
Symbolic-Numerical Modeling of the Influence of Damping
Moments on Satellite Dynamics

Sergey A. Gutnik1,2,� and Vasily A. Sarychev3,��

1Moscow State Institute of International Relations 76, Prospekt Vernadskogo, Moscow, 119454, Russia
2Moscow Institute of Physics and Technology, 9 Institutskiy lane, Dolgoprudny, 141700, Russia
3Keldysh Institute of Applied Mathematics (RAS) 4, Miusskaya Square, Moscow, 125047, Russia

Abstract. The dynamics of a satellite on a circular orbit under the influence of gravita-
tional and active damping torques, which are proportional to the projections of the angular
velocity of the satellite, is investigated. Computer algebra Gröbner basis methods for the
determination of all equilibrium orientations of the satellite in the orbital coordinate sys-
tem with given damping torque and given principal central moments of inertia were used.
The conditions of the equilibria existence depending on three damping parameters were
obtained from the analysis of the real roots of the algebraic equations spanned by the
constructed Gröbner basis. Conditions of asymptotic stability of the satellite equilibria
and the transition decay processes of the spatial oscillations of the satellite at different
damping parameters have also been obtained.

1 Introduction

In this paper, a symbolic-numerical study of the satellite dynamics under the influence of gravitational
and active damping torques is presented. The gravity oriented satellite with different moments of
inertia in the central Newtonian force field in a circular orbit has 24 equilibrium orientations and
four of them are stable [1]. An important property of the gravity orientation systems is that these
systems can operate for a long time without needing fuel spending. In the present work we analyze
the behavior of a satellite acted upon by the gravity gradient and active damping torques. The action of
damping torques can provide the asymptotic stability of the equilibria of the gravity oriented satellites.
Therefore, it is important to investigate the joint action of the gravitational and active damping torques
and to analyze the necessary and sufficient conditions for asymptotic stability of the satellite equilibria
on a circular orbit.

In the present work, the problem of determination of the classes of equilibrium orientations and
the conditions for asymptotic stability of defined equilibria for the general values of damping torques
is considered. The investigation of equilibria was performed by application of the Computer Algebra
Gröbner basis methods. The types of transition decay processes of spatial oscillations of the satellite
at different damping parameters have been investigated numerically.

The computer algebra methods for the investigation of the asymptotic stability of the equilibrium
orientations of a satellite were successfully used earlier for another model of damping torques [2].
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2 Equations of Motion

Consider the motion of the satellite-rigid body subjected to gravitational and active damping torques
on a circular orbit. We assume that the active damping torques are proportional to the projections of
the angular velocity of the satellite. To write the equations of motion we introduce two right-handed
Cartesian coordinate systems with origin at the satellite center of mass O. The orbital coordinate
system OXYZ; the axis OZ is directed along the radius-vector from the Earth center of mass and the
satellite center of mass; the axis OX is along the direction of the satellite orbital motion. The satellite
body coordinate system Oxyz; Ox, Oy, and Oz are the principal central axes of inertia of the satellite.
The orientation of the satellite body coordinate system Oxyz with respect to the orbital coordinate
system is determined by means of the aircraft angles of pitch (α), yaw (β), and roll (γ). The direction
cosines of the transformation matrix between the orbital coordinate system OXYZ and Oxyz are given
in [3].

Let the satellite be acted upon by the moments of active damping, their integral vector projections
on the axis Ox, Oy, and Oz are equal respectively to: Mx = k̄1 p1, My = k̄2q1, and Mz = k̄3r1. Here
k̄1, k̄2, and k̄3 are the damping coefficients, p1, q1, and r1 are the projections of the satellite angular
velocity onto the axes Ox, Oy, and Oz; ω0 is the angular velocity of the orbital motion of the satellite
center of mass. Then, the equations of satellite attitude motion can be written in the dimensionless
Euler form:

θA ṗ + (θC − 1)qr − 3(θC − 1)a32a33 + k̃1 p = 0,
q̇ + (θA − θC)rp − 3(θA − θC)a31a33 + k̃2q = 0, (1)
θCṙ + (1 − θA)pq − 3(1 − θA)a31a32 + k̃3r = 0,

p = (α̇ + 1)a21 + γ̇, q = (α̇ + 1)a22 + β̇ sin γ, r = (α̇ + 1)a23 + β̇ cos γ.

