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Abstract
Consider a preordered metric space (X ,d,�). Suppose that d(x, y) ≤ d(x′, y′) if
x′ � x � y � y′. We say that a self-map T on X is asymptotically contractive if
d(T ix, T iy) → 0 as i ↑ ∞ for all x, y ∈ X . We show that an order-preserving self-map T
on X has a globally stable fixed point if and only if T is asymptotically contractive and
there exist x, x∗ ∈ X such that T ix � x∗ for all i ∈N and x∗ � Tx∗ . We establish this and
other fixed point results for more general spaces where d consists of a collection of
distance measures. We apply our results to order-preserving nonlinear Markov
operators on the space of probability distribution functions on R.

Keywords: fixed point; order-preserving self-map; contraction; nonlinear Markov
operator; global stability

1 Introduction
Themajority of fixed point theorems require a space that is complete in some sense. Fixed
point theorems based on the metric approach such as the celebrated Banach contraction
principle and its numerous extensions commonly assume a complete metric space (see,
e.g., []). Results based on the order-theoretic approach such as Tarski’s fixed point the-
orem and the Knaster-Tarski fixed point theorem typically require a complete lattice or
a chain-complete partially ordered space (see, e.g., []). These two approaches are com-
bined in the growing literature on fixed point theory for partially ordered complete metric
spaces (e.g., [–]), where completeness still plays an indispensable role.
However, there are various situations in which it is fairly easy to construct a good can-

didate for a fixed point even if the underlying space may not be complete. For example,
consider a self-map on a space of real-valued functions on some set. Then an increas-
ing sequence of functions majorized by a common function converges pointwise to some
function in the same space. If this pointwise limit turns out to be a good candidate for
a fixed point, then there is no need to verify that the entire space is complete or chain-
complete.
In this paper we develop simple fixed point results for order-preserving self-maps on

a space equipped with a transitive binary relation and a collection of distance measures.
Most of our results assume the existence of a good candidate for a fixed point instead
of completeness. Some of our results use the condition that the self-map in question
is asymptotically contractive, which means in our terminology that two distinct points
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are mapped arbitrarily close to each other after sufficiently many iterations. In the case
of Markov operators induced by Markov chains, this property is an implication of the
order-theoretic mixing condition introduced in [], which is a natural property of var-
ious stochastic processes (see [, ]). We show that asymptotic contractiveness is not
only a useful condition for showing the existence of a fixed point, but also a necessary
condition for the existence of a globally stable fixed point.
In practice, a candidate for a fixed point must be constructed or must be shown to ex-

ist. If the underlying space is a complete metric space, then the limit of a certain Cauchy
sequence serves as a good candidate. This classical approach is still common in the recent
literature onfixed points of order-preserving self-maps on partially ordered completemet-
ric spaces (e.g., [–, , , ]). For comparison purposes, we establish a fixed point result
for such spaces as a consequence of our general results.
To illustrate how a candidate fixed point can be constructed in practice, we consider

nonlinear Markov operators on the space of probability distribution functions on R. We
provide a simple sufficient condition for the existence of a globally stable fixed point.

2 Definitions
Let X be a set. A binary relation � ⊂ X ×X on X is called transitive if for any x, y, z ∈ X,

x � y� z ⇒ x� z, (.)

reflexive if

∀x ∈ X, x � x, (.)

and antisymmetric if for any x, y ∈ X,

x � y and y� x ⇒ x = y. (.)

A binary relation is called a preorder if it is transitive and reflexive. A preorder � is called
a partial order if it is antisymmetric.
Let A be a set. Let �(A) be the set of functions φ : A → R+. Let φ,ψ ∈ �(A). We write

φ =  if φ(a) =  for each a ∈ A, and φ ≤ ψ if φ(a)≤ ψ(a) for each a ∈ A. The expressions
φ +ψ and max{φ,ψ} are defined respectively by

∀a ∈ A, (φ +ψ)(a) = φ(a) +ψ(a), (.)

∀a ∈ A,
(
max{φ,ψ})(a) =max

{
φ(a),ψ(a)

}
. (.)

