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Abstract

The phenomenon of atomic population trapping in the Jaynes-Cummings

Model is analysed from a dressed-state point of view. A general condition

for the occurrence of partial or total trapping from an arbitrary, pure initial

atom-field state is obtained in the form of a bound to the variation of the

atomic inversion. More generally, it is found that in the presence of initial

atomic or atom-field coherence the population dynamics is governed not by the

field’s initial photon distribution, but by a ‘weighted dressedness’ distribution

characterising the joint atom-field state. In particular, individual revivals in

the inversion can be analytically described to good approximation in terms of

that distribution, even in the limit of large population trapping. This result is

obtained through a generalisation of the Poisson Summation Formula method

for analytical description of revivals developed by Fleischhauer and Schleich

[Phys. Rev. A 47, 4258 (1993)].
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I. INTRODUCTION

One of the most fundamental models of quantum optical resonance is the interaction of
a single two-level atom with a single quantised mode of radiation, described by the Jaynes-
Cummings Hamiltonian [1,2]. Despite being simple enough to be analytically soluble in the
rotating-wave approximation, this model has been a long-lasting source of insight into the
nuances of the interaction between light and matter. It has led to nontrivial predictions,
such as the existence of ‘collapses’ and ‘revivals’ in the atomic excitation [3], and has also
allowed a deeper understanding of the dynamical entangling and disentangling of the atom-
field system in the course of time [4]. Further interest in the Jaynes-Cummings model
(JCM) comes from the fact that these predictions are directly accessible to experimental
verification. A JCM interaction can be experimentally realized in cavity-QED setups [5]
and also, as an effective interaction, in laser-cooled trapped ions [6] (in which case the
ionic harmonic motion assumes the role normally played by the field mode). For example,
revivals in the atomic excitation have recently been observed in a cavity-QED experiment
[7], providing direct evidence for the discreteness of photons.

In spite of these successes, a closed analytical description of the collapse-revival pattern
has so far proved to be elusive; however, an elegant approximation scheme valid for a number
of initial conditions has been presented by Fleischhauer and Schleich [8], improving the
earlier work of Eberly and co-workers [3]. Among other things, they have demonstrated
that, when the atom is initially completely excited or de-excited, and the initial photon-
number distribution of the field (Pn) is sufficiently smooth (as is the case in a coherent
state) then the shape of each revival is a direct reflection of the shape of Pn. This direct
relationship can be affected by the presence of initial atomic coherence. It has been noticed
[9] that if the atom is initially prepared in a coherent superposition of its energy eigenstates,
then the revivals can be largely suppressed, effectively freezing the value of the atomic state
populations. Appropriately, these initial atomic states have been referred to as “atomic
trapping states” [9,10]. This population trapping has been connected to the existence of
a specific phase difference between the relative phase of the atomic superposition and the
phase of the initial field state [9]. In particular, in the resonant case exact trapping has been
shown to exist [11] if the field is initially prepared in a phase coherent state [12] (eigenstate of
the Susskind-Glogower phase operator [13]). As has been pointed out by Cirac and Sánchez-
Soto [14], this can be understood by the fact that in these cases only one state out of each
pair of dressed eigenstates of the JCM is ever populated.

We now note that, since the atomic excitation dynamics can be modified merely by
altering the initial atomic state, then it is apparent that the initial photon distribution cannot
be the sole responsible for the existence and shape of revivals. In fact, as we demonstrate
in this paper, the key to understand the collapse-revival pattern under more general initial
conditions is to consider not only the initial coherence of the atom and field by themselves,
but also their joint properties as a single quantum system. This is so even if the system is
initially disentangled. Building on Cirac and Sánchez-Soto’s observation, we find that the
revival structure depends essentially on the relative weight of each dressed eigenstate in the
initial atom-field state. We are able to identify an atom-field variable which plays, in the
general case, the same role as that of the photon distribution when the atom is initially
excited or de-excited. This allows us to estimate for any initial condition the degree of
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suppression of the revivals (that is, the amount of trapping which occurs). In addition,
in some particular cases we are able to describe analytically to a good approximation the
shape of the revivals, even when they are partially suppressed. To illustrate the dressed-
state distribution dependence of the revival patterns, we show that essentially identical
examples can be found both in the presence of initial atomic coherence, and in cases where
this coherence is not only atomic, but where atom and field are already entangled.

Our work is organised as follows: in section II, we rewrite the dynamics of the Jaynes-
Cummings model from a point of view based on the entangled dressed-state eigenbasis. With
the help of an appropriate coordinate system, the expression for the atomic inversion assumes
a simpler form; as a consequence, we are able to calculate bounds for the evolution of this
quantity for arbitrary initial conditions. In order to illustrate our technique, specific cases
are treated in section III. In section IV, we generalise Fleischhauer and Schleich’s scheme to
include the cases where trapping occurs. Our conclusions are summarised in section V.