Here, θA = A/B, θC = C/B denote dimensionless inertial parameters, A, B, and C are the princi-
pal central moments of inertia of the satellite, p = p1/ω0, q = q1/ω0, r = r1/ω0, k̃1 = k̄1/Bω0,
k̃2 = k̄2/Bω0, k̃3 = k̄3/Bω0, τ = ω0t. The dot denotes differentiation with respect to τ.

3 Equilibrium Orientations of the Satellite

Putting in (1) α = α0 = const, β = β0 = const, γ = γ0 = const, we obtain the stationary equations

a22a23 − 3a32a33 + k1a21 = 0, a21a23 − 3a31a33 + k2a22 = 0, a21a22 − 3a31a32 + k3a23 = 0, (2)

which specifies the equilibrium orientations of the satellite in the orbital coordinate system at
A � B � C, such that the orthogonality conditions for the direction cosines are fulfilled

ai1a j1 + ai2a j2 + ai3a j3 − δi j = 0, (3)

where δi j is the Kronecker delta and (i, j = 1, 2, 3). Here k1 = k̃1/(C − B), k2 = k̃2/(A − C),
k3 = k̃3/(B − A). We will consider the case when the damping coefficients k1, k2 and k3 are
positive.

Equations (2) and (3) form a closed system of equations with respect to the six direction cosines
identifying the satellite equilibrium orientations. For this system of equations we formulate the fol-
lowing problem: given k1, k2, and k3, determine all the nine directional cosines, i.e., all satellite
equilibrium orientations in the orbital coordinate system. After a21, a22, a23, a31, a32, and a33 are
found, the direction cosines a11, a12 and a13 can be determined from the conditions of orthogonality.

To find solutions of the algebraic system (2)–(3) we used the algorithm for constructing the Gröb-
ner bases [4], implemented as the package Groebner[Basis] in the computer algebra system Maple
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15 [5]. We constructed the Gröbner basis of the system of six second-order polynomials (2)–(3) with
six variables ai j (i = 2, 3; j = 1, 2, 3), with respect to the lexicographic ordering of variables by using
the option plex. The list of polynomials F includes the left-hand sides of algebraic equations. (2),
(3): G:=map(factor, Groebner[Basis](F, plex(a31, ... a22))). Below we write down
the polynomial in the Gröbner basis that depends only on one variable x = a22. This polynomial has
the simple form

a22(a2
22 − 1) = 0. (4)

The polynomials from the Gröbner basis that depend on the variables a21, a23 have similar forms
(a21(a2

21 − 1) = 0, a23(a2
23 − 1) = 0). The polynomial from the Gröbner basis that depends on the

variable a33 is: a33(a4
33 − 9a2

33 + k2
2)((a4

33 − 9a2
33 + k2

1) = 0.
To determine all equilibria, it is required to consider separately the following three cases: a22 = 1,

a22 = −1, and a22 = 0. In the first and second cases, i.e., a22 = ±1 (a21 = a23 = 0) the system (2), (3)
results in the following equilibrium solutions (k2 < 9/4):

a22 = ±1, a21 = a22 = a32 = 0; a2
31 = (3 ∓

√
9 − 4k2

2)/6, a2
33 = (3 ±

√
9 − 4k2

2)/6. (5)

In the third case, a22 = 0, it is easy to find from the system (2)–(3) two sets of simple equilibrium
solutions.

4 Necessary and Sufficient Conditions of Asymptotic Stability of the
Equilibrium Orientations of a Satellite

In order to study the necessary and sufficient conditions of asymptotic stability of the determined
above equilibrium orientations of the system (2)–(3) we use the linearized system of equations (1) in
the vicinity of the equilibrium solution (5)

α0 = ± arcsin
([(

3 −
√

9 − 4k2
)
/6
]1/2)
, β0 = γ0 = 0. (6)

The quantities α, β, and γ are written in the form α = α0 + ᾱ, β = β0 + β̄, γ = γ0 + γ̄, where ᾱ, β̄ and γ̄
are small deviations from the equilibrium orientation of the satellite α = α0, β = β0, γ = γ0, satisfying
the system of equations (2)–(3).

Now let us consider the small oscillations of the satellite in the vicinity of the specific equilibrium
orientation (6) in the case k1 = k2 = k3 = k. The linearized equations in this case take the form

¨̄α + k ˙̄α + 3(θA − θC)(cos2 α0 − sin2 α0)ᾱ = 0,
θC

¨̄β + k ˙̄β − (θA + θC − 1) ˙̄γ + (1 − θA)(1 + 3 sin2 α0)β̄ + [3(1 − θA) sinα0 cosα0 − k]γ̄ = 0, (7)
θA ¨̄γ + k ˙̄γ + (θA + θC − 1) ˙̄β + (1 − θC)(3 cos2 α0 + 1)γ̄ + [3(1 − θC) sinα0 cosα0 + k]β̄ = 0.

The characteristic equation of the system (7)

[λ2 + kλ + 3(θA − θC)
√

9 − 4k2](A0λ
4 + A1λ

3 + A2λ
2 + A3λ + A4) = 0. (8)

decomposes into quadratic and 4th degree equations. Here, the following notations are used:

A0 = θAθC , A1 = k(θC + θA), A4 = (1 − θA)(1 − θC)(3 + k2) + (θA + θC − 1)k2.

A2 = k2 + (θA + θC − 1)2 + [θA(1 − θA)(5 −
√

9 − 4k2) + θC(1 − θC)(5 +
√

9 − 4k2)]/2,

A3 = k[(θA + θC − 1)(θA − θC + 2) + [(1 − θC)(5 +
√

9 − 4k2) + (1 − θA)(5 −
√

9 − 4k2)]/2].
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The necessary and sufficient conditions for the asymptotic stability (Routh-Hurwitz criterion) of
the equilibrium solution (6) take the following form:

k > 0, θA − θC > 0, ∆1 = A1 > 0, ∆2 = A1A2 − A0A3 > 0,
∆3 = A1A2A3 − A0A2

3 − A2
1A4 > 0,∆4 = ∆3A4 > 0, (A4 > 0).

The detailed analysis of the regions where necessary and sufficient conditions of stability hold was
studied in the plane of the two dimensionless inertia parameters (θA, θC) at different values of the
damping coefficient k. It is evident that along with the conditions of stability the triangle inequalities
for a rigid body should also be satisfied, θA + θC > 1, θC + 1 > θA, θA + 1 > θC . One may disregard
the third triangle inequality, since it holds automatically at θA > θC . Thus, the region is limited by the
straight lines θC = 1 − θA, θC = θA, θC = θA − 1.

An example of such region and also all the lines at which the inequalities convert into equalities
for k = 0.5 is shown in Figure 1 left. The region where the necessary and sufficient conditions of
stability are satisfied is bounded by the above defined straight lines and by the hyperbola ∆4 = 0 and
are marked out by black color.

The numerical integration of system (1) has been done for different values of the parameter k.
The different types of transition decay processes of the spatial oscillations of the satellite at different
damping parameters has been investigated numerically. Figure 1 right shows an example of transition
decay processes of spatial oscillations for k = 0.5 at inertia parameters θA = 0.9, θC = 0.2, where the
conditions of asymptotic stability hold. The system in this case reaches the equilibrium position (6)
at all three angles, at the τ value equal to 25, which correspond to the 4 satellite turnover in the orbit.

Figure 1. Left: The region of fulfillment of the asymptotic stability conditions for k = 0.5.
Right: The transitional process of damping oscillations for k = 0.5, α0 = −0.2
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