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Abstract
In this paper, we introduce two parallel algorithms for finding a zero of the sum of two
monotone operators and a fixed point of a nonexpansive mapping in Hilbert spaces
and prove some strong convergence theorems of the proposed algorithms. As special
cases, we can approach the minimum-norm common element of the zero of the sum
of two monotone operators and the fixed point of a nonexpansive mapping without
using the metric projection. Further, we give some applications of our main results.
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1 Introduction
Let H be a real Hilbert space. Let A : H → H be a single-valued nonlinear mapping and
B :H → H be a set-valued mapping.
Now, we are concerned with the following variational inclusion:
Find a zero x ∈H of the sum of two monotone operators A and B such that

 ∈ Ax + Bx, (.)

where  is the zero vector in H .
The set of solutions of the problem (.) is denoted by (A + B)–. If H = Rm, then the

problem (.) becomes the generalized equation introduced by Robinson []. IfA = , then
the problem (.) becomes the inclusion problem introduced by Rockafellar []. It is well
known that the problem (.) is among themost interesting and intensively studied classes
of mathematical problems and has wide applications in the fields of optimization and con-
trol, economics and transportation equilibrium, engineering science, and many others.
For the past years, many existence results and iterative algorithms for various variational
inequality and variational inclusion problems have been extended and generalized in var-
ious directions using novel and innovative techniques. A useful and important general-
ization is called the general variational inclusion involving the sum of two nonlinear op-
erators. Moudafi and Noor [] studied the sensitivity analysis of variational inclusions by
using the technique of resolvent equations. Recently much attention has been given to de-
veloping iterative algorithms for solving the variational inclusions. Dong et al. [] analyzed
the solution’s sensitivity for variational inequalities and variational inclusions by using a
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resolvent operator technique. By using the concept and technique of resolvent operators,
Agarwal et al. [] and Jeong [] introduced and studied a new system of parametric gener-
alized nonlinear mixed quasi-variational inclusions in a Hilbert space. Lan [] introduced
and studied a stable iteration procedure for a class of generalized mixed quasi-variational
inclusion systems in Hilbert spaces. Recently, Zhang et al. [] introduced a new iterative
scheme for finding a common element of the set of solutions to the problem (.) and the
set of fixed points of nonexpansive mappings in Hilbert spaces. Peng et al. [] introduced
another iterative scheme by the viscosity approximate method for finding a common ele-
ment of the set of solutions of a variational inclusion with set-valued maximal monotone
mapping and inverse strongly monotone mappings, the set of solutions of an equilibrium
problem, and the set of fixed points of a nonexpansive mapping. For some related work,
see [–] and the references therein.
Recently, Takahashi et al. [] introduced the following iterative algorithm for finding

a zero of the sum of two monotone operators and a fixed point of a nonexpansive map-
ping:

xn+ = βnxn + ( – βn)S
(
αnx + ( – αn)JBλn (xn – λnAxn)

)
(.)

for all n ≥ . Under some assumptions, they proved that the sequence {xn} converges
strongly to a point of F(S)∩ (A + B)–.

Remark . We note that the algorithm (.) cannot be used to find the minimum-norm
element due to the facts that x ∈ C and S is a self-mapping ofC. However, there exist a large
number of problems for which one needs to find theminimum-norm solution (see, for ex-
ample, [–]). A useful path to circumvent this problem is to use projection. Bauschke
and Browein [] and Censor and Zenios [] provide reviews of the field. The main diffi-
culty is in the computation. Hence it is an interesting problem to find the minimum-norm
element without using the projection.

Motivated and inspired by the works in this field, we first suggest the following two
algorithms without using projection:

xt = ( – κ)Sxt + κJBλ
(
tγ f (xt) + ( – t)xt – λAxt

)

for all t ∈ (, ) and

xn+ = ( – κ)Sxn + κJBλn
(
αnγ f (xn) + ( – αn)xn – λnAxn

)

for all n ≥ . Notice that these two algorithms are indeed well defined (see the next
section). We show that the suggested algorithms converge strongly to a point x̃ =
PF(S)∩(A+B)–(γ f (x̃)) which solves the following variational inequality:

〈
γ f (x̃) – x̃, x̃ – z

〉 ≥ 

for all z ∈ F(S)∩ (A + B)–.
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As special cases, we can approach the minimum-norm element in F(S) ∩ (A + B)–
without using the metric projection and give some applications.

2 Preliminaries
Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖, respectively.
Let C be a nonempty closed convex subset of H .
() A mapping S : C → C is said to be nonexpansive if

‖Sx – Sy‖ ≤ ‖x – y‖

for all x, y ∈ C. We denote by F(S) the set of fixed points of S.
() A mapping A : C →H is said to be α-inverse strongly monotone if there exists α > 

such that

〈Ax –Ay,x – y〉 ≥ α‖Ax –Ay‖

for all x, y ∈ C.
It is well known that, if A is α-inverse strongly monotone, then ‖Ax – Ay‖ ≤ 

α
‖x – y‖

for all x, y ∈ C.
Let B be a mapping from H into H . The effective domain of B is denoted by dom(B),

that is, dom(B) = {x ∈ H : Bx 
= ∅}.
() A multi-valued mapping B is said to be amonotone operator on H if

〈x – y,u – v〉 ≥ 

for all x, y ∈ dom(B), u ∈ Bx, and v ∈ By.
() A monotone operator B on H is said to bemaximal if its graph is not strictly

contained in the graph of any other monotone operator on H .
Let B be amaximal monotone operator onH and B– = {x ∈H :  ∈ Bx}. For a maximal

monotone operator B on H and λ > , we may define a single-valued operator JBλ = (I +
λB)– : H → dom(B), which is called the resolvent of B for λ. It is well known that the
resolvent JBλ is firmly nonexpansive, i.e.,

∥∥JBλ x – JBλ y
∥∥ ≤ 〈

JBλ x – JBλ y,x – y
〉

for all x, y ∈ C and B– = F(JBλ ) for all λ > . The following resolvent identity is well known:
for any λ >  and μ > , the following identity holds:

JBλ x = JBμ

(
μ

λ
x +

(
 –

μ

λ

)
JBλ x

)
(.)

for all x ∈H .
We use the notation that xn ⇀ x stands for the weak convergence of (xn) to x and xn → x

stands for the strong convergence of (xn) to x, respectively.
We need the following lemmas for the next section.
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Lemma . ([]) Let C be a nonempty closed convex subset of a real Hilbert space H . Let
A : C → H be an α-inverse strongly monotone mapping and λ >  be a constant. Then we
have

∥∥(I – λA)x – (I – λA)y
∥∥ ≤ ‖x – y‖ + λ(λ – α)‖Ax –Ay‖

for all x, y ∈ C. In particular, if ≤ λ ≤ α, then I – λA is nonexpansive.

Lemma . ([]) Let C be a closed convex subset of a Hilbert space H . Let S : C → C
be a nonexpansive mapping. Then F(S) is a closed convex subset of C and the mapping
I – S is demiclosed at , i.e. whenever {xn} ⊂ C is such that xn ⇀ x and (I – S)xn → , then
(I – S)x = .