For {φi}i∈N ⊂ �(A), we write φi →  if φi(a) →  as i ↑ ∞ for each a ∈ A (we omit ‘as
i ↑ ∞’ from here on).
Let d : X × X × A → R+; the dependence of d on (x, y,a) ∈ X × X × A is expressed by

d(x, y)(a).We treat the expression d(x, y) as a function fromA toR+; more precisely, d(x, y)
is the function φ ∈ �(A) given by φ(a) = d(x, y)(a) for all a ∈ A. Under the conventions
described in the previous paragraph, for any x, y,x′, y′ ∈ X and {xi}i∈N, {yi}i∈N ⊂ X, we have
the following relations:

d(x, y) =  ⇐⇒ ∀a ∈ A, d(x, y)(a) = , (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/351
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d(x, y) ≤ d
(
x′, y′) ⇐⇒ ∀a ∈ A, d(x, y)(a)≤ d

(
x′, y′)(a), (.)

d(xi, yi) →  ⇐⇒ ∀a ∈ A, d(xi, yi)(a)→ . (.)

The expressions d(x, y) +d(x′, y′) andmax{d(x, y),d(x′, y′)} are defined as in (.) and (.).
We say that d is identifying if for any x, y ∈ X,

d(x, y) =  ⇒ x = y, (.)

reflexive if

∀x ∈ X, d(x,x) = , (.)

and symmetric if

∀x, y ∈ X, d(x, y) = d(y,x). (.)

We say that d satisfies the triangle inequality if

∀x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z). (.)

We say that d is one-dimensional if d(x, y)(a) does not depend on a for any x, y ∈ X. If d is
one-dimensional, then we treat d as a function from X ×X to R+. If d is one-dimensional,
identifying, reflexive, symmetric, and satisfies the triangle inequality, then d is called a
metric.
In what follows, the set X is assumed to be equipped with a binary relation � and a

function d : X ×X ×A→R+. Even though � is merely a binary relation, we regard it as a
type of order.
We say that a sequence {xi}i∈N is increasing if xi � xi+ for all i ∈N.We say that a function

f :D →R with D ⊂R is increasing if f (x) ≤ f (y) for any x, y ∈D with x≤ y.
We say that d is regular if for any x, y, z ∈ X with x� y � z, we have

max
{
d(x, y),d(y, z)

} ≤ d(x, z). (.)

This means that if x� y, then d(x, y) increases as x ‘decreases’ or y ‘increases’.

Example . Let X =R. Let� be the usual partial order onR. For x, y ∈ X, define d(x, y) =
|x – y|. Then d is one-dimensional, a metric, and regular.

Example . LetX be the set of functions onR. LetA =R. For f , g ∈ X, write f � g if f ≤ g .
Then � is a partial order. For f , g ∈ X and a ∈ A, define d(f , g)(a) = |f (a) – g(a)|. Then d is
not one-dimensional, but d is identifying, reflexive, symmetric, regular, and satisfies the
triangle inequality.

Example . Let (S,S) be a measurable space. Let X be the set of finite measures on S.
For μ,ν ∈ X, write μ � ν if μ(B) ≤ ν(B) for each B ∈ S. Then � is a partial order. Let A
be the set of bounded measurable functions from S to R. For μ,ν ∈ X and f ∈ A, define
d(μ,ν)(f ) = | ∫ f dμ–

∫
f dν|. Then d is not one-dimensional, but d is identifying, reflexive,

symmetric, regular, and satisfies the triangle inequality.

http://www.fixedpointtheoryandapplications.com/content/2013/1/351
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Example . Let X =R
. For x, y ∈ X, write x� y if ‖x‖ ≤ ‖y‖, where ‖ · ‖ is the Euclidian

norm. Then � is a preorder, but it is not a partial order since it fails to be antisymmetric.
For x, y ∈ X, let d(x, y) = ‖x– y‖. Then d is a metric, but not regular. For example, (/, )�
(, )� (, ), but d((, ), (, )) =

√
 > d((/, ), (, )) = /.

Example . Let X =R
. For x, y ∈ X, write x � y if x ≤ y componentwise. Define d as in

Example .. Then d is a metric and regular.

Example . Let X =R
. For x, y ∈ X, write x� y if x < y or if x = y and x ≤ y, where

x = (x,x), etc. This binary relation � is a lexicographic order, which is a partial order.
Define d as in Example .. Then d is a metric, but not regular. For example, (, ) �
(, )� (, ), but d((, ), (, )) >  > d((, ), (, )) = .

A self-map T : X → X is called order-preserving if for any x, y ∈ X,

x � y ⇒ Tx � Ty. (.)

A fixed point of T is an element x ∈ X such that Tx = x. We say that a fixed point x∗ of T
is globally stable if

∀x ∈ X, d
(
Tix,x∗) → . (.)