II. DRESSED-STATE COORDINATES FOR THE JCM

A. The Model

The Jaynes-Cummings Hamiltonian, on resonance and in the rotating-wave approxima-
tion is given by [1,2]:

H =
1

2
h̄ωσ̂z + h̄ωâ†â+ h̄λ(σ̂+â+ â†σ̂−) (1)

where ω is the atomic transition frequency, λ is the atom-field dipole coupling constant, â†(â)
is the field photon creation (annihilation) operator and σ̂z, σ̂± are the atomic inversion, rising
and lowering operators. The first two terms in this expression describe the internal energy
levels of the spin-1/2-like 2-level atom and the harmonic oscillator-like field mode, and the
interaction term can be straightforwardly understood as a one-excitation exchange between
these two systems.

An important feature of this fully-quantised matter-radiation interaction is that its
steady states (known as ‘dressed states’) are entangled. Switching to an interaction-picture
representation for convenience, it can be shown that these states and their corresponding
energy levels are [15]:

|n±〉 =
1√
2
[|e, n〉 ± |g, n+ 1〉] (2a)

En± = ±h̄λ
√
n+ 1 ≡ ± h̄

2
Ωn (2b)

(Ωn is the Rabi frequency). It is apparent that in all these cases the atomic state is completely
undetermined, being an equal mixture of the excited and ground states. Thus, if we assume
that at t = 0 the atom and field are independently prepared in the states

|ψ (0)〉A = p |e〉+ q |g〉 (3)

|Φ (0)〉F =
∞
∑

n=0

cn |n〉 (4)
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then the initial state |Ψ (0)〉AF = |ψ (0)〉A ⊗ |Φ (0)〉F will evolve into

|Ψ (t)〉AF = qc0 |g, 0〉+

+
∞
∑

n=0





pcn cos
(

λt
√
n+ 1

)

−
−iqcn+1 sin

(

λt
√
n+ 1

)



 |e, n〉+

+
∞
∑

n=0





qcn+1 cos
(

λt
√
n+ 1

)

−
−ipcn sin

(

λt
√
n+ 1

)



 |g, n+ 1〉 (5)

Despite being straightforwardly solvable in this way, the JCM is well-known for the fact
that the time-evolution of most expectation values is usually expressible only in series form.
For instance, assume that at time t = 0 we have:

|Ψ (0)〉 = (p |e〉+ q |g〉)⊗
( ∞
∑

n=0

cn |n〉
)

= qc0 |g, 0〉+
∞
∑

n=0

pcn |e, n〉+ qcn+1 |g, n+ 1〉 (6)

The time evolution of the atomic population inversion is then given by:

〈σ̂z〉 (t) = 2
∞
∑

n=0

∣

∣

∣pcn cos
(

λt
√
n+ 1

)

− iqcn+1 sin
(

λt
√
n + 1

)∣

∣

∣

2 − 1

= − |qc0|2 +
∞
∑

n=0

(

|pcn|2 − |qcn+1|2
)

cos
(

2λt
√
n + 1

)

+

+2Im ((pcn)
∗
qcn+1) sin

(

2λt
√
n+ 1

)

(7)

where
∞
∑

n=0

|pcn|2 + |qcn+1|2 = 1− |qc0|2 (8)

In particular, if at t = 0 the atom is completely excited (q = 0) or in the ground state
(p = 0), and admitting for simplicity that c0 is negligible, then this expression reduces to
the simpler form

〈σz〉 (t) = ±
∞
∑

n=0

Pn cos
(

2λ
√
n+ 1t

)

(9)

where Pn = |cn|2is the initial photon distribution of the field. Due to the
√
n scaling of

the various Rabi frequencies in this sum, no closed form for it is known. Nevertheless, it
is apparent that features of this time evolution, such as collapse-revival phenomena, must
be directly related to the characteristics of Pn. The Fleischhauer-Schleich approximation
scheme, which we shall discuss in section IV, allows this relationship to be explicitly described
in certain situations, such as when Pn is sufficiently smooth.

