use of the NLMS algorithm over
that of the LMS algorithm at the expense of a larger
steady-state error. Similar results were obtained for the
case of the normalized LMF (NLMF) algorithm [6-8].
A mixed-norm algorithm [9-11], combining both the

LMS and the LMF algorithms, will suffer as well from
the problem of the eigenvalue spread dependency. Since
both of these algorithms suffer individually from this
problem, to circumvent this problem for the mixed-
norm LMS-LMF, we are adopting here the same techni-
que of normalization that was successfully used with the
LMS and LMF separately.
It is well known that fast convergence and lower steady-

state error are two conflicting parameters in general adap-
tive filtering. When compared to the LMS algorithm, the
NLMS algorithm results in a faster convergence but only
at the expense of a higher steady-state error [12,13].
A promising solution to this conflict is a time-varying nor-
malized mixed-norm LMS-LMF algorithm. In this mixed-
norm algorithm and during the transient state, the NLMS
algorithm is used to speed up the algorithm’s convergence.
However when steady-state is reached, the algorithm auto-
matically switches from the NLMS to the NLMF [7],
thanks to a built-in “gear shifting” property, to secure a
lower steady-state error.
In this work, the performance of a variable-parameter

normalized mixed-norm (VPNMN) LMS-LMF algorithm
is evaluated. It will be shown that a better performance
in both convergence and steady-state error will be
achieved by the VPNMN algorithm than either the
NLMS or the NLMF algorithm.
The rest of the article is organized as follows. Section 2

deals with a more explicit development of the proposed
algorithm, and Section 3 treats its convergence analysis.
The steady-state analysis of the proposed algorithm is
detailed in Section 4, while its tracking analysis is given
in Section 5. Performance evaluation of the resulting
algorithm is carried out in Section 6. Finally, the conclu-
sion section summarizes this work.

2 Algorithm development
The mixed-norm LMS-LMF algorithm is based on the
minimization of the following cost function [9,10]:

Jn = αE[e2n] + (1 − α)E[e4n], (4)

where a is a positive mixing parameter in the interval
[0, 1] and the error en is defined as

en = dn + ηn − xTnwn, (5)

where dn is the desired value, wn is the filter coeffi-
cient of the adaptive filter, xn is the input signal and hn

is the additive noise.

A major drawback of this algorithm is, however, the
choice of the mixing parameter that is hard to fix a
priori for an unknown system. In [14], a self-adapting
LMS-LMF algorithm with a time-varying weighting fac-
tor was proposed. This time-variation of the weighting
factor was achieved by allowing for a variable mixing
factor that is updated every iteration using the modified
variable step-size (MVSS) algorithm proposed in [15].
The variable weight mixed-norm LMS-LMF algorithm
was defined to minimize the following performance
measure [14]:

Jn = αnE[e2n] + (1 − αn)E[e4n], (6)

where an, chosen in [0, 1] such that the unimodal char-
acter of the above cost is preserved, is a time-varying
parameter updated according to [15]

αn+1 = δαn + γ p2n, (7)

and

pn = βpn−1 + (1 − β)enen−1. (8)

The parameters δ and b, both confined to the interval
[0,1], are exponential weighting parameters that govern
the averaging time constant, i.e., the quality of estima-
tion of the algorithm, and g >0. Note that the algorithm
defined by (4) is restored when δ = 1 and g = 0, which
forces an to have a fixed value.
Based on this motivation, the weight mixed-norm

LMS-LMF algorithm for recursively adjusting the coeffi-
cients of the system is expressed in the following form:

wn+1 = wn + μ[αnen + 2(1 − αn)e3n]xn, (9)

where μ is the step size.
As mentioned earlier and because of its reliance on

the LMS and the LMF, the algorithm defined by (9) will
be affected by the eigenvalue spread of the autocorrela-
tion matrix of the input signal. To overcome this depen-
dency, a VPNMN adaptive algorithm is introduced and
its weight update recursion is given by the following
expression:

wn+1 = wn + μ[αnen + 2(1 − αn)e3n]
xn

‖ xn‖2 , (10)

where ║xn║2 is the Euclidean norm of the input signal
xn. In the case of zero input, the ε-VPNMN algorithm
defined as follows:

wn+1 = wn + μ[αnen + 2(1 − αn)e3n]
xn

ε+ ‖ xn‖2 , (11)

must be used for regularization purposes.
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3 Convergence analysis of the VPNMN algorithm
In this section, the convergence analysis of the proposed
VPNMN algorithm is carried out. Both the mean and
the mean-square behaviors of the weight error vector
are presented in the ensuing analysis.

3.1 Mean behavior
In the ensuing analysis, the following assumptions are
used in the derivations of the convergence in the mean
for the normalized mixed-norm LMS-LMF algorithm.
These are quite similar to what is usually assumed in lit-
erature [2-4,16] and which can also be justified in sev-
eral practical instances
A.1 The noise sequence {hn} is statistically indepen-

dent of the input signal sequence {xn} and both
sequences have zero mean.
A.2 The weight error vector (vn), to be defined later, is

independent of the input xn.
A.3 The mixing parameter is independent of both the

input signal and the error.
Examining the mean behavior of (10) under the above

assumptions, sufficient conditions for convergence of
the proposed algorithm in-the-mean can be derived and
are stated as follows.
Proposition 1For the algorithm defined by (10) to con-

verge in-the-mean, a sufficient condition is that μ be cho-
sen in the following range:

0 < μ <
2

ᾱn + 3(1 − ᾱn)(σ 2
η + C) , (12)

where σ 2
η is the noise power, ᾱn = E[αn]is the mean of

the mixing parameter, and Cis is the Cramer-Rao bound
associated with the problem of estimating the random
quantity xTnwoptby using xTnwn.
Proof: The mean convergence of the proposed algo-

rithm is now studied by taking the expectation of the
weight error vector, vn = wn - wopt. In this regard, the
error en can be set up in the following way:

en = ηn − xTnvn, (13)

and hence (10) becomes

vn+1 = vn + μ[αnen + 2(1 − αn)e3n]
xn

‖ xn‖2 . (14)

Consequently, taking the expectation on both sides of
(14), under A.1-A.3, the mean weight-error vector of the
proposed algorithm evolves as

E[vn+1] = E[vn] + μ

{
ᾱnE

[
en

xn
‖ xn‖2

]
+ (1 − ᾱn)E

[
e3n

xn
‖ xn‖2

]}
. (15)

Now, considering the second expectation in the above
equation, This will be especially true when the filter is

long enough. Consequently, the independence assump-
tion can be invoked to obtain the following:

E
[
en

xn
‖ xn‖2

]
≈ E[enxn]

tr(R)
. (16)

To solve the expectation E[enxn] we use the technique
of [17], and thus it results in

E[enxn] = −tr(R)E[vn]. (17)

Now, considering the second expectation in the above
equation, This will be especially true when the filter is
long enough. Consequently, the independence assump-
tion can be invoked to obtain the following:

E
[
e3n

xn
‖ xn‖2

]
≈ E[e3nxn]

tr(R)
. (18)

To solve the expectation E
[
e3nxn

]
we use the technique

of [17,18], which does not employ any linearization of e3n
As a result, E[e3nxn] is found to be

E[e3nxn] = −3(σ 2
η + ζn)RE[vn]. (19)

Ultimately, (15) can be set up in the following form:

E[vn+1] ≈
{
I − μ

[
ᾱn + 3(1 − ᾱn)

(σ 2
η + ζn)

tr(R)
R

]}
E[vn].(20)

If C ≤ ζn is the Cramer-Rao bound associated with the
problem of estimating the random quantity xTnwopt by
using xTnwn, then after taking into account the fact that
the eigenvalues of R are all real and positive, lmax being
the largest eigenvalue of R and in general lmax<tr(R)
[19], it follows that a sufficient condition for conver-
gence of the proposed algorithm is that the step-size
parameter μ satisfies (12). ▪
Two extreme scenarios can be considered here for the

value of the mixing parameter an

(1) Scenario 1: When an = 0, the VPNMN algorithm
reduces to the NLMF algorithm [6], and it can be
shown that (12) becomes

0 < μ <
2

3(σ 2
η + C) . (21)

(2) Scenario 2: When an = 1, both the NLMS algo-
rithm and its step size range, that is 0 < μ < 2, are
recovered.
Remarks:
(1) It can be seen from (10) that the VPNMN algo-

rithm can be viewed as a variable step-size LMS-LMF
algorithm with time varying step size.
(2) The error is usually large during the initial adaptation

and gradually decreases toward a minimum. Therefore, the
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signal power, ║xn║2, will act as a threshold to avoid taking
large step sizes when the error converges to a minimum in
the recursive updating equation.
(3) The bound for the step-size (μ) of the proposed

algorithm that guarantees convergence of the mean
weight-vector, given by (12), shows that the mean-
weight-vector stability depends on the Cramer-Rao
bound. Therefore, the convergence of the mean-weight-
vector of the proposed algorithm depends on its mean-
square stability. A similar fact was observed in [18] for
the LMF algorithm.

3.2 Mean square behavior
In this section the performance of the VPNMN algorithm
in the mean-square sense is analyzed. Here, we have used
a unified approach to the transient analysis of adaptive
filters with error nonlinearities. This approach does not
restrict the regression data to be Gaussian and avoids the
need for explicit recursions for the covariance matrix of
the weight-error vector. This approach assumes that the
adaptive filter is long enough to justify the following
assumptions which are realistic for longer adaptive filters:
A.4 The residual or a priori error ean, to be defined

later, can be assumed to be Gaussian.
A.5 The norm of the input regressor (║xn║2) can be

assumed to be uncorrelated with f2(en) (f(en) is defined
in (23)).
The framework is based on the concept of energy con-

servation relation which was first noted in [20] and in
general the adaptation scheme defined in (14) can be
written in the following form:

vn+1 = vn + μxnf (en), (22)

where f(en) denotes a general scalar function of the
output estimation error en and in our case it is given by

f (en) =
αnen + 2(1 − αn)e3n

‖ xn‖2 . (23)

We are interested in studying the time-evolution and
the steady-state values of E[|e2an|] and E[║vn║2] which
represent the mean-square-error and the mean-square-
deviation performances of the filter, respectively,
whereas their time-evolution relate to the learning or
the transient behavior of the filter.
Then, for some symmetric positive definite weighting

matrix A to be specified later, the weighted a priori and
a posteriori estimation errors are, respectively, defined
as [21]

eAan = xTnAvn, and eApn = xTnAvn+1. (24)

For the special case when A = I, the weighted a priori
and a posteriori estimation errors defined above are

reduced to standard a priori and a posteriori estimation
errors, respectively, that is,

ean = eIan = xTnvn, and epn = eIpn = xTnvn+1. (25)

It can be shown that the estimation error, en, and the
a priori error, ean, are related via en= ean + hn. Also,
using (10) and (24), it can be shown that

eApn = eAan− ‖ xn ‖2A μf (en), (26)

where the notation ‖ xn ‖2A denotes the weighted
squared Euclidean norm ‖ xn ‖2A= xTnAxn.
The performance measure in the analysis is the excess

mean-square-error (EMSE), denoted by ζn, and is
defined as follows:

ζn = E[|en|2] − σ 2
η . (27)

Since ean = xTnvn, the EMSE can also be written as fol-
lows:

ζn = E[|ean|2]
= E[‖ vn ‖2R |.

(28)

Next, the fundamental weighted-energy conservation
relation given in [21] is presented to develop the frame-
work for the transient analysis of the proposed algo-
rithm. Thus, by substituting (26) in (22), the following
relation can be obtained:

vn+1 = vn − xn
‖ xn ‖2A

[eAan − eApn]. (29)

Ultimately, the fundamental weighted-energy conser-
vation relation can be shown to be

‖ vn+1 ‖2A +
1

‖ xn ‖2A
|eAan|2 =‖ vn ‖2A +

1

‖ xn ‖2A
|eApn|2. (30)

This relation shows how the weighted energies of the
error quantities evolve in time. It has been shown that
different choices of A allow us to evaluate different per-
formance measures of an adaptive filter.
3.2.1 Time evolution of the weighted variance E[‖ vn ‖2A]
In this section, the time evolution of the weighted var-
iance E[‖ vn ‖2A] is derived for the proposed algorithm
using the fundamental weighted-energy conservation
relation (30). Substituting the expression for a posteriori
error from (26) in (30) and taking expectation on both
sides to obtain the following relation:

E[‖ vn+1 ‖2A] = E[‖ vn ‖2A] − 2μE[eAanf (en)] + μ2E[‖ xn ‖2A f 2(en)]. (31)

Now, evaluating the two expectations in second and
third terms on the right hand side of the above equa-
tion, that is, E[eAanf (en)] and E[‖ xn ‖2A f 2(en)] The details
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for these two quantities are given next. First, we will use
the following assumption which was adopted in [21],
that is,
A.6 For any constant matrix A and for all n, ean and

eAan are jointly Gaussian.
This assumption is reasonable for longer filters using

the concept of central limit arguments [21]. Moreover, a
similar assumption was used in [22]. Hence, we can sim-
plify the expectation E[eAanen] using Price’s Theorem
[23,24] and assumptions A.4 and A.6 as follows:

E[eAanf (en)] = E[eAanf (en)]

= E[eAanean]
E[eanf (en)]

E[e2an]
.

(32)

Since eAan = xTnAvn and ean = xTn Ivn we can simplify the
expectation E[eAanean] as follows:

E[eAanean] = E[xTnAvnx
T
nIvn]

= E[‖ vn ‖2AxTnxnI]
= E[‖ vn ‖2AR].

(33)

Ultimately, (32) can be written as

E[eAanf (en)] = E[‖ vn ‖2AR]
E[eanf (en)]

E[eAan]
. (34)

The term
E[eanf (en)]

E[e2an]
for the case of proposed algo-

rithm, can be shown to be

E[eanf (en)]
E[e2an]

=
1
N

[
ᾱn + 6(1 − ᾱn)(ζn + σ 2

η )
]
,

� –Zn.

(35)

Second, to solve the expectation E[‖ xn ‖2A f 2(en)], we
will resort to the following assumption [21]:
A.7 The adaptive filter is long enough such that

‖ xn ‖2A and f2(en) are uncorrelated.
This assumption is found to be more realistic as the fil-

ter gets longer [21] and unweighted version of this
assumption was used in [22,25]. The assumption enable us
to split the expectation E[‖ xn ‖2A f 2(en)] as follows:

E[‖ xn ‖2A f 2(en)] = E[‖ xn ‖2A]E[f 2(en)], (36)

where E[f2(en)] can be shown to be (with α2
n = E[α2

n ])

E[f 2(en)] =
1
N2

[
α2
n(ζn + σ 2

η ) + 60(1 − 2ᾱn + α2
n)(ζn + σ 2

η )
3
+ 4(ᾱn − α2

n)(3ζ 2
n + 6ζnσ

2
η + 3σ 2

η )
]
,

� Fn.
(37)

Ultimately, we can rewrite (31) as follows:

E[‖vn+1‖2A] = E[‖vn‖2A] − 2μE[‖vn‖2AR]–Zn + μ2E[‖xn‖2A]Fn. (38)

The above equation shows the time evaluation or the
transient behavior of the weighted variance E[‖ vn ‖2A]
for any constant weight matrix A. Different performance
measures can be obtained by the proper choice of the
weight matrix A.
3.2.2 The EMSE and the MSD learning curves
The learning curves for the EMSE and MSD can be
obtained using the fact that E[e2an] = E[‖ vn ‖2R] while
MSD = E[‖ vn ‖2I ]. If we choose A = IR...RN-1, a set of
relations can be obtained from (38) which is given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E[‖vn+1‖2I ] = E[‖vn‖2I ] − 2μ–ZnE[‖vn‖2R] + μ2E[‖xn‖2I ]Fn,

E[‖vn+1‖2R] = E[‖vn‖2R] − 2μ–ZnE[‖vn‖2R2 ] + μ2E[‖xn‖2R]Fn,

...

E[‖vn+1‖2RN−1 ] = E[‖vn‖2RN−1 ] − 2μ–ZnE[‖vn‖2RN ] + μ2E[‖xn‖2RN−1 ]Fn.

(39)

Now, using Cayley-Hamilton theorem, we can write

RN = −p0I − p1R − · · · − pN−1RN−1, (40)

where

p(x) � det(xI − R) = p0 + p1x + · · · + pN−1x
N−1 + xN, (41)

is the characteristic polynomial of R. Consequently,
the following relation is obtained:

E[‖ vn+1 ‖2RN−1 ] = E[‖ vn ‖2RN−1 ] − 2μ(p0E[‖ vn ‖2I ] + p1E[‖ vn ‖2R] + · · ·
+ pN−1E[‖ vn+1 ‖2RN−1 ])–Zn + μ2E[‖ xn ‖2RN−1 ]Fn.

(42)

Ultimately, using (39) and (42), the transient behavior
of the proposed algorithm can be shown to be governed
by the following recursion:

Wn+1 = AnWn + μ2Y , (43)

where

Wn =
[
E[‖ vn‖2] E[‖ vn ‖2R] . . . E[‖ vn ‖2RN−1 ]

]T
, (44)

Y =
[
E[‖ xn‖2] E[‖ xn ‖2R] . . . E[‖ xn ‖2RN−1 ]

]TFn, (45)

and

An =

⎡
⎢⎢⎢⎢⎢⎣

1 −2μ–Zn 0 . . . 0 0
0 1 −2μ–Zn . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 1 −2μ–Zn

2μp0–Zn 2μp1–Zn 2μρ2–Zn . . . 2μpN−2–Zn 1 + 2μpN−1–Zn

⎤
⎥⎥⎥⎥⎥⎦ (46)

It can be noticed that the learning curves for the MSD
and the EMSE can be obtained from the first and sec-
ond elements of vector Wn, respectively.
3.2.3 Mean-square stability
Finally, in this section, the mean-square stability of the
proposed algorithm is investigated. Consequently, we
provide a nontrivial upper bound on µ for which E
[║vn║2 remains uniformly bounded for all n.
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Starting from (31) with A = I and using the Gaussian
behavior of ean, it can be shown that the proposed algo-
rithm will be mean-square stable provided that

E[‖ vn+1‖2] ≤ E[‖ vn+1‖2]
μE[‖ xn‖2f 2(en)] ≤ 2E[eanf (en)].

(47)

The above inequality, upon substituting the values of
the two expectations (E[eanf(en)] and E[║xn║2f2(en)]), will
lead us to get the following bound:

μ ≤ [ᾱn + 6(1 − ᾱn)(C + σ 2
η )]NC[

α2
n(C + σ 2

η ) + 60(1 − 2ᾱn + α2
n)(C + σ 2

η )
3 + 4(ᾱn − α2

n)(3C2 + 6Cσ 2
η + 3σ 2

η )
]
tr(R)

. (48)

4 Steady-state analysis of the VPNMN algorithm
The purpose of the steady state analysis of an adaptive
filter is to study the behavior of steady state EMSE.
Now, analyzing (31) for the limiting case when n ® ∞ .
Assuming that the weight error vector reaches a steady-
state mean square error value, i.e.,

lim
n→∞ E[‖ vn + 1 ‖2A] = lim

n→∞E[‖ vn ‖2A]. (49)

Consequently, for a unity weight matrix (A = I), (31)
reduces to the following:

lim
n→∞ E[e2an] =

μ

2
lim
n→∞ E[‖ xn‖2] limn→∞ Fn

limn→∞ –zn
. (50)

Now, using the definition of the EMSE given by (28),
its steady-state value denoted by ζ∞ is found to be

ζ∞ =
μ

2
limn→∞Fn

limn→∞–Zn
tr(R). (51)

The terms limn®∞Zn and limn®∞ℱn can be obtained
from (35) and (37), respectively.
Since, the EMSE is very close to zero at steady state,

therefore, the higher powers of ζ∞ can be ignored. Ulti-
mately, the steady-state EMSE of the proposed algo-
rithm can be shown to be

ζ∞ =
μ

[
α2∞σ 2

η + 60(1 − 2ᾱ∞ + σ 2∞)σ 6
η + 12(ᾱ∞ − α2∞)σ 2

η

]
tr(R)

2Nᾱ∞ + 12N(1 − ᾱ∞)σ 2
η − μ

[
α2∞ + 180(1 − 2ᾱ∞ + α2∞)σ 4

η + 24(ᾱ∞ − σ 2∞z)σ 2
η

]
tr(R)

. (52)

5 Tracking analysis of the VPNMN algorithm
Cyclic and random system nonstationarities are a common
impairment in communication systems and especially in
applications that involve channel estimation, channel
equalization, and inter-symbol-interference cancellation.
Random nonstationarity is present due to variations in
channel characteristics which is true in most of cases, par-
ticularly in the case of a mobile communication environ-
ment [26]. Cyclic system nonstationarities arise in
communication systems due to mismatches between the
transmitter and receiver carrier generator.

The ability of adaptive filtering algorithms to track
such system variations is not yet fully understood. In
this regard, Rupp [27] presented a first-order analysis of
the performance of the LMS algorithm in the presence
of the carrier frequency offset. In [21,25,28,29] a general
framework for the tracking analysis of adaptive algo-
rithms was developed. It can handle both cyclic as well
as random system nonstationarities simultaneously. This
framework, based on an energy conservation principle
[20], holds for all adaptive algorithms whose recursions
are of the form

wn+1 = wn + μx∗
nf (en). (53)

In the ensuing analysis, the tracking analysis of the
proposed algorithm is carried out in the presence of
both random and acyclic nonstationarities. It should be
noted here that in this case, unlike the convergence ana-
lysis which is a linear process, the tracking analysis is a
nonlinear one due to the presence of the term (ejΩn) in
(54). This therefore justifies our use of complex signals,
instead of real ones, in the (tracking) analysis.
A general system model is presented here which

includes both types of nonstationarities, that is random
and cyclic ones. To start, consider the noisy measure-
ment dn that arises in a model of the form:

dn = xHn w
o
ne

jn + ηn, (54)

where hn is the measurement noise and wo
n is the

unknown system to be tracked. The multiplicative term
ejΩn accounts for a possible frequency offset between
the transmitter and the receiver carriers in a digital
communication scenario. Furthermore it is assumed that
the unknown system vector wo

n is randomly changing
according to:

wo
n = wo + qn, (55)

where wo is a fixed vector, and qn is assumed to be a
zero-mean stationary random vector process with a
positive definite autocorrelation matrix Qn = E[qnq

H
n ]

Moreover, it is also assumed that the sequence {qn} is
mutually independent of the sequences {xn} and {hn}.
Thus, from the generalized system model given by (54)
and (55), it can be seen that the effects of both cyclic
and random system nonstationarities are included in
this system model.
In the tracking analysis of adaptive algorithms, an

important measure of performance is their steady-state
tracking EMSE and is given by

ζ tracking = lim
n→∞ E{|xHn ṽn|2}, (56)

where ṽn is the weight-error vector for tracking sce-
nario and is defined as follows:
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ṽn = wo
ne

jn − wn. (57)

Using (53), (55) and (57) the following recursion is
obtained:

ṽn+1 = ṽn − μx∗
nf (en) + cnejn, (58)

where cn is defined as

cn = wo(ej − 1) + qn+1e
j − qn. (59)

Now, let us define the following a priori estimation
error, ean = xHn ṽn and a posteriori estimation error,

epn = xHn (ṽn+1 − cnejn) Then, it is very easy to show that
the estimation error and the a priori error are related
via en = ean + hn. Also, from (26) when A = I, the a pos-
teriori error is defined in terms of the a priori error as
follows:

epn = ean − μ

μ̂n
f (en), (60)

where μ̂n = 1/ ‖ xn‖2 Substituting (60) into (58) results
into the following update relation:

ṽn+1 = ṽn − μ̂nx∗
n

[
ean − epn

]
+ cnejn. (61)

By evaluating the energies of both sides of the above
equation (taking into account that μ̂n ‖ xn‖2 = 1) the fol-
lowing relation is obtained:

‖ ṽn+1 − cnejn‖2 + μ̂n|ean|2 =‖ ṽn‖2 + μ̂n|epn|2. (62)

It can be seen that if Ω = 0 (i.e., no frequency offset
between the transmitter and the receiver), the above
equation reduces to the basic fundamental energy con-
servation relation.
The energy relation (62) will be used to evaluate the

excess-mean-square error at steady state. But before
starting the analysis, first the following assumptions are
stated:
A.8 In steady-state, the weight error vector ṽn takes

the generic form zne
jΩn with the stationary random pro-

cess zn independent of the frequency offset Ω.
Using (60), assumption A.8, and taking expectation of

both sides of (62) and the fact that at steady state
E
[
ṽn+1

]
= E

[
ṽn

]
the following relation can be obtained:

E
[
μ̂n ‖ ean‖2

]
= 2tr {Qn}+ ‖ wo‖2|1 − ej|2 − 2Re

{
E
[
q∗
n(zn − μx∗

nf (en)e
−jn)

]}
− 2Re

{
(1 − ej)

∗
wo∗E

[
zn − μx∗

nf (en)e
−jn]} + E

[
μ̂n

∣∣∣∣ean − μ

μ̂n
f (en)

∣∣∣∣
2
]
.

(63)

The above equation can be used to solve for the
steady-state EMSE. To find the value of z = E[zn], (58)
is used where it is multiplied by the term e-jΩn and then
expectation is taken on both sides to get

(1 − ej)z = μE
(
x∗
nf (en)e

−jn) +wo(1 − ej), (64)

which yields the following value of z at steady-state:

z =
[
I − μγo

(1 − ej)
R
]−1

wo, (65)

where go is defined as

γo =
[
ᾱn + 6(1 − ᾱn)σ 2

η

] 1
tr{ R} . (66)

Ultimately, the steady-state excess-mean-square error
of the proposed algorithm, ζtracking, is obtained from
(63):

ζ tracking =
a

a − μb

[
tr{ QnR} +

βO

2μγO
+
cμ
a

]
, (67)

where

βo = |1 − ej|2Re {tr( ‖ wo‖2(I − 2X))
}
, (68)

X = (I − μγoR)
[
I − μγoR − ejI

]−1
, (69)

and

a = 2{ᾱn + 6(1 − ᾱn)σ 2
η },

b =
{
E
[
α2
n

]
+ 12E

[
αn(1 − αn)

]
σ 2

η + 36E
[
(1 − αn)

2
]
χ4

η

}
,

c =
{
E
[
α2
n

]
σ 2

η + 4E
[
αn(1 − αn)

]
χ4

η + 4E
[
(1 − αn)

2
]
χ6

η

}
,

χ6
η = E

[
η6
n

]
,

χ4
η = E

[
η4
n

]
.

It can be seen from the above result that the steady-
state tracking EMSE of the NLMS algorithm [28] and
the NLMF algorithm [29] can be recovered by substitut-
ing an = 1 and an = 0, respectively, in (67).
For a white Gaussian input signal, the autocorrelation

of the input signal R = σ 2
x I, and therefore (67) will look

like the following:

ζ tracking =
a

a − μb

[
σ 2
x tr{ Qn} +

N2σ 2
x (4N − μa)2

μ2a2
‖ wo‖2 + cμ

a

]
. (70)

6 Simulation results
The performance of the proposed algorithm, the
VPNMN LMS-LMF, is assessed in different scenarios.
Experiments are carried out where an unknown system
is to be identified under noisy conditions. The unknown
system is a non-minimum phase channel. The input sig-
nal to both the unknown system and the adaptive filter
is obtained by passing a zero-mean white Gaussian
sequence through a channel that is used to vary the
eigenvalue spread of the autocorrelation matrix of the
input signal. The example considered for the sequence
{xn} has an eigenvalue spread of 68.9. The additive
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noise, hn, is a zero-mean. The signal to noise ratio is set
to be equal to 20 dB and the performance measure con-
sidered is the normalized weight error norm 10log10║wn

- wopt║2/║wopt║2. Results are obtained by averaging over
500 independent runs. The proposed algorithm is imple-
mented with the parameters 8 = 0.97, b = 0.98, g = 10-
2a0= 0.8 and p0 = 0. In the ensuing, different aspects of
the performance are considered during the course of
this study.

6.1 Convergence behavior
Figure 1 compares the fastest convergence characteris-
tics of both the proposed algorithm and the NLMS algo-
rithm. It can be seen from this figure that the proposed
algorithm converges as fast as the NLMS algorithm but
results in a lower weight mismatch. An improvement of
25 dB is obtained through the use of the proposed algo-
rithm. Also, as shown in Figure 2, the proposed

algorithm outperforms the NLMS algorithm, for the
lowest steady-state error reached by the later, thanks to
its built-in gear-shifting mechanism which gives it an
extra degree of freedom in this region.
The fast convergence obtained by the proposed algo-

rithm can be justified by the fact that when far from the
optimum solution, this algorithm exhibits faster conver-
gence than the NLMS algorithm by automatically
increasing the step size (gear-shifting property).
Figure 3 summarizes the performance of the proposed

VPNMN algorithm in the three different noise environ-
ments with an SNR of 20 dB when the input signal is
white. As can be depicted from this figure that the best
performance is obtained when the noise statistics are
uniform while the worst performance is obtained when
the noise statistics are laplacian.
Similarly, Figure 4 depicts the results for the proposed

VPNMN algorithm when the input signal is highly
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Figure 1 Fastest convergence characteristics of the VPNMN and NLMS algorithms.
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correlated and as can seen from this figure that almost
equal performance is obtained by the VPNMN algo-
rithm for the different noise statistics.
In order to verify the stability bound on step-size

given in (48), we investigate it in a Gaussian environ-
ment and an SNR of 20 dB. Here, we choose a misad-
justment of five which results in the Cramer-Rao bound
to be C ≤ 0.05. Thus, choosing a tr(R) = 5, the upper
bound given in (48) is found to be 0.95. It is observed
from the various performed simulations that the
NCLMF algorithm is stable while µ is less than 1.0 and
thus, eventually validating the derived stability bound.
Finally, from the viewpoint of computational load the

proposed algorithm requires an additional seven multi-
plications and three additions when compared to the
fixed mixed-norm algorithm defined by (4), and only
eleven multiplications and six additions when compared
to the NLMS algorithm. The small computational over

head of the proposed algorithm is therefore well worth
the gain in the steady-state error reduction it brings
about.

6.2 Results for the MSE learning curve
Figure 5 depicts the time evolution of the MSE obtained
for both the theoretical analysis, the second entry of
(44), and the simulations. Excellent agreement between
theory and simulation results is obtained; hence, a con-
sistency in performance is obtained by the proposed
VPNMN algorithm.

6.3 Results for tracking
For tracking, the simulations are carried out for a sys-
tem identification problem, where the unknown system,
having an FIR model, is given by [1.0119 - j0.7589, -
0.3796 + j0.5059]T, while the system characteristics are
time-varying according to the system model (54) and
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Figure 2 Convergence characteristics of the VPNMN and NLMS algorithms for the lowest steady-state error reached by the NLMS
algorithm.
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(55). Results for the proposed algorithm are presented to
validate the theoretical findings for different values of Ω
and different values of µ. The input signal xn to both
the unknown system and the adaptive filter is a zero-
mean white Gaussian sequence. The signal to noise
ratio is set to be equal to 30 dB two values are consid-
ered for tr{Qn}: a very small value of tr{Qn} = 10-7, and
a very large one of tr{Qn} = 10-2.
Figure 6 depicts the comparison of the theory to the

simulation results for three different values of Ω, i.e., Ω
= 0.001, 0.002, and 0.003. As can be seen from this fig-
ure, close agreement between theory and simulation
results are obtained. Furthermore, it is observed from
this figure that degradation in performance is obtained
by increasing the frequency offset Ω and unlike the sta-
tionary case, the steady-state EMSE is not a monotoni-
cally increasing function of the step-size µ, that is the
steady-state EMSE is smaller at larger values of the
step-size µ.
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for Ω = 0.001, Ω = 0.002, and Ω = 0.003, and tr{Qk} = 10-7.
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Figure 6 is obtained for the case when tr{Qn} = 10-7

which is represents a small value. Increasing this value
to 10-2, the results depicted in Figure 7 for three larger
values of Ω, i.e., 0.01, 0.02, and 0.03, still show that the

previously stated observations are similar to those
obtained for a smaller value of tr{Qn}.
Finally, the consistency in the performance of the

steady-state EMSE of the proposed algorithm is
observed in both cases (two different values of tr{Qn})
and different values of Ω.

6.4 Noise cancelation using VPNMN algorithm
In this example, we study the performance of the
VPNMN algorithm for the application of noise cancela-
tion. A pure sinusoidal noise generated by the process
(un = 0.8 sin (ωn + 0.5π)) with ω = 0.1 π is to be
removed from a square wave generated by (sn = 2 ×
((mod(n, 1000) <1000/2) - 0.5)) where mod (n, 1000)
computes the modulus of n over 1,000. Summing unand
sn gives us the reference signal to the adaptive filter.
The input to the adaptive filter is a sinusoidal signal

generated by
(
xn =

√
2 sin(ωn)

)
with ω = 0.1 π. The

resulting output error signal en will, in time, converge to
the desired signal which will be noiseless.
Figure 8 depicts the reference response and the pro-

cessed results by the VPNMN algorithm and NLMS
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Figure 7 Analytical (-) and experimental (Δ) steady-state EMSE
for Ω = 0.01, Ω = 0.02, and Ω = 0.03, and tr{Qk} = 10-2.
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algorithm. It is clear that both algorithms are able to
remove the noise component but VPNMN algorithm
exhibits better noise cancelation capabilities as com-
pared to the NLMS algorithm.

7 Conclusion
In this study, a normalized VPNMN algorithm is pro-
posed where a combination of the LMS and the LMF
algorithms is incorporated using the concept of variable
step-size LMS adaptation. It is found that the proposed
algorithm has the fast convergence property of the
NLMS algorithm while resulting in a lower steady-state
error, therefore eliminating the conflict between these
two parameters, i.e., fast convergence and low steady-
state error. Moreover, the consistency of the perfor-
mance of the proposed algorithm has been confirmed
by many simulation results which are reported here.
The analytical results of the tracking steady-state

EMSE are derived for the proposed algorithm in the
presence of both random and cyclic nonstationarities.
The results, show that unlike in the stationary case, the
steady-state EMSE is not a monotonically increasing
function of the step-size µ, while the ability of the algo-
rithm to track the variations in the environment
degrades by increasing the frequency offset Ω.
Finally, the VPNMN algorithm proved its usefulness

in a noise cancelation scenario where it showed its
superiority over the NLMS algorithm.
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