Note that if x∗ is a globally stable fixed point of T , then T has no other fixed point as long
as d is identifying. To see this, note that if T has another fixed point x, then for any i ∈N,
we have d(x,x∗) = d(Tix,x∗) → ; thus x = x∗.
We say that T : X → X is asymptotically contractive if

∀x, y ∈ X, d
(
Tix,Tiy

) → . (.)

The term ‘asymptotically contractive’ has been used in different senses in the literature
(e.g., [, ]). Our usage of the term can be justified by noting that (.) is an asymp-
totic property as well as an implication of well-known contraction properties; see (.)
and (.).

3 Fixed point results
LetX andA be sets. Let� be a binary relation onX. LetT : X → X. Let d : X×X×A→R+.
In this section we maintain the following assumptions.

Assumption . T is order-preserving.

Assumption . � is transitive.

Assumption . d is identifying.

Assumption . d is regular.

The following theorem is the most fundamental of our fixed point results.

http://www.fixedpointtheoryandapplications.com/content/2013/1/351
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Theorem . Suppose that there exist x,x∗ ∈ X such that

d
(
Tix,Tix∗) → , (.)

∀i ∈N, Tix � x∗, (.)

x∗ � Tx∗. (.)

Then x∗ is a fixed point of T .

Proof Since T is order-preserving, (.) implies that

x∗ � Tx∗ � Tx∗ � Tx∗ � · · · . (.)

This together with (.) implies that

∀i ∈N, Tix � x∗ � Tix∗. (.)

Thus by regularity of d, for any i ∈N, we have

d
(
x∗,Tx∗) ≤ d

(
x∗,Tix∗) (.)

≤ d
(
Tix,Tix∗) → , (.)

where the convergence holds by (.). It follows that d(x∗,Tx∗) = ; thus x∗ is a fixed point
of T since d is identifying. �

The above proof generalizes the fixed point argument used in []. Under additional
assumptions, conditions (.)-(.) are also necessary for the existence of a fixed point.

Theorem . Suppose that � is reflexive. Suppose further that d is reflexive. Then T has
a fixed point if and only if there exist x,x∗ ∈ X satisfying (.)-(.).

Proof The ‘if ’ part follows from Theorem .. For the ‘only if ’ part, let x∗ be a fixed point
of T . Then since � and d are reflexive, (.)-(.) trivially hold with x = x∗. �

Let us now consider global stability of a fixed point. We start with a simple consequence
of asymptotic contractiveness.

Lemma . Suppose that T is asymptotically contractive and has a fixed point x∗. Then
x∗ is globally stable.

Proof To see that x∗ is unique, let x be another fixed point. Then, by (.) with y = x∗, we
have

d
(
x,x∗) = d

(
Tix,Tix∗) → . (.)

Thus x = x∗.
For global stability, let x ∈ X be arbitrary. Again by (.) with y = x∗, we obtain (.).

Hence x∗ is globally stable. �

http://www.fixedpointtheoryandapplications.com/content/2013/1/351
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Theorem . Suppose that T is asymptotically contractive. Suppose further that there
exist x,x∗ ∈ X satisfying (.) and (.). Then x∗ is a globally stable fixed point of T .

Proof Since T is asymptotically contractive, x and x∗ satisfy (.). Thus, by Theorem .,
x∗ is a fixed point of T . Global stability follows from Lemma .. �

Theorem . Suppose that � is reflexive. Suppose further that d is symmetric and sat-
isfies the triangle inequality. Then T has a globally stable fixed point if and only if T is
asymptotically contractive and there exist x,x∗ ∈ X satisfying (.) and (.).

Proof The ‘if ’ part follows from Theorem .. For the ‘only if ’ part, suppose that T has a
globally stable fixed point x∗. Then, for any x, y ∈ X, by the triangle inequality, symmetry
of d, and global stability of x∗, we have

d
(
Tix,Tiy

) ≤ d
(
Tix,x∗) + d

(
x∗,Tiy

)
(.)

= d
(
Tix,x∗) + d

(
Tiy,x∗) → . (.)

Thus (.) holds; i.e., T is asymptotically contractive. By reflexivity of �, (.) and (.)
hold with x = x∗. �

4 The case of a complete metric space
In this section, in addition toAssumptions .-., wemaintain the following assumptions.

Assumption . (X,d) is a complete metric space.

Assumption . For any increasing sequence {xi}i∈N ⊂ X converging to some x ∈ X, we
have xi � x for all i ∈N.