Apart from the simple case represented above, in general there is no way to relate the
inversion dynamics exclusively to the initial field state. As can be seen from expression (7),
it will usually depend on atomic and field variables in an apparently complicated way. In
the next section, we show how this evolution can be recast in a simple form, reminiscent of
expression (9), independently of the initial conditions.
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B. Dressed-State Coordinates

Our discussion will be based on the relative contribution of each dressed state for the
global atom-field state. For simplicity, we restrict ourselves to pure initial conditions. There-
fore, we may expand an arbitrary initial state in terms of |n±〉 :

|Ψ(0)〉 = w−1 |g; 0〉+
∞
∑

n=0

wne
iχn |ψn〉 , (10)

where

|ψn〉 =
[

cos

(

θn

2

)

|n+〉+ e−iφn sin

(

θn

2

)

|n−〉
]

, (11)

with the normalisation condition
∑∞

n=−1w
2
n = 1. The parameters wn ∈ [0, 1] , θn ∈ [0, π] and

χn, φn ∈ [0, 2π] , will henceforth be referred to as dressed-state coordinates.
The use of this coordinate system allows us to obtain a simple geometrical picture of the

manifold of pure atom-field states. For each value of n ≥ 0 one can imagine a Bloch-type
spherical shell corresponding to the two-level system formed by |n±〉 (Fig. 1), which are
parametrised by the spherical coordinates θn and φn. The poles (θn = 0, π) are associated

to the dressed states |n±〉, and points on the equator
(

θn = π
2

)

to the states of the form
1√
2

[

|n+〉+ e−iφn |n−〉
]

, which include the particular product states |e, n〉 and |g, n+ 1〉 (cor-
responding to φn = 0, π). Therefore the coordinate θn gives a measure of what we shall call
the ‘dressedness’ (or degree of proximity to the nearest dressed state) of the components
|ψn〉 of |Ψ(0)〉. We note that, while this property is related to the entanglement of |ψn〉
(since the dressed states are in fact maximally entangled), they are two different concepts:
states with the same dressedness, such as |e, n〉 and cosµ |e, n〉 − i sinµ |g, n+ 1〉 can have
different amounts of entanglement (as measured by the von Neumann entropy of their sub-
systems). Meanwhile, the weight factors wn measure the relative importance of each of these
components. In physical terms, their squares w2

n correspond to the probability distribution
for measurements of the total excitation number operator

X̂tot =
1

2
σ̂z + N̂. (12)

on the initial state |Ψ (0)〉 ( w2
n corresponds to the probability for n + 1 excitations). We

note that, in the special case where the atom is prepared in one of the states |e〉 or |g〉, then
θn ≡ π

2
and φn ≡ 0 (π) for all n, while w2

n reduces to the photon number distribution:

w2
n →

{

Pn = |〈n|Φ (0)〉F |
2 (if |e〉)

Pn+1 = |〈n+ 1|Φ (0)〉F |
2 (if |g〉) . (13)

We now show that the dressed-state coordinate system allows a simple description of
the time evolution of any initial state. From equations (2a,b), the evolution of state (10) is
given by

|Ψ (t)〉 = w−1 |g, 0〉+
∞
∑

n=0

wne
i

2
(2χn−Ωnt)

[

cos

(

θn

2

)

|n+〉+ e−i(φn−Ωnt) sin

(

θn

2

)

|n−〉
]

. (14)
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We can re-express this directly in terms of the dressed-state coordinates:

wn(t) = wn(0)

θn (t) = θn (0) (15)

χn (t) = χn (0)−
1

2
Ωnt

φn (t) = φn (0)− Ωnt

Thus, wn and θn are both constants of motion, while the angles χn and φn precess with
a constant angular velocity proportional to the Rabi frequency Ωn. A way of visualising
this is by means of a geometrical image as in Fig. 1. The simplicity of this picture reflects
the symmetries of the resonant JCM: the conservation of X̂tot and the fact that, in the
interaction picture, the energies in each 2-dimensional eigensubspace generated by |n±〉 are
always symmetric with respect to zero.

1. Population Inversion in Dressed-State Coordinates

Let us now apply this coordinate system to describe the evolution of atomic variables.
In the basis {|e〉 , |g〉} , the reduced atomic density operator can be expressed as:

ρA (t) =

[

ρee (t) ρeg (t)
ρ∗eg (t) ρgg (t)

]

(16)

where

ρee (t) =
1

2

(

1− w2
−1

)

+
1

2

∞
∑

n=0

w2
n sin (θn) cos (φn (t)) ; ρgg (t) = 1− ρee (t) (17a)

ρeg (t) =
w−1w0√

2
ei(χ0(t))

(

cos

(

θ0

2

)

+ e−iφ0(t) sin

(

θ0

2

))

+

+
1

2

∞
∑

n=0

wnwn+1e
i(χn+1(t)−χn(t))

(

cos

(

θn+1

2

)

+ e−iφn+1(t) sin

(

θn+1

2

))

×

×
(

cos

(

θn

2

)

− eiφn(t) sin

(

θn

2

))

(17b)

We thus see that the evolution of the atomic level populations, and therefore of the
population inversion, can be expressed in a simple form for any initial condition:

〈σ̂z (t)〉 = 2ρee (t)− 1 = −w2
−1 +

∞
∑

n=0

w2
n sin (θn) cos (φn (t)) . (18)