Lemma . ([]) Let C be a nonempty closed convex subset of a real Hilbert space H . As-
sume that the mapping F : C → H is monotone and weakly continuous along segments,
that is, F(x + ty) → F(x) weakly as t → . Then the variational inequality

x∗ ∈ C,
〈
Fx∗,x – x∗〉 ≥ 

for all x ∈ C is equivalent to the dual variational inequality

x∗ ∈ C,
〈
Fx,x – x∗〉 ≥ 

for all x ∈ C.

Lemma . ([]) Let {xn}, {yn} be bounded sequences in a Banach space X and {βn} be a
sequence in [, ] with

 < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < .

Suppose that xn+ = ( – βn)yn + βnxn for all n ≥  and

lim sup
n→∞

(‖yn+ – yn‖ – ‖xn+ – xn‖
) ≤ .

Then limn→∞ ‖yn – xn‖ = .

Lemma . ([]) Assume that {an} is a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + δnγn

for all n ≥ , where {γn} is a sequence in (, ) and {δn} is a sequence such that
(a)

∑∞
n= γn =∞;

(b) lim supn→∞ δn ≤  or
∑∞

n= |δnγn| < ∞.
Then limn→∞ an = .
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3 Main results
In this section, we prove our main results.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let A be
an α-inverse strongly monotone mapping from C into H. Let f : C → H be a ρ-contraction
and γ be a constant such that  < γ < 

ρ
. Let B be a maximal monotone operator on H such

that the domain of B is included in C. Let JBλ = (I + λB)– be the resolvent of B for any λ > 
and S be a nonexpansive mapping from C into itself such that F(S)∩ (A + B)– 
= ∅. Let λ

and κ be two constants satisfying a ≤ λ ≤ b, where [a,b] ⊂ (, α) and κ ∈ (, ). For any
t ∈ (,  – λ

α ), let {xt} ⊂ C be a net generated by

xt = ( – κ)Sxt + κJBλ
(
tγ f (xt) + ( – t)xt – λAxt

)
. (.)

Then the net {xt} converges strongly as t → + to a point x̃ = PF(S)∩(A+B)–(γ f (x̃)), which
solves the following variational inequality:

〈
γ f (x̃) – x̃, x̃ – z

〉 ≥ 

for all z ∈ F(S)∩ (A + B)–.

Proof First, we show that the net {xt} is well defined. For any t ∈ (,  – λ
α ), we define

a mapping W := ( – κ)S + κJBλ (tγ f + ( – t)I – λA). Note that JBλ , S, and I – λ
–t A (see

Lemma .) are nonexpansive. For any x, y ∈ C, we have

‖Wx –Wy‖

=
∥∥∥∥( – κ)(Sx – Sy) + κ

(
JBλ

(
tγ f (x) + ( – t)

(
I –

λ

 – t
A

)
x
)

– JBλ

(
tγ f (y) + ( – t)

(
I –

λ

 – t
A

)
y
))∥∥∥∥

≤ ( – κ)‖Sx – Sy‖

+ κ

∥∥∥∥tγ (
f (x) – f (y)

)
+ ( – t)

[(
I –

λ

 – t
A

)
x –

(
I –

λ

 – t
A

)
y
]∥∥∥∥

≤ ( – κ)‖x – y‖ + κtγ
∥∥f (x) – f (y)

∥∥
+ ( – t)κ

∥∥∥∥
(
I –

λ

 – t
A

)
x –

(
I –

λ

 – t
A

)
y
∥∥∥∥

≤ ( – κ)‖x – y‖ + tκγρ‖x – y‖ + ( – t)κ‖x – y‖
=

[
 – ( – γρ)κt

]‖x – y‖,

which implies the mappingW is a contraction on C. We use xt to denote the unique fixed
point of W in C. Therefore, {xt} is well defined. Set yt = JBλ ut and ut = γ f (xt) + ( – t)xt –
λAxt for all t > . Taking z ∈ F(S)∩ (A+B)–, it is obvious that z = Sz = JBλ (z– λAz) for all
λ >  and so

z = Sz = JBλ (z – λAz) = JBλ

(
tz + ( – t)

(
I –

λ

 – t
A

)
z
)

http://www.fixedpointtheoryandapplications.com/content/2014/1/174
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for all t ∈ (,  – λ
α ). From (.), it follows that

‖xt – z‖ = ∥∥( – κ)(Sxt – z) + κ(yt – z)
∥∥

≤ ( – κ)‖Sxt – z‖ + κ‖yt – z‖
≤ ( – κ)‖xt – z‖ + κ‖yt – z‖.

Hence we get ‖xt – z‖ ≤ ‖yt – z‖. Since JBλ is nonexpansive, we have

‖yt – z‖

=
∥∥∥∥JBλ

(
tγ f (xt) + ( – t)

(
xt –

λ

 – t
Axt

))
– JBλ

(
tz + ( – t)

(
z –

λ

 – t
Az

))∥∥∥∥
≤

∥∥∥∥
(
tγ f (xt) + ( – t)

(
xt –

λ

 – t
Axt

))
–

(
tz + ( – t)

(
z –

λ

 – t
Az

))∥∥∥∥
=

∥∥∥∥( – t)
((

xt –
λ

 – t
Axt

)
–

(
z –

λ

 – t
Az

))
+ t

(
γ f (xt) – z

)∥∥∥∥
≤ ( – t)

∥∥∥∥
(
I –

λ

 – t
A

)
xt –

(
I –

λ

 – t
A

)
z
∥∥∥∥ + tγ

∥∥f (xt) – f (z)
∥∥ + t

∥∥γ f (z) – z
∥∥

≤ ( – t)‖xt – z‖ + tγρ‖xt – z‖ + t
∥∥γ f (z) – z

∥∥. (.)

Thus it follows that

‖xt – z‖ ≤ 
 – γρ

∥∥γ f (z) – z
∥∥.

Therefore, {xt} is bounded.We deduce immediately that {f (xt)}, {Axt}, {Sxt}, {ut}, and {yt}
are also bounded. By using the convexity of ‖ · ‖ and the α-inverse strong monotonicity of
A, from (.), we derive

‖xt – z‖

≤ ‖yt – z‖

≤
∥∥∥∥( – t)

((
xt –

λ

 – t
Axt

)
–

(
z –

λ

 – t
Az

))
+ t

(
γ f (xt) – z

)∥∥∥∥


≤ ( – t)
∥∥∥∥
(
xt –

λ

 – t
Axt

)
–

(
z –

λ

 – t
Az

)∥∥∥∥


+ t
∥∥γ f (xt) – z

∥∥

= ( – t)
∥∥∥∥(xt – z) –

λ

 – t
(Axt –Az)

∥∥∥∥


+ t
∥∥γ f (xt) – z

∥∥

= ( – t)
(

‖xt – z‖ – λ
 – t

〈Axt –Az,xt – z〉 + λ

( – t)
‖Axt –Az‖

)

+ t
∥∥γ f (xt) – z

∥∥

≤ ( – t)
(

‖xt – z‖ – αλ

 – t
‖Axt –Az‖ + λ

( – t)
‖Axt –Az‖

)

+ t
∥∥γ f (xt) – z

∥∥

http://www.fixedpointtheoryandapplications.com/content/2014/1/174
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= ( – t)
(

‖xt – z‖ + λ

( – t)
(
λ – ( – t)α

)‖Axt –Az‖
)
+ t

∥∥γ f (xt) – z
∥∥

≤ ( – t)‖xt – z‖ + λ

( – t)
(
λ – ( – t)α

)‖Axt –Az‖ + t
∥∥γ f (xt) – z

∥∥ (.)

and so

λ

( – t)
(
( – t)α – λ

)‖Axt –Az‖ ≤ t
∥∥γ f (xt) – z

∥∥ – t‖xt – z‖ → .