Assumption . For any increasing sequence {xi}i∈N ⊂ X converging to some x ∈ X, if
there exists y ∈ X such that xi � y for all i ∈N, then x� y.

Assumptions . and . hold if � is closed (i.e., a closed subset of X × X). To see this,
let {xi}i∈N be an increasing sequence converging to some x ∈ X. Then given any i ∈ N, we
have xi � xj for all j ≥ i; thus letting j ↑ ∞, we obtain xi � x. Furthermore, if there exists
y ∈ X such that xi � y for all i ∈N, then letting i ↑ ∞ yields x � y.
Assumption . is standard in the recent literature on fixed point theory for partially

ordered metric spaces (e.g., [–, , ]). Our approach differs in that it also utilizes As-
sumption ..

Theorem . Suppose that for any y, z ∈ X, we have

y� z ⇒ d
(
Tiy,Tiz

) → . (.)

Suppose further that there exist x,x ∈ X such that

x � Tx, (.)

∀i ∈N, Tix � x. (.)

Then T has a fixed point.

http://www.fixedpointtheoryandapplications.com/content/2013/1/351


Kamihigashi and Stachurski Fixed Point Theory and Applications 2013, 2013:351 Page 7 of 10
http://www.fixedpointtheoryandapplications.com/content/2013/1/351

Proof For i ∈ N, let xi = Tix. It follows from (.) that {xi}i∈N is increasing. We show
that {xi} is Cauchy. To this end, let ε > . By (.)-(.) there exists N ∈ N such that
d(TNx,TNx) < ε. Let j,k ≥ N with j ≤ k. Let m = k – N . Since xN � xj � xk , by regular-
ity of d, we have

d(xj,xk) ≤ d(xN ,xk) (.)

= d
(
TNx,Tkx

)
= d

(
TNx,TNTmx

)
(.)

≤ d
(
TNx,TNx

)
< ε, (.)

where the first inequality in (.) holds by (.) (with i = m) and regularity of d. Since
j,k ≥N are arbitrary, it follows that {xi} is Cauchy.
Now, since {xi} is Cauchy and X is complete, {xi} converges to some x∗ ∈ X. By (.) and

Assumption ., we have

∀i ∈N, x � Tix � x∗. (.)

Thus (.) holds. Condition (.) follows from (.) and (.) with y = x and z = x∗. From
(.) we have Ti+x � Tx∗ for all i ∈ N. Thus by Assumption ., x∗ � Tx∗. Hence (.)
holds. It follows by Theorem . that x∗ is a fixed point of T . �

A simple sufficient condition for (.) is that for some λ ∈ [, ),

y� z ⇒ d(Ty,Tz) ≤ λd(y, z). (.)

This condition is used in [, Theorem .]. A weaker condition is used in [, Theorem .]
to establish a result that implies the following.

Corollary . Letψ : [,∞)→ [,∞) be an increasing function such that limi↑∞ ψ i(t) = 
for each t > . Suppose that for any y, z ∈ X, we have

y� z ⇒ d(Ty,Tz) ≤ ψ
(
d(y, z)

)
. (.)

Suppose further that there exists x ∈ X satisfying (.). Then T has a fixed point.

Proof For any i ∈N and y, z ∈ X with y� z, it follows from (.) that

d
(
Tiy,Tiz

) ≤ ψ
(
d
(
Ti–y,Ti–z

)) ≤ · · · ≤ ψ i(d(y, z)
) → . (.)

Thus (.) holds. Let {xi}i∈N be as in the proof of Theorem .. It is shown in [] that {xi}
is Cauchy, so that it converges to some x∗ ∈ X. By Assumption ., we have Tix � x∗ for
all i ∈N. Thus (.) holds with x = x∗. Now the conclusion follows by Theorem .. �

The core part of the proof of [, Theorem .] is to show that {Tix} is Cauchy. Since
this can in fact be done without Assumptions . and ., the corresponding part of [,
Theorem .] is not directly comparable to Theorem .. The same remark applies to [,
Theorem .]. In [, ], instead of Assumptions . and ., the recursive structure of (.)
or (.) is utilized to show that {Tix} is Cauchy and that its limit is a fixed point. See, e.g.,
[–, , ] for extensions.

http://www.fixedpointtheoryandapplications.com/content/2013/1/351
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5 Nonlinear Markov operators
In this section we consider the case in which T is a self-map on the space of probability
distribution functions onR. Such amap is often called a nonlinearMarkov operator; linear
Markov operators are often associated with Markov chains. Since our approach does not
require linearity, we allow T to be nonlinear. The analysis of this section can be extended
to Markov chains on considerably more general spaces than R along the lines of [, ,
].
Let F be the set of probability distribution functions onR; i.e., each f ∈ F is an increasing

and right-continuous function from R to [, ] such that

lim
x↓–∞ f (x) = , (.)

lim
x↑∞ f (x) = . (.)

We define the binary relation � on F by

f � g ⇐⇒ ∀x ∈R, f (x)≥ g(x). (.)

Note that � is a partial order. This partial order is known as ‘stochastic dominance’. We
also write f ≥ g if f (x)≥ g(x) for all x ∈ R. Hence f � g if and only if f ≥ g .
In what follows we take as given an order-preserving self-map T : F → F . Let A =R. For

f , g ∈ F and a ∈ A, define

d(f , g)(a) =
∣∣f (a) – g(a)

∣∣. (.)

It is easy to see thatAssumptions .-. hold under (.) and (.), and that d is symmetric
and satisfies the triangle inequality.
It is shown in [, Theorem .] that T is asymptotically contractive if it is the lin-

ear Markov operator on F associated with an ‘order mixing’ Markov chain. Informally,
a Markov chain is order mixing if given any two independent versions {Xt} and {Yt} of the
same chain with different initial conditions, we have Xt ≤ Yt at least once with probability
one. This is a natural property of various stochastic processes; see [, ].
The following result is a restatement of Theorem ..

Theorem . T has a globally stable fixed point if and only if T is asymptotically contrac-
tive and there exist f , f ∗ ∈ F such that

∀i ∈N, Tif � f ∗, (.)

f ∗ � Tf ∗. (.)

The next result provides a sufficient condition for the existence of f , f ∗ ∈ F satisfying
(.) and (.).

Theorem . Suppose that T is asymptotically contractive. Suppose further that there
exist f , f ∈ F such that

f � Tf (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/351
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∀i ∈N, Tif � f . (.)

Then T has a globally stable fixed point f ∗.

Proof (This result does not follow fromTheorem. and Lemma . since d is not ametric
here.) Note that we have Tf ≤ f by (.) and (.). Let

f ∗ = inf
i∈N

(
Tif

)
, (.)

where the infimum is taken pointwise. By construction, f ∗ satisfies (.). We verify that
f ∗ ∈ F , and that (.) holds.
To see that f ∗ ∈ F , note that since each fi is increasing, so is f ∗. From (.)-(.) it follows

that f ≤ f ∗ ≤ f . Thus f ∗(x) ∈ [, ] for all x ∈ R. Since  ≤ limx↓–∞ f ∗(x)≤ limx↓–∞ f (x) = 
and  ≥ limx↑∞ f ∗(x) ≥ limx↑∞ f (x) = , we have limx↓–∞ f ∗(x) =  and limx↑∞ f ∗(x) = . We
see that f ∗ is right continuous or, equivalently, upper semicontinuous (given that f ∗ is
increasing) because the pointwise infimum of a family of upper semicontinuous functions
is upper semicontinuous (see [, p.]).
It remains to verify (.). Since f ∗ ≤ Tif for all i ∈ N, we have Tf ∗ ≤ Ti+f for all i ∈ N.

Taking the pointwise infimum of the right-hand side over i ∈ N and noticing that {Tif } is
decreasing with respect to ≤, we obtain Tf ∗ ≤ f ∗; i.e., f ∗ � Tf ∗. �

One way to ensure the existence of f satisfying (.) is by assuming that {Tif } is ‘tight’
(with {Tif } viewed as a sequence of probability measures). In this case, {Tif } has a weak
limit, which can be used as an upper boundon {Tif }with respect to�. This is the approach
taken in [].
Although (.) and (.) imply that {Tif } is tight, Theorem . does not follow from

[, Theorem ., Lemma .]. First of all, T can be nonlinear here. Second, asymptotic
contractiveness is weaker than the ‘order mixing’ condition. Third, T is not assumed to be
‘bounded in probability’ here.
If one assumes that Tf � f in addition to (.) and (.), then T maps [f , f ] into itself,

where [f , f ] is the set of functions f̃ :R → [, ] such that f � f̃ � f . In this case, the exis-
tence of a fixed point can be shown by applying the Knaster-Tarski fixed point theorem [,
p.] to the restriction of T to [f , f ]. However, since we do not assume that Tf � f here,
T need not be a self-map on [f , f ]. Thus Theorem . does not follow from the Knaster-
Tarski fixed point theorem.
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