This should be contrasted with the much more complicated expression (7) for this same
quantity, written in terms of separate atomic and field coordinates. In fact, we can see that
the present expression is a direct generalisation of eq. (9), obtained by phase-shifting the
nth term in the sum by φn (0) and by replacing the photon number distribution Pn with

Dn = w2
n sin (θn) . (19)
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It is not difficult to understand the reason for this substitution. First of all, as was noted
by Cirac and Sánchez-Soto [14], dressed states have no population inversion. Therefore,
if a component |ψn〉 of a given state |Ψ (0)〉 has a large ‘dressedness’ (sin (θn) → 0), it
will contribute very little to the overall inversion. Moreover, even if |ψn〉 does have a large
inversion, this may still be of little consequence to the total average 〈σ̂z (t)〉 if its relative
importance w2

n is small. Thus, the product Dn, which we shall refer to as the ‘weighted
dressedness distribution’ gives the appropriate magnitude of the contribution of |ψn〉 to the
inversion. In other words, for general initial conditions it is this distribution, not Pn, that
will control the evolution of the inversion. For instance, we can expect the existence of
collapse-revival structures if Dn is ‘narrow’, in the sense that few values of n (and therefore
few Rabi frequencies Ωn) feature significantly in the sum.

2. Population Trapping

The main difference between the general evolutions allowed by equation (18) and those
obtained in the special case (9) lies in the fact that the distribution Pn is normalised, while
Dn is generally not. This implies that, in general, there will be an upper bound for the
allowed range of variation of the population inversion, given by:

∣

∣

∣〈σ̂z (t)〉+ w2
−1

∣

∣

∣ ≤
∞
∑

n=0

Dn ≡M ≤ 1 (20)

As we can see, this bound is specified essentially by the average dressedness of the com-
ponents of |Ψ (0)〉. For example: if the most important components (those with largest
weights w2

n) are highly dressed (sin (θn) is small), then the amplitude of variation of the
population inversion will also be small (M ∼ 0). In other words, these are the conditions
for the existence of population trapping in the (resonant) JCM. The steady-state value of
the inversion is given simply by −w2

−1, i.e., by the fixed population in the ground state. We
emphasise that, given any initial condition, the bound M can be immediately calculated
from the constants of the motion wn, θn, thus giving an estimate of the amount of trapping
that can be expected from that state’s evolution [18].

III. EXAMPLES

In order to illustrate our technique, we analyse three classes of initial atom-field states
for which population trapping occurs:

A. Perfect Trapping States

In [11] , Cirac and Sánchez-Soto found a class of factorised initial conditions which exhibit
perfect trapping, that is, for which the atomic populations are strictly constant over time.
These were of the form:

|Ψ (0)〉 =
√

1− |z2| (z |e〉+ |g〉)⊗ 1
√

1 + |z2|

∞
∑

n=0

zn |n〉 (21)
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where |z| < 1. In this case, the field is prepared in an eigenstate of the Susskind-Glogower
phase operator V̂ =

∑∞
n=0 |n〉 〈n + 1| [13] (‘phase-coherent state’ [12]), while the atomic

superposition is chosen so that the phase of the atomic dipole matches that of the eigenvalue
z of the field state [19]. The resulting population trapping can thus be attributed to a suitable
matching of atomic and field parameters. However, as was later noticed by the same authors
[14], a clearer explanation can be found by using a dressed-state point of view: Rewriting
this state in terms of the dressed-state basis, we find

|Ψ (0)〉 =
√

√

√

√

1− |z2|
1 + |z2|

[

|g, 0〉+
∞
∑

n=0

√
2zn |n+〉

]

. (22)

The reason for the existence of trapping now becomes immediately clear: all the components
|ψn〉 of this state are completely dressed (sin (θn) ≡ 0), and thus do not contribute to the
inversion.

Cirac and Sánchez-Soto also stated [11] that these are the only factorised states exhibiting
perfect trapping. We note that this is not strictly true: the same result is still achieved for
all states of the form

|Ψ (0)〉 =
√

1− |z2| (z |e〉+ |g〉)⊗ 1
√

1 + |z2|

∞
∑

n=0

j (n) zn |n〉 (23)

where j (n) can be ±1 and |z| < 1 (in this case, the field state is not in general an eigenstate
of V̂ ). Once again, this can be seen by rewriting the state in the dressed-state basis. In this
case, we obtain

|Ψ (0)〉 =
√

√

√

√

1− |z2|
1 + |z2|

[

j (0) |g, 0〉+
∞
∑

n=0

√
2j (n) zn |n±〉

]

(24)

where for each n there is a single dressed state |n±〉 present, whose sign is the same as that

of the ratio j(n+1)
j(n)