By the assumption, we have ( – t)α – λ >  for all t ∈ (,  – λ
α ) and so we obtain

lim
t→+

‖Axt –Az‖ = . (.)

Next, we show ‖xt – Sxt‖ → . By using the firm nonexpansivity of JBλ , we have

‖yt – z‖ = ∥∥JBλ (
tγ f (xt) + ( – t)xt – λAxt

)
– z

∥∥

=
∥∥JBλ (

tγ f (xt) + ( – t)xt – λAxt
)
– JBλ (z – λAz)

∥∥

≤ 〈
tγ f (xt) + ( – t)xt – λAxt – (z – λAz), yt – z

〉

=


(∥∥tγ f (xt) + ( – t)xt – λAxt – (z – λAz)

∥∥ + ‖yt – z‖

–
∥∥tγ f (xt) + ( – t)xt – λ(Axt –Az) – yt

∥∥).
Thus it follows that

‖yt – z‖ ≤ ∥∥tγ f (xt) + ( – t)xt – λAxt – (z – λAz)
∥∥

–
∥∥tγ f (xt) + ( – t)xt – λ(Axt –Az) – yt

∥∥.

By the nonexpansivity of I – λ
–t A, we have

∥∥tγ f (xt) + ( – t)xt – λAxt – (z – λAz)
∥∥

=
∥∥∥∥( – t)

((
xt –

λ

 – t
Axt

)
–

(
z –

λ

 – t
Az

))
+ t

(
γ f (xt) – z

)∥∥∥∥


≤ ( – t)
∥∥∥∥
(
xt –

λ

 – t
Axt

)
–

(
z –

λ

 – t
Az

)∥∥∥∥


+ t
∥∥γ f (xt) – z

∥∥

≤ ( – t)‖xt – z‖ + t
∥∥γ f (xt) – z

∥∥

and thus

‖xt – z‖ ≤ ‖yt – z‖

≤ ( – t)‖xt – z‖ + t
∥∥γ f (xt) – z

∥∥

–
∥∥tγ f (xt) + ( – t)xt – λ(Axt –Az) – yt

∥∥.

Hence it follows that

∥∥tγ f (xt) + ( – t)xt – λ(Axt –Az) – yt
∥∥ ≤ t

∥∥γ f (xt) – z
∥∥ → .

http://www.fixedpointtheoryandapplications.com/content/2014/1/174
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Since ‖Axt –Az‖ → , we deduce limt→+ ‖xt – yt‖ = , which implies that

lim
t→+

‖xt – Sxt‖ = . (.)

From (.), we have

‖yt – z‖

≤
∥∥∥∥( – t)

((
xt –

λ

 – t
Axt

)
–

(
z –

λ

 – t
Az

))
+ t

(
γ f (xt) – z

)∥∥∥∥


= ( – t)
∥∥∥∥
(
xt –

λ

 – t
Axt

)
–

(
z –

λ

 – t
Az

)∥∥∥∥


+ t( – t)
〈
γ f (xt) – z,

(
xt –

λ

 – t
Axt

)
–

(
z –

λ

 – t
Az

)〉
+ t

∥∥γ f (xt) – z
∥∥

≤ ( – t)‖xt – z‖ + t( – t)
〈
γ f (xt) – z,xt –

λ

 – t
(Axt –Az) – z

〉

+ t
∥∥γ f (xt) – z

∥∥

= ( – t)‖xt – z‖ + t( – t)γ
〈
f (xt) – f (z),xt –

λ

 – t
(Axt –Az) – z

〉

+ t( – t)
〈
γ f (z) – z,xt –

λ

 – t
(Axt –Az) – z

〉
+ t

∥∥γ f (xt) – z
∥∥.

Note that ‖xt – z‖ ≤ ‖yt – z‖. Then we obtain

‖xt – z‖ ≤ ( – t)‖xt – z‖ + t( – t)γ
∥∥f (xt) – f (z)

∥∥(
‖xt – z‖ +

∥∥∥∥ λ

 – t
(Axt –Az)

∥∥∥∥
)

+ t( – t)
〈
γ f (z) – z,xt –

λ

 – t
(Axt –Az) – z

〉
+ t

∥∥γ f (xt) – z
∥∥

≤ ( – t)‖xt – z‖ + t( – t)γρ‖xt – z‖ + tλγρ‖xt – z‖‖Axt –Az‖

+ t( – t)
〈
γ f (z) – z,xt –

λ

 – t
(Axt –Az) – z

〉
+ t

∥∥γ f (xt) – z
∥∥

≤ [
 – ( – γρ)t

]‖xt – z‖ + t
[
( – t)

〈
γ f (z) – z,xt –

λ

 – t
(Axt –Az) – z

〉

+
t

(∥∥γ f (xt) – z

∥∥ + ‖xt – z‖) + λγρ‖xt – z‖‖Axt –Az‖
]
.

Thus it follows that

‖xt – z‖ ≤ 
 – γρ

(〈
γ f (z) – z,xt –

λ

 – t
(Axt –Az) – z

〉

+
t

(∥∥γ f (xt) – z

∥∥ + ‖xt – z‖) + t
∥∥γ f (z) – z

∥∥∥∥∥∥xt – λ

 – t
(Axt –Az) – z

∥∥∥∥
+ λγρ‖xt – z‖‖Axt –Az‖

)

≤ 
 – γρ

〈
γ f (z) – z,xt – z

〉
+

(
t + ‖Axt –Az‖)M, (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/174
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whereM is some constant such that

sup


 – γρ

{


(∥∥γ f (xt) – z

∥∥ + ‖xt – z‖) + ∥∥γ f (z) – z
∥∥∥∥∥∥xt – λ

 – t
(Axt –Az) – z

∥∥∥∥,

λγρ‖xt – z‖ : t ∈
(
,  –

λ

α

)}
≤M.

Next, we show that {xt} is relatively norm-compact as t → +. Assume that {tn} ⊂ (, –
λ
α ) is such that tn → + as n→ ∞. Put xn := xtn . From (.), we have

‖xn – z‖ ≤ 
 – γρ

〈
γ f (z) – z,xn – z

〉
+

(
tn + ‖Axn –Az‖)M. (.)

Since {xn} is bounded, without loss of generality, we may assume that xnj ⇀ x̃ ∈ C. Hence
ynj ⇀ x̃ because of ‖xn – yn‖ → . From (.), we have

lim
n→∞‖xn – Sxn‖ = . (.)

We can use Lemma . to (.) to deduce x̃ ∈ F(S). Further, we show that x̃ is also in
(A + B)–. Let v ∈ Bu. Note that yn = JBλ (tnγ f (xn) + ( – tn)xn – λAxn) for all n ≥ . Then
we have

tnγ f (xn) + ( – tn)xn – λAxn ∈ (I + λB)yn

�⇒ tnγ f (xn)
λ

+
 – tn

λ
xn –Axn –

yn
λ

∈ Byn.

Since B is monotone, we have, for all (u, v) ∈ B,
〈
tnγ f (xn)

λ
+
 – tn

λ
xn –Axn –

yn
λ

– v, yn – u
〉
≥ 

�⇒ 〈
tnγ f (xn) + ( – tn)xn – λAxn – yn – λv, yn – u

〉 ≥ 

�⇒ 〈Axn + v, yn – u〉 ≤ 
λ

〈xn – yn, yn – u〉 – tn
λ

〈
xn – γ f (xn), yn – u

〉

�⇒ 〈Ax̃ + v, yn – u〉 ≤ 
λ

〈xn – yn, yn – u〉 – tn
λ

〈
xn – γ f (xn), yn – u

〉

+ 〈Ax̃ –Axn, yn – u〉

�⇒ 〈Ax̃ + v, yn – u〉 ≤ 
λ

‖xn – yn‖‖yn – u‖ + tn
λ

∥∥xn – γ f (xn)
∥∥‖yn – u‖

+ ‖Ax̃ –Axn‖‖yn – u‖.

Thus it follows that

〈Ax̃ + v, x̃ – u〉 ≤ 
λ

‖xnj – ynj‖‖ynj – u‖ + tnj
λ

∥∥xnj – γ f (xnj )
∥∥‖ynj – u‖

+ ‖Ax̃ –Axnj‖‖ynj – u‖ + 〈Ax̃ + v, x̃ – ynj〉. (.)

Since 〈xnj – x̃,Axnj –Ax̃〉 ≥ α‖Axnj –Ax̃‖, Axnj → Az, and xnj ⇀ x̃, it follows that Axnj →
Ax̃. We also observe that tn →  and ‖yn – xn‖ → . Then, from (.), we can derive 〈Ax̃+
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v, x̃–u〉 ≤ , that is, 〈–Ax̃– v, x̃–u〉 ≥ . Since B is maximal monotone, we have –Ax̃ ∈ Bx̃.
This shows that  ∈ (A+B)x̃. Hence we have x̃ ∈ F(S)∩ (A+B)–. Therefore, substituting
x̃ for z in (.), we get

‖xn – x̃‖ ≤ 
 – γρ

〈
γ f (x̃) – x̃,xn – x̃

〉
+

(
tn + ‖Axn –Ax̃‖)M.

Consequently, the weak convergence of {xn} to x̃ actually implies that xn → x̃. This proved
the relative norm-compactness of the net {xt} as t → +.
Now, we return to (.) and, taking the limit as n→ ∞, we have

‖x̃ – z‖ ≤ 
 – γρ

〈
γ f (z) – z, x̃ – z

〉

for all z ∈ F(S)∩ (A + B)–. In particular, x̃ solves the following variational inequality:

x̃ ∈ F(S)∩ (A + B)–,
〈
γ f (z) – z, x̃ – z

〉 ≥ 

for all z ∈ F(S)∩ (A + B)– or the equivalent dual variational inequality (see Lemma .):

x̃ ∈ F(S)∩ (A + B)–,
〈
γ f (x̃) – x̃, x̃ – z

〉 ≥ 

for all z ∈ F(S) ∩ (A + B)–. Hence x̃ = PF(S)∩(A+B)–(γ f (x̃)). Clearly, this is sufficient to
conclude that the entire net {xt} converges to x̃. This completes the proof. �

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let A be
an α-inverse strongly monotone mapping from C into H. Let f : C → H be a ρ-contraction
and γ be a constant such that  < γ < 

ρ
. Let B be a maximal monotone operator on H such

that the domain of B is included in C. Let JBλ = (I + λB)– be the resolvent of B for any λ > 
and S be a nonexpansive mapping from C into itself such that F(S) ∩ (A + B)– 
= ∅. For
any x ∈ C, let {xn} ⊂ C be a sequence generated by

xn+ = ( – κ)Sxn + κJBλn
(
αnγ f (xn) + ( – αn)xn – λnAxn

)
(.)

for all n ≥ , where κ ∈ (, ), {λn} ⊂ (, α) and {αn} ⊂ (, ) satisfy the following condi-
tions:
(a) limn→∞ αn = , limn→∞ αn+

αn
=  and

∑
n αn =∞;

(b) a( – αn) ≤ λn ≤ b( – αn), where [a,b]⊂ (, α) and limn→∞ λn+–λn
αn+

= .
Then the sequence {xn} converges strongly to a point x̃ = PF(S)∩(A+B)–(γ f (x̃)),which solves

the following variational inequality:

〈
γ f (x̃) – x̃, x̃ – z

〉 ≥ 

for all z ∈ F(S)∩ (A + B)–.

Proof Set yn = JBλnun, un = αnγ f (xn) + ( – αn)xn – λnAxn for all n ≥ . Pick up z ∈ F(S) ∩
(A + B)–. It is obvious that

z = Sz = JBλn (z – λnAz) = JBλn

(
αnz + ( – αn)

(
z –

λn

 – αn
Az

))
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for all n ≥ . Since JBλn , S, and I – λn
–αn

A are nonexpansive for all λ >  and n≥ , we have

‖yn – z‖
=

∥∥JBλn(αnγ f (xn) + ( – αn)xn – λnAxn
)
– z

∥∥
=

∥∥∥∥JBλn
(

αnγ f (xn) + ( – αn)
(
xn –

λn

 – αn
Axn

))

– JBλn

(
αnz + ( – αn)

(
z –

λn

 – αn
Az

))∥∥∥∥
≤

∥∥∥∥
(

αnγ f (xn) + ( – αn)
(
xn –

λn

 – αn
Axn

))

–
(

αnz + ( – αn)
(
z –

λn

 – αn
Az

))∥∥∥∥


=
∥∥∥∥( – αn)

((
xn –

λn

 – αn
Axn

)
–

(
z –

λn

 – αn
Az

))
+ αn

(
γ f (xn) – z

)∥∥∥∥
≤ ( – αn)‖xn – z‖ + αn

∥∥γ f (xn) – γ f (z)
∥∥ + αn

∥∥γ f (z) – z
∥∥

≤ [
 – ( – γρ)αn

]‖xn – z‖ + αn
∥∥γ f (z) – z

∥∥. (.)

Hence we have

‖xn+ – z‖ ≤ ( – κ)‖Sxn – z‖ + κ‖yn – z‖
≤ ( – κ)‖xn – z‖ + κ

[
 – ( – γρ)αn

]‖xn – z‖ + καn
∥∥γ f (z) – z

∥∥
=

[
 – ( – γρ)καn

]‖xn – z‖ + καn
∥∥γ f (z) – z

∥∥.
By induction, we have

‖xn+ – z‖ ≤max

{
‖x – z‖, 

 – γρ

∥∥γ f (z) – z
∥∥}

.

Therefore, {xn} is bounded. Since A is α-inverse strongly monotone, it is 
α
-Lipschitz con-

tinuous.Wededuce immediately that {f (xn)}, {Sxn}, {Axn}, {un}, and {yn} are also bounded.
By using the convexity of ‖ · ‖ and the α-inverse strong monotonicity of A, it follows from
(.) that

∥∥∥∥( – αn)
((

xn –
λn

 – αn
Axn

)
–

(
z –

λn

 – αn
Az

))
+ αn

(
γ f (xn) – z

)∥∥∥∥


≤ ( – αn)
∥∥∥∥
(
xn –

λn

 – αn
Axn

)
–

(
z –

λn

 – αn
Az

)∥∥∥∥


+ αn
∥∥γ f (xn) – z

∥∥

= ( – αn)
∥∥∥∥(xn – z) –

λn

 – αn
(Axn –Az)

∥∥∥∥


+ αn
∥∥γ f (xn) – z

∥∥

= ( – αn)
(

‖xn – z‖ – λn

 – αn
〈Axn –Az,xn – z〉 + λ

n
( – αn)

‖Axn –Az‖
)

+ αn
∥∥γ f (xn) – z

∥∥
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≤ ( – αn)
(

‖xn – z‖ – αλn

 – αn
‖Axn –Az‖ + λ

n
( – αn)

‖Axn –Az‖
)

+ αn
∥∥γ f (xn) – z

∥∥

= ( – αn)
(

‖xn – z‖ + λn

( – αn)
(
λn – ( – αn)α

)‖Axn –Az‖
)

+ αn
∥∥γ f (xn) – z

∥∥. (.)

By the condition (c), we get λn – ( – αn)α ≤  for all n≥ . Then, from (.) and (.),
we obtain

∥∥JBλnun – z
∥∥ ≤ ( – αn)

(
‖xn – z‖ + λn

( – αn)
(
λn – ( – αn)α

)‖Axn –Az‖
)

+ αn
∥∥γ f (xn) – z

∥∥. (.)

From (.), it follows that

‖xn+ – z‖ = ∥∥( – κ)(Sxn – z) + κ
(
JBλnun – z

)∥∥

≤ ( – κ)‖xn – z‖ + κ
∥∥JBλnun – z

∥∥. (.)

Next, we estimate ‖xn+ – xn‖. In fact, we have

‖xn+ – xn+‖ =
∥∥( – κ)(Sxn+ – Sxn) + κ(yn+ – yn)

∥∥
≤ ( – κ)‖xn+ – xn‖ + κ‖yn+ – yn‖

and

‖yn+ – yn‖ =
∥∥JBλn+un+ – JBλnun

∥∥
≤ ∥∥JBλn+un+ – JBλn+un

∥∥ +
∥∥JBλn+un – JBλnun

∥∥
≤ ∥∥(

αn+γ f (xn+) + ( – αn+)xn+ – λn+Axn+
)

–
(
αnγ f (xn) + ( – αn)xn – λnAxn

)∥∥ +
∥∥JBλn+un – JBλnun

∥∥
=

∥∥∥∥αn+γ
(
f (xn+) – f (xn)

)
+ (αn+ – αn)γ f (xn)

+ ( – αn+)
[(

I –
λn+

 – αn+
A

)
xn+ –

(
I –

λn+

 – αn+
A

)
xn

]

+ (αn – αn+)xn + (λn – λn+)Axn
∥∥∥∥ +

∥∥JBλn+un – JBλnun
∥∥

≤ αn+γρ‖xn+ – xn‖ + |αn+ – αn|
(∥∥γ f (xn)

∥∥ + ‖xn‖
)

+ ( – αn+)‖xn+ – xn‖ + |λn – λn+|‖Axn‖ +
∥∥JBλn+un – JBλnun

∥∥
=

[
 – ( – γρ)αn+

]‖xn+ – xn‖ + |αn+ – αn|
(∥∥γ f (xn)

∥∥ + ‖xn‖
)

+ |λn – λn+|‖Axn‖ +
∥∥JBλn+un – JBλnun

∥∥.
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By the resolvent identity (.), we have

JBλn+un = JBλn

(
λn

λn+
un +

(
 –

λn

λn+

)
JBλn+un

)
.

Thus it follows that

∥∥JBλn+un – JBλnun
∥∥ =

∥∥∥∥JBλn
(

λn

λn+
un +

(
 –

λn

λn+

)
JBλn+un

)
– JBλnun

∥∥∥∥
≤

∥∥∥∥
(

λn

λn+
un +

(
 –

λn

λn+

)
JBλn+un

)
– un

∥∥∥∥
≤ |λn+ – λn|

λn+

∥∥un – JBλn+un
∥∥

and so

‖xn+ – xn+‖
≤ ( – κ)‖xn+ – xn‖ + κ‖yn+ – yn‖
≤ ( – κ)‖xn+ – xn‖ + κ

[
 – ( – γρ)αn+

]‖xn+ – xn‖
+ κ|αn+ – αn|

(∥∥γ f (xn)
∥∥ + ‖xn‖

)
+ κ|λn – λn+|‖Axn‖

+ κ
|λn+ – λn|

λn+

∥∥un – JBλn+un
∥∥

≤ [
 – ( – γρ)καn+

]‖xn+ – xn‖ + ( – γρ)καn+

[ |αn+ – αn|
αn+

‖γ f (xn)‖ + ‖xn‖
 – γρ

+
|λn – λn+|

αn+

‖Axn‖
 – γρ

+
|λn+ – λn|
αn+λn+

‖un – JBλn+un‖
 – γρ

]
.

By the assumptions, we know that |αn+–αn|
αn+

→  and |λn+–λn|
αn+

→ . Then, from Lemma .,
we get

lim
n→∞‖xn+ – xn‖ = . (.)

Thus, from (.) and (.), it follows that

‖xn+ – z‖

≤ ( – κ)‖xn – z‖ + κ
∥∥JBλnun – z

∥∥

≤ κ

[
( – αn)

(
‖xn – z‖ + λn

( – αn)
(
λn – ( – αn)α

)‖Axn –Az‖
)

+ αn
∥∥γ f (xn) – z

∥∥
]
+ ( – κ)‖xn – z‖

= [ – καn]‖xn – z‖ + κλn

 – αn

(
λn – ( – αn)α

)‖Axn –Az‖ + καn
∥∥γ f (xn) – z

∥∥

≤ ‖xn – z‖ + κλn

 – αn

(
λn – ( – αn)α

)‖Axn –Az‖ + καn
∥∥γ f (xn) – z

∥∥
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and so

κλn

( – αn)
(
( – αn)α – λn

)‖Axn –Az‖

≤ ‖xn – z‖ – ‖xn+ – z‖ + καn
∥∥γ f (xn) – z

∥∥

≤ (‖xn – z‖ – ‖xn+ – z‖)‖xn+ – xn‖ + καn
∥∥γ f (xn) – z

∥∥.

Since limn→∞ αn = , limn→∞ ‖xn+ – xn‖ = , and lim infn→∞ κλn
(–αn) (( – αn)α – λn) > ,

we have

lim
n→∞‖Axn –Az‖ = . (.)

Next, we show ‖xn – Sxn‖ → . By using the firm nonexpansivity of JBλn , we have

∥∥JBλnun – z
∥∥ =

∥∥JBλn(αnγ f (xn) + ( – αn)xn – λnAxn
)
– JBλn (z – λnAz)

∥∥

≤ 〈
αnγ f (xn) + ( – αn)xn – λnAxn – (z – λnAz), JBλnun – z

〉

=


(∥∥αnγ f (xn) + ( – αn)xn – λnAxn – (z – λnAz)

∥∥ +
∥∥JBλnun – z

∥∥

–
∥∥αnγ f (xn) + ( – αn)xn – λn(Axn –Az) – JBλnun

∥∥).
From the condition (c) and the α-inverse strongly monotonicity of A, we know that I –
λnA/( – αn) is nonexpansive. Hence it follows that

∥∥αnγ f (xn) + ( – αn)xn – λnAxn – (z – λnAz)
∥∥

=
∥∥∥∥( – αn)

((
xn –

λn

 – αn
Axn

)
–

(
z –

λn

 – αn
Az

))
+ αn

(
γ f (xn) – z

)∥∥∥∥


≤ ( – αn)
∥∥∥∥
(
xn –

λn

 – αn
Axn

)
–

(
z –

λn

 – αn
Az

)∥∥∥∥


+ αn
∥∥γ f (xn) – z

∥∥

≤ ( – αn)‖xn – z‖ + αn
∥∥γ f (xn) – z

∥∥

and thus

∥∥JBλnun – z
∥∥ ≤ 


(
( – αn)‖xn – z‖ + αn

∥∥γ f (xn) – z
∥∥ +

∥∥JBλnun – z
∥∥

–
∥∥αnγ f (xn) + ( – αn)xn – JBλnun – λn(Axn –Az)

∥∥),
that is,

∥∥JBλnun – z
∥∥

≤ ( – αn)‖xn – z‖ + αn
∥∥γ f (xn) – z

∥∥

–
∥∥αnγ f (xn) + ( – αn)xn – JBλnun – λn(Axn –Az)

∥∥

= ( – αn)‖xn – z‖ + αn
∥∥γ f (xn) – z

∥∥ –
∥∥αnγ f (xn) + ( – αn)xn – JBλnun

∥∥
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+ λn
〈
αnγ f (xn) + ( – αn)xn – JBλnun,Axn –Az

〉
– λ

n‖Axn –Az‖

≤ ( – αn)‖xn – z‖ + αn
∥∥γ f (xn) – z

∥∥ –
∥∥αnγ f (xn) + ( – αn)xn – JBλnun

∥∥

+ λn
∥∥αnγ f (xn) + ( – αn)xn – JBλnun

∥∥‖Axn –Az‖.

This together with (.) implies that

‖xn+ – z‖ ≤ ( – κ)‖xn – z‖ + κ( – αn)‖xn – z‖ + καn
∥∥γ f (xn) – z

∥∥

– κ
∥∥αnγ f (xn) + ( – αn)xn – JBλnun

∥∥

+ λnκ
∥∥αnγ f (xn) + ( – αn)xn – JBλnun

∥∥‖Axn –Az‖
= [ – καn]‖xn – z‖ + καn

∥∥γ f (xn) – z
∥∥

– κ
∥∥αnγ f (xn) + ( – αn)xn – JBλnun

∥∥

+ λnκ
∥∥αnγ f (xn) + ( – αn)xn – JBλnun

∥∥‖Axn –Az‖

and hence

κ
∥∥αnγ f (xn) + ( – αn)xn – JBλnun

∥∥

≤ ‖xn – z‖ – ‖xn+ – z‖ – καn‖xn – z‖ + καn
∥∥γ f (xn) – z

∥∥

+ λnκ
∥∥αnγ f (xn) + ( – αn)xn – JBλnun

∥∥‖Axn –Az‖
≤ (‖xn – z‖ + ‖xn+ – z‖)‖xn+ – xn‖ + καn

∥∥γ f (xn) – z
∥∥

+ λnκ
∥∥αnγ f (xn) + ( – αn)xn – JBλnun

∥∥‖Axn –Az‖.

Since ‖xn+ – xn‖ → , αn → , and ‖Axn –Az‖ →  (by (.)), we deduce

lim
n→∞

∥∥αnγ f (xn) + ( – αn)xn – JBλnun
∥∥ = .

This implies that

lim
n→∞

∥∥xn – JBλnun
∥∥ = . (.)

Combining (.), (.), and (.), we get

lim
n→∞‖xn – Sxn‖ = . (.)

Put x̃ = limt→+ xt = PF(S)∩(A+B)–(γ f (x̃)), where {xt} is the net defined by (.).
Finally, we show that xn → x̃. Taking z = x̃ in (.), we get ‖Axn – Ax̃‖ → . First, we

prove lim supn→∞〈γ f (x̃) – x̃,xn – x̃〉 ≤ . We take a subsequence {xni} of {xn} such that

lim sup
n→∞

〈
γ f (x̃) – x̃,xn – x̃

〉
= lim

i→∞
〈
γ f (x̃) – x̃,xni – x̃

〉
.

There exists a subsequence {xnij } of {xni} which converges weakly to a point w ∈ C. Hence
{ynij } also converges weakly to w because of ‖xnij – ynij ‖ → . By the demi-closedness
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principle of the nonexpansive mapping (see Lemma .) and (.), we deduce w ∈ F(S).
Furthermore, by a similar argument to that of Theorem ., we can show that w is also in
(A + B)–. Hence we have w ∈ F(S)∩ (A + B)–. This implies that

lim sup
n→∞

〈
γ f (x̃) – x̃,xn – x̃

〉
= lim

j→∞
〈
γ f (x̃) – x̃,xnij – x̃

〉
=

〈
γ f (x̃) – x̃,w – x̃

〉
.

Note that x̃ = PF(S)∩(A+B)–(γ f (x̃)). Then we have

〈
γ f (x̃) – x̃,w – x̃

〉 ≤ 

for all w ∈ F(S)∩ (A + B)–. Therefore, it follows that

lim sup
n→∞

〈
γ f (x̃) – x̃,xn – x̃

〉 ≤ .

From (.), we have

‖xn+ – x̃‖

≤ ( – κ)‖xn – x̃‖ + κ
∥∥JBλnun – x̃

∥∥

= ( – κ)‖xn – x̃‖ + κ
∥∥JBλnun – JBλn (x̃ – λnAx̃)

∥∥

≤ ( – κ)‖xn – x̃‖ + κ
∥∥un – (x̃ – λnAx̃)

∥∥

= ( – κ)‖xn – x̃‖ + κ
∥∥αnγ f (xn) + ( – αn)xn – λnAxn – (x̃ – λnAx̃)

∥∥

= κ

∥∥∥∥( – αn)
((

xn –
λn

 – αn
Axn

)
–

(
x̃ –

λn

 – αn
Ax̃

))
+ αn

(
γ f (xn) – x̃

)∥∥∥∥


+ ( – κ)‖xn – x̃‖

= ( – κ)‖xn – x̃‖ + κ

(
( – αn)

∥∥∥∥
(
xn –

λn

 – αn
Axn

)
–

(
x̃ –

λn

 – αn
Ax̃

)∥∥∥∥


+ αn( – αn)
〈
γ f (xn) – x̃,

(
xn –

λn

 – αn
Axn

)
–

(
x̃ –

λn

 – αn
Ax̃

)〉

+ α
n
∥∥γ f (xn) – x̃

∥∥
)

≤ ( – κ)‖xn – x̃‖ + κ
(
( – αn)‖xn – x̃‖ + αnλn

〈
γ f (xn) – x̃,Axn –Ax̃

〉
+ αn( – αn)γ

〈
f (xn) – f (x̃),xn – x̃

〉
+ αn( – αn)

〈
γ f (x̃) – x̃,xn – x̃

〉
+ α

n
∥∥γ f (xn) – x̃

∥∥)
≤ ( – κ)‖xn – x̃‖ + κ

(
( – αn)‖xn – x̃‖ + αnλn

∥∥γ f (xn) – x̃
∥∥‖Axn –Ax̃‖

+ αn( – αn)γρ‖xn – x̃‖ + αn( – αn)
〈
γ f (x̃) – x̃,xn – x̃

〉
+ α

n
∥∥γ f (xn) – x̃

∥∥)
≤ [

 – κ( – γρ)αn
]‖xn – x̃‖ + αnκλn

∥∥γ f (xn) – x̃
∥∥‖Axn –Ax̃‖

+ αnκ( – αn)
〈
γ f (x̃) – x̃,xn – x̃

〉
+ κα

n
(∥∥γ f (xn) – x̃

∥∥ + ‖xn – x̃‖)
=

[
 – κ( – γρ)αn

]‖xn – x̃‖
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+ κ( – γρ)αn

[
λn

 – γρ

∥∥γ f (xn) – x̃
∥∥‖Axn –Ax̃‖

+
 – αn

 – γρ

〈
γ f (x̃) – x̃,xn – x̃

〉
+

αn

( – γρ)
(∥∥γ f (xn) – x̃

∥∥ + ‖xn – x̃‖)
]
.

It is clear that
∑

n κ( – γρ)αn =∞ and

lim sup
n→∞

{
λn

 – γρ

∥∥γ f (xn) – x̃
∥∥‖Axn –Ax̃‖ +  – αn

 – γρ

〈
γ f (x̃) – x̃,xn – x̃

〉

+
αn

( – γρ)
(∥∥γ f (xn) – x̃

∥∥ + ‖xn – x̃‖)
}

≤ .

Therefore, we can apply Lemma . to conclude that xn → x̃. This completes the proof.�

Remark . One quite often seeks a particular solution of a given nonlinear problem, in
particular, the minimum-norm element. For instance, given a closed convex subset C of a
Hilbert spaceH and a bounded linear operatorW :H → H, whereH is anotherHilbert
space. TheC-constrained pseudoinverse ofW ,W †

C , is then defined as theminimum-norm
solution of the constrained minimization problem

W †
C(b) := argmin

x∈C ‖Wx – b‖,

which is equivalent to the fixed point problem

u = projC
(
u –μW ∗(Wu – b)

)
,

where W ∗ is the adjoint of W and μ >  is a constant, and b ∈ H is such that PW (C)(b) ∈
W (C). From Theorems . and ., we get the following corollaries which can find the
minimum-norm element in F(S)∩ (A + B)–; that is, find x̃ ∈ F(S)∩ (A + B)– such that

x̃ = arg min
x∈F(S)∩(A+B)–

‖x‖.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let A
be an α-inverse strongly monotone mapping from C into H. Let B be a maximal monotone
operator on H such that the domain of B is included in C. Let JBλ = (I +λB)– be the resolvent
of B for any λ >  and S be a nonexpansive mapping from C into itself such that F(S)∩ (A+
B)– 
= ∅. Let λ and κ be two constants satisfying a ≤ λ ≤ b, where [a,b] ⊂ (, α) and
κ ∈ (, ). For any t ∈ (,  – λ

α ), let {xt} ⊂ C be a net generated by

xt = ( – κ)Sxt + κJBλ
(
( – t)xt – λAxt

)
.

Then the net {xt} converges strongly as t → + to a point x̃ = PF(S)∩(A+B)–() which is the
minimum-norm element in F(S)∩ (A + B)–.

Corollary . Let C be a closed convex subset of a real Hilbert space H . Let A be an α-
inverse strongly monotone mapping from C into H and let B be a maximal monotone op-
erator on H such that the domain of B is included in C. Let JBλ = (I + λB)– be the resolvent
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of B for any λ >  such that (A + B)– 
= ∅. Let λ be a constant satisfying a ≤ λ ≤ b, where
[a,b]⊂ (, α). For any t ∈ (,  – λ

α ), let {xt} ⊂ C be a net generated by

xt = JBλ
(
( – t)xt – λAxt

)
.

Then the net {xt} converges strongly as t → + to a point x̃ = P(A+B)–(), which is the
minimum-norm element in (A + B)–.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let A
be an α-inverse strongly monotone mapping from C into H. Let B be a maximal monotone
operator on H such that the domain of B is included in C. Let JBλ = (I +λB)– be the resolvent
of B for any λ >  and let S be a nonexpansive mapping from C into itself such that F(S)∩
(A + B)– 
= ∅. For any x ∈ C, let {xn} ⊂ C be a sequence generated by

xn+ = ( – κ)Sxn + κJBλn
(
( – αn)xn – λnAxn

)

for all n ≥ , where κ ∈ (, ), {λn} ⊂ (, α), and {αn} ⊂ (, ) satisfy the following condi-
tions:
(a) limn→∞ αn = , limn→∞ αn+

αn
= , and

∑
n αn =∞;

(b) a( – αn) ≤ λn ≤ b( – αn), where [a,b]⊂ (, α) and limn→∞ λn+–λn
αn

= .
Then the sequence {xn} converges strongly to a point x̃ = PF(S)∩(A+B)–(), which is the

minimum-norm element in F(S)∩ (A + B)–.

Corollary . Let C be a closed convex subset of a real Hilbert space H . Let A be an α-
inverse strongly monotone mapping from C into H and let B be a maximal monotone oper-
ator on H such that the domain of B is included in C. Let JBλ = (I +λB)– be the resolvent of B
for any λ >  such that (A+B)– 
= ∅. For any x ∈ C, let {xn} ⊂ C be a sequence generated
by

xn+ = ( – κ)xn + κJBλn
(
( – αn)xn – λnAxn

)

for all n ≥ , where κ ∈ (, ), {λn} ⊂ (, α), and {αn} ⊂ (, ) satisfy the following condi-
tions:
(a) limn→∞ αn = , limn→∞ αn+

αn
= , and

∑
n αn =∞;

(b) a( – αn) ≤ λn ≤ b( – αn), where [a,b]⊂ (, α) and limn→∞ λn+–λn
αn

= .
Then the sequence {xn} converges strongly to a point x̃ = P(A+B)–(), which is the

minimum-norm element in (A + B)–.

Remark . The present paper provides some methods which do not use projection for
finding the minimum-norm solution problem.

4 Applications
Next, we consider the problem for finding theminimum-norm solution of a mathematical
model related to equilibrium problems. Let C be a nonempty closed convex subset of a
Hilbert space and G : C ×C → R be a bifunction satisfying the following conditions:
(E) G(x,x) =  for all x ∈ C;
(E) G is monotone, i.e., G(x, y) +G(y,x) ≤  for all x, y ∈ C;
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(E) for all x, y, z ∈ C, lim supt↓G(tz + ( – t)x, y)≤G(x, y);
(E) for all x ∈ C, G(x, ·) is convex and lower semicontinuous.
Then the mathematical model related to the equilibrium problem (with respect to C) is

as follows:
Find x̃ ∈ C such that

G(x̃, y) ≥  (.)

for all y ∈ C. The set of such solutions x̃ is denoted by EP(G).
The following lemma appears implicitly in Blum and Oettli [].

Lemma . Let C be a nonempty closed convex subset of a Hilbert space H . Let G be a
bifunction from C × C into R satisfying the conditions (E)-(E). Then, for any r >  and
x ∈H , there exists z ∈ C such that

G(z, y) +

r
〈y – z, z – x〉 ≥ 

for all y ∈ C.

The following lemma was given in Combettes and Hirstoaga [].

Lemma . Assume that G is a bifunction from C × C into R satisfying the conditions
(E)-(E). For any r >  and x ∈ H , define a mapping Tr :H → C as follows:

Tr(x) =
{
z ∈ C :G(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}

for all x ∈ H . Then the following hold:
(a) Tr is single-valued;
(b) Tr is a firmly nonexpansive mapping, i.e., for all x, y ∈H ,

‖Trx – Try‖ ≤ 〈Trx – Try,x – y〉;

(c) F(Tr) = EP(G);
(d) EP(G) is closed and convex.

We call such a Tr the resolvent of G for any r > . Using Lemmas . and ., we have
the following lemma (see [] for a more general result).

Lemma . Let C be a nonempty closed convex subset of a Hilbert space H . Let G be a
bifunction from C ×C into R satisfying the conditions (E)-(E). Let AG be a multi-valued
mapping from H into itself defined by

AGx =

⎧⎨
⎩

{z ∈H :G(x, y) ≥ 〈y – x, z〉,∀y ∈ C}, x ∈ C,

∅, x /∈ C.
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Then EP(G) = A–
G () and AG is amaximalmonotone operator with dom(AG) ⊂ C. Further,

for any x ∈H and r > , the resolvent Tr of G coincides with the resolvent of AG, i.e.,

Trx = (I + rAG)–x.

Form Lemma . and Theorems . and ., we have the following results.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let G
be a bifunction from C × C into R satisfying the conditions (E)-(E) and Tr be the re-
solvent of G for any r > . Let S be a nonexpansive mapping from C into itself such that
F(S)∩ EP(G) 
= ∅. For any t ∈ (, ), let {xt} ⊂ C be a net generated by

xt = ( – κ)Sxt + κTr
(
( – t)xt

)
.

Then the net {xt} converges strongly as t → + to a point x̃ = PF(S)∩EP(G)(), which is the
minimum-norm element in F(S)∩ EP(G).

Proof From Lemma ., we know AG is maximal monotone. Thus, in Theorem ., we
can set JBλ = Tr . At the same time, in Theorem ., we can choose f =  and A = , and (.)
reduces to

xt = ( – κ)Sxt + κTr
(
( – t)xt

)
.

Consequently, from Theorem ., we get the desired result. This completes the proof. �

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let G be
a bifunction from C × C into R satisfying the conditions (E)-(E) and Tr be the resolvent
of G for any r > . Suppose that EP(G) 
= ∅. For any t ∈ (, ), let {xt} ⊂ C be a net generated
by

xt = Tr
(
( – t)xt

)
.

Then the net {xt} converges strongly as t → + to a point x̃ = PEP(G)(), which is the
minimum-norm element in EP(G).

Theorem . Let C be a nonempty closed and convex subset of a real Hilbert space H .
Let G be a bifunction from C × C into R satisfying the conditions (E)-(E) and Tλ be the
resolvent of G for any λ > . Let S be a nonexpansive mapping from C into itself such that
F(S)∩ EP(G) 
= ∅. For any x ∈ C, let {xn} ⊂ C be a sequence generated by

xn+ = ( – κ)Sxn + κTλn

(
( – αn)xn

)

for all n ≥ , where κ ∈ (, ), {λn} ⊂ (,∞), and {αn} ⊂ (, ) satisfy the conditions:
(a) limn→∞ αn = , limn→∞ αn+

αn
= , and

∑
n αn =∞;

(b) a ≤ λn ≤ b, where [a,b]⊂ (,∞) and limn→∞ λn+–λn
αn

= .
Then the sequence {xn} converges strongly to a point x̃ = PF(S)∩EP(G)(), which is the

minimum-norm element in F(S)∩ EP(G).
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Proof From Lemma ., we know AG is maximal monotone. Thus, in Theorem ., we
can set JBλn = Tλn . At the same time, in Theorem ., we can choose f =  and A = , and
(.) reduces to

xn+ = ( – κ)Sxn + κTλn

(
( – αn)xn

)

for all n ≥ . Consequently, from Theorem ., we get the desired result. This completes
the proof. �

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let G be
a bifunction from C × C into R satisfying the conditions (E)-(E) and Tλ be the resolvent
of G for any λ > . Suppose EP(G) 
= ∅. For any x ∈ C, let {xn} ⊂ C be a sequence generated
by

xn+ = ( – κ)xn + ( – βn)Tλn

(
( – αn)xn

)

for all n ≥ , where κ ∈ (, ), {λn} ⊂ (,∞), and {αn} ⊂ (, ) satisfy the following condi-
tions:
(a) limn→∞ αn = , limn→∞ αn+

αn
= , and

∑
n αn =∞;

(b) a ≤ λn ≤ b, where [a,b]⊂ (,∞) and limn→∞ λn+–λn
αn

= .
Then the sequence {xn} converges strongly to a point x̃ = PEP(G)(),which is the minimum-

norm element in EP(G).
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