. The converse statement is also easy to show: suppose |Ψ (0)〉 is a perfect
trapping state, of the form:

|Ψ (0)〉 = k (z |e〉+ |g〉)⊗
∞
∑

n=0

an |n〉

= ka0 |g, 0〉+
∞
∑

n=0

zan |e, n〉+ an+1 |g, n+ 1〉 (25)

where k is a constant and an, z are arbitrary. Then for each |ψn〉 component of this state
to be perfectly dressed it is necessary that:

an+1 = ±zan (26)

and hence

an ∝ ±zn. (27)

We recover expression (23) by noting that |z| must be less than 1 for |Ψ (0)〉 to be nor-
malisable. Thus, for the resonant JCM there can be no population trapping with positive
population inversion.
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B. Zaheer-Zubairy ‘atomic trapping states’

While the initial conditions considered above lead to perfect trapping, preparing the
appropriate field states requires elaborate state-engineering techniques. It has been shown
(numerically) by Zaheer and Zubairy, however, that approximate population trapping is also
possible if the cavity field is initially in a coherent state |α〉, which are easily accessible in
experiment [9]. This is portrayed in Fig. 2: if the atom is initially completely excited, the
inversion evolves according to the familiar collapse-revival pattern [3]; however, by suitably
rotating the atomic state, the revival peaks become more and more reduced, practically
disappearing when the atom is prepared in state

|ψ (0)〉A =
1√
2

(

|e〉+ e−iνa |g〉
)

(28)

(where να is the phase of the field’s coherent amplitude α). Close inspection also reveals
that, in this limit, the revival peaks become split into doublets.

In their work, Zaheer and Zubairy gave no quantitative explanation for this quenching
of the revivals, attributing it qualitatively to a “destructive interference between the atomic
dipole and the cavity eigenmode ”. Later, Cirac and Sánchez-Soto pointed out that the
existence of approximate trapping in this case should be expected due to similarities between
the properties of coherent states and of the phase coherent field states [11].

With the help of our dressed-state coordinate system, we can now give a quantitative
description of this effect. Let us suppose that the atom-field system is prepared in the state:

|ΨZZ (α, γ, ξ)〉 =
[

cos γ |e〉+ e−iξ sin γ |g〉
]

⊗ |α〉 , (29)

where the atom is in a coherent superposition of ground and excited states and the field is in
a coherent state (α = |α|eiνα). Expanding this state in terms of the dressed-state basis, we
find that its dressed-state coordinates have the following values (we have only listed those
relevant for the atomic inversion):

w2
n (α, γ, ξ) =

|α|2ne−|α|2

(n+ 1)!

[

(n + 1) cos2(γ) + |α|2 sin2(γ)
]

, n ≥ −1

sin θn (α, γ, ξ) =

∣

∣

∣(n+ 1) cos2(γ)− |α|2ei2(να−ξ) sin2(γ)
∣

∣

∣

(n+ 1) cos2(γ) + |α|2 sin2(γ)
, (θn ∈ [0, π]) (30)

cosφn (α, γ, ξ) =
(n+ 1) cos2(γ)− |α|2 sin2(γ)

∣

∣

∣(n+ 1) cos2(γ)− |α|2ei2(να−ξ) sin2(γ)
∣

∣

∣

sinφn (α, γ, ξ) =
|α|
√

(n+ 1) sin(2γ) sin (να − ξ)
∣

∣

∣(n+ 1) cos2(γ)− |α|2ei2(να−ξ) sin2(γ)
∣

∣

∣

, (φn ∈ [0, 2π]) .

The weight factors w2
n follow a Poisson distribution when γ is equal to zero (they reduce to

the photon number distribution of the coherent field) and have small deviations from that
distribution for any value of γ. For moderately large |α|, therefore, w2

n is maximised around
the integer nmax closest to |α|2 or |α|2 − 1. Meanwhile, it is not difficult to show that the
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sin θn distribution has an absolute minimum, located around nmin ≈ |α|2 tan2 γ − 1, with
minimum value given by

sin (θnmin
) ≃ sin (|να − ξ|) (31)

This indicates the component of |Ψ (α, γ, ξ)〉 having the largest dressedness.
Following the procedure outlined in section IIB 2, we can now see that to attain the

highest possible degree of population trapping we must maximise the largest dressedness,
and match it with the largest weight factor:

nmax = nmin → tan γ ≃ 1 (32a)

sin (θnmin
) = 0 → να = ξ (32b)

We thus explain the “atomic trapping state” (28) found by Zaheer and Zubairy: it is the one
for which the total atom-field state |ΨZZ (α, γ, ξ)〉 most closely resembles a “perfect trapping
state”, in the sense that its most important components |ψn〉 closely resemble dressed states.

It is clear from expression (30) that the degree of trapping experienced from initial state
|ΨZZ (α, γ, ξ)〉 depends both on the relative weight γ of each atomic state and on the phase
difference (να − ξ) between the atomic dipole phase and the field’s coherent amplitude. In
Fig. 3 we illustrate the change in the weighted dressedness distribution Dn as a function
of these parameters: on the left-hand side, we take equal weights for |e〉 and |g〉 , satisfying
condition (32a), and vary (να − ξ) from π

2
to 0. We can see the quenching of the distribution

as the dressedness of the component |ψnmax
〉 is increased. On the right-hand side, we keep

the phase difference null and vary the relative weight from 0 to π
4
, obtaining a similar effect

(in both cases, we have chosen α = 7). Comparing this figure with Fig. 2, it is apparent
that there is a striking similarity between the profile of the Dn distribution and the envelope
of the revivals in the corresponding time evolution, including the appearance of a doublet
structure in the limit of the optimal trapping conditions. As we shall see in section IV, this
is no coincidence.

C. ‘Even-odd’ entangled states

The achievement of population trapping in the previous examples was seen to be ulti-
mately caused by the quenching of the Dn distribution, and therefore by the joint properties
of the atom-field system. However, since the initial states considered were factorised into
atomic and field states, it could also be argued that the trapping was due to a suitable
matching of independent atomic and field parameters (i.e., the phase of the field’s coherent
amplitude matching the atomic dipole phase in the previous example). In order to stress
the underlying importance of the dressed-state point of view, we now show that essentially
identical evolution and trapping patterns for the population inversion can be obtained even
when the atom and field cannot be considered as independent quantum systems.

Consider the following class of states of the atom-field system:

|ΨEO (α, γ, ξ)〉 = cos(γ) |e〉A |even〉f + sin(γ)eiξ |g〉A |odd〉f , (33)

where |even〉f = 1√
2
(|α〉+ |−α〉) and |odd〉f = 1√

2
(|α〉 − |−α〉) are respectively even and

odd coherent states of the cavity field (here |α| is assumed large enough so that these states
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can be considered normalised). It can be seen that, apart from the limiting cases where

γ → 0, π
2
, these states are entangled. Furthermore, since |even〉f

(

|odd〉f
)

have nonzero

amplitudes only for even (odd) photon numbers, an expansion of this state in terms of
dressed states |n±〉 features only those with even n (in other words, w2n−1 = 0). Physically,
this implies that states of this form have zero average electric and magnetic fields, and zero

average atomic polarisation.
〈

â + â†
〉

=
〈

â− â†
〉

= 〈σ̂x〉 = 〈σ̂y〉 = 0 (34)

Thus, if at t = 0 the atom-filed system is in state |ΨEO (α, γ, ξ)〉, the population inversion
evolves according to eq. (18), but with only the even terms present:

〈σ̂z (t)〉 =
∞
∑

n=0

w2
2n sin(θ2n) cos(φ2n(t)). (35)

Now, it turns out that all these even-indexed dressed-state coordinates have values vir-
tually identical to the ones listed in expression (30) above for the state |ΨZZ (α, γ, ξ)〉 with
the same parameters α, γ, ξ. The only difference is a multiplication of the weights w2n in the
present case by a factor of 2, to preserve normalisation in spite of the absence of odd-indexed
components. The resulting time-evolution of the atomic inversion, plotted in Fig. 4, shows
that the quenching of revivals and appearance of a doublet structure as (να − ξ) → 0 pro-
ceed in essentially the same manner as in the previous case, the main difference being the
doubling of the frequency of revivals [20]. We note, however, that in the present case neither
of the parameters να, ξ can be unambiguously assigned exclusively to the atom or field, so
that population trapping in this case must necessarily be understood as a result of the joint
atom-field properties of the state in question.

It is also worth remarking that, due to the lack of atomic polarisation, the atomic reduced
density operators of these states are always diagonal in the |e〉 , |g〉 basis . Therefore, the
reduced entropy Sa = −Trρa ln ρa, which measures the degree of entanglement between the
atom and the field, is entirely determined by the population inversion:

Sa (t) = −ρee (t) ln (ρee (t))− (1− ρee (t)) ln (1− ρee (t))

= −1

2
(1− 〈σ̂z (t)〉) ln

(

1

2
(1− 〈σ̂z (t)〉)

)

−1

2
(1 + 〈σ̂z (t)〉) ln

(

1

2
(1 + 〈σ̂z (t)〉)

)

. (36)

Thus, in this case the existence of population trapping is equivalent to the atom and field
remaining (nearly) maximally entangled during their entire time-evolution. For any given
state |ΨEO (α, γ, ξ)〉 , a lower bound to the value of Sa (t) at any given instant of the evolution
is then given by:

Smin = −1

2
(1−M) ln

(

1

2
(1−M)

)

− 1

2
(1 +M) ln

(

1

2
(1 +M)

)

(37)

where M is the bound defined in eq. (20). For instance, in the case of the ‘trapping state’
depicted in Fig. 4, where, α = 7, γ = π

4
, ξ = 0 , we have Smin = 0.69005, very close to the

maximum possible value ln 2 ≃ 0.69315. Finally, we note that despite the existence of this
lower bound, it is still possible to devise schemes by which such entangled atom-field states
can be constructed [16,17].
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IV. POISSON SUMMATION FORMULA FOR REVIVALS IN THE CASE OF

POPULATION TRAPPING

In [8], Fleischhauer and Schleich obtained approximate analytical expressions for the
evolution of the atomic inversion, using a stationary-phase method based on the Poisson

Summation Formula [22]. They showed that in many cases the inversion can be written as
a sum in which each term ωk (t) is non-negligible only during a certain extension of time.
This is in contrast for instance with the expressions used in section IIA above, where each
term in the summation is periodic.

Their work was restricted to initial states of the form |g〉A⊗|Φ〉F , in which the inversion
is given by eq. (9). They were able to show that, if the photon distribution Pn of |Φ〉F is
sufficiently smooth, then the kth term in the Poisson sum for the inversion is given by

ωk (t) = − λt

π
√
2k3

P

(

n =
λ2t2

4π2k2

)

cos

(

λ2t2

2πk
− π

4

)

(38)

where P (n) is a continuous interpolation of Pn.
The main interest of this formulation is the fact that, if Pn is also sufficiently narrow,

then the term ωk (t) describes to a high accuracy the evolution of the inversion during
the kth revival. This can be readily seen from the formula above: this term describes a

rapid oscillation in time, modulated by an envelope centred around t ≃ 2πk
√

〈n〉
λ

and whose
format is essentially that of Pn. Therefore, for narrow enough Pn, some of the terms ωk (t)
become completely disjoint from the rest, describing an independent revival. Fleischhauer
and Schleich were able to use this formulation to derive many interesting results, such as the
decrease in amplitude and increase in width of each successive revival, and also the number
of revivals that can be resolved for a given state, before they become scrambled due to their
increasing width and consequent interference with each other. Finally, they were also able
to extend the technique to some cases where Pn is not smooth, such as in squeezed states.

Using our dressed-state formulation for the population inversion, eq. (18), we are able to
extend the Poisson Summation Formula method to even more general initial states, including
ones with atomic or atom-field coherence. In the Appendix we show that, under suitable
conditions, the behaviour of the atomic inversion during its kth revival is described by:

〈σz (t)〉 ≃
(

λt

π
√
2k3

) [

D (n) cos

(

φn (0) +
λ2t2

2πk
− π

4

)]∣

∣

∣

∣

∣

n+1= λ2t2

4π2k2

(39)

where D (n) is a continuous interpolation of the ‘weighted dressedness’ distribution Dn of
the initial state. Thus, in general it is this distribution, not Pn, that is reflected in the
shape of each revival. In particular, in the case of population trapping, the quenching of the
revivals mirrors that of Dn. This explains the similarity between the profiles in Figs. 2 and
3, including the doublet structure of the revivals in the limit of maximum trapping.

In order to display the accurateness of this expression, we use it to calculate the revivals
in the case of the Zaheer-Zubairy states |ΨZZ (α, γ, ξ)〉 introduced above. From expressions
(30) for the dressed coordinates, we see that in this case the weighted dressedness distribution
is given by
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Dn (α, γ, ξ) =
√

Q2
1 (n) + Q2

2 (n)− 2Q1 (n) · Q2 (n) · cos 2 (να − ξ) (40)

where

Q1 (n) = exp
(

− |α|2
) |α|2n
(n)!

cos2 (γ) (41a)

Q2 (n) = exp
(

− |α|2
) |α|2(n+1)

(n+ 1)!
sin2 (γ) (41b)

For sufficiently large α, these Poissonian distributions are well approximated by Gaussians:

Q1 (n) ≃ cos2 (γ)√
2π |α|

exp







−
(

n− |α|2
)2

2 |α|2





 (42a)

Q2 (n) ≃ sin2 (γ)√
2π |α|

exp







−
(

n + 1− |α|2
)2

2 |α|2





 . (42b)

Extending these to continuous values of n and substituting in (40) (39) we obtain an an-
alytical expression for the kth revival in the inversion. In Fig. 5 we plot the first two of
these (k = 1, 2) in the cases of maximum and minimum population trapping, alongside the
corresponding exact evolutions obtained numerically. Despite a little distortion, agreement
is seen to be very good.

A similar calculation is also possible in the case of the entangled ‘even-odd’ states
|ΨEO (α, γ, ξ)〉 presented in the previous section. In this case, formula (39) given above
for the inversion is not valid, due to the strong oscillations in Dn [Dn = 0 for odd n].
However, it is possible to adapt our calculations to this situation (see section A1 in the
Appendix), obtaining the expression:

〈σz (t)〉 ≃
(

λt

π
√
k3

)[

D (m) cos

(

φ2m(0) +
λ2t2

2πk
+ πk − π

4

)]

∣

∣

∣

∣m+1= λ2t2

π2k2

(43)

for the inversion during the kth revival. Here D (m) is a continuous interpolation of the even-
indexed terms of Dn, renumbered with the new index m (D (m = 3) = D6, for instance).
Comparing with expression (39) above for the Zaheer-Zubairy states, we can see that the
main difference in the present case is that the frequency of revivals is doubled: the kth

revival occurs around tEO
k ≃ πk

√
〈m〉+1

λ
, compared to tZZ

k =
2πk

√
〈n〉+1

λ
in the previous case.

This difference is due essentially to the doubling of the separation between adjacent Rabi
frequencies in the present case [21], and is illustrated by comparing Figs. 2 and 4.

V. CONCLUSION

Intuitive pictures of the interaction between a two-level atom and an electric field com-
monly involve the expectation that the atomic level populations must change as both sys-
tems exchange excitations over the course of time [24]. This is due to the absence of further
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atomic levels, which precludes the existence of destructive interference between different
atomic transitions. However, in a fully-quantised interaction model such as the Jaynes-
Cummings model, it is indeed possible to have states in which the atomic populations are
completely or nearly completely trapped. This can be ultimately traced to the fact that
the eigenstates of this model are entangled. We have shown that, by giving up the tradi-
tional point of view based on the individuality of each subsystem and assuming instead one
based on these entangled dressed states, it is possible to obtain a quantitative understand-
ing of population trapping in this model. This is achieved via the introduction of a set of
joint atom-field state variables, the ‘weighted dressedness’ distribution Dn (eq. 19). We
have shown that, for general initial conditions, this distribution governs the evolution of the
atomic inversion, assuming a role commonly attributed to the photon number distribution
Pn (to which it reduces in particular cases). Using Dn, we have obtained an upper bound
to the amplitude of population oscillations that can be expected from a given state at any
instant of its evolution. We have also been able to obtain an approximate analytical descrip-
tion of the behaviour of the atomic inversion during partially suppressed revivals. We have
found that in general the shape of revival envelopes is a direct reflection of the form of (a
continuous interpolation of ) Dn. In the particular case of a field initially in a coherent state,
this explains the appearance of a doublet structure in the revivals in the limit of greatest
population trapping.

VI. ACKNOWLEDGEMENTS

We would like to thank Dr. S.M. Dutra and Prof. P.L. Knight for helpful com-
ments and discussions. This work was supported by Conselho Nacional de Desenvolvimento
Cient́ifico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de São
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APPENDIX A: APPROXIMATE EXPRESSIONS FOR REVIVALS IN THE

ATOMIC POPULATION INVERSION FOR GENERALISED INITIAL

CONDITIONS

In this Appendix, we calculate approximate expressions for the revivals in the atomic
population inversion, which are valid for a wide variety of pure initial conditions of the
atom-field system. These calculations generalise the method presented by Fleischhauer and
Schleich [8], who assumed an initially factorised state of the form |g〉A ⊗ |ψ〉F . The result
they obtained for the kth revival is:

〈σ̂z (t)〉 ≃ −P
(

n =
λ2t2

4π2k2

)

λt

π
√
2k3

cos

(

λ2t2

2πk
− π

4

)

(A1)

where Pn is the photon distribution of state |ψ〉C . In the case of more general initial con-
ditions, including ones with atomic and atom-field coherence, we shall see that the form
of the revival envelope depends not on the state’s photon-number distribution, but on the
‘weighted dressedness’ distribution Dn given in equation (19).
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As was shown in section IIB 1, the inversion, written in terms of dressed-state coordi-
nates, has the form:

〈σ̂z (t)〉 = −w−1 +
∞
∑

n=0

Dn cos (φn (t)) (A2)

where

φn (t) = φn (0)− Ωnt (A3)

This expression can be rewritten according to the Poisson Summation Formula (see
Courant and Hilbert [22], p.. 76 )

〈σ̂z (t)〉 =
∞
∑

k=−∞
ωk (t) + τ0 (t) (A4)

where

ωk (t) =
∫ ∞

0
dnD (n) cos (φn (0)− Ωnt) e

2iπkn (A5a)

τ0 (t) =
1

2
D (0) cos (φ0 (0)− 2λt)− w−1 (A5b)

and where D (n) is any ‘reasonable’ function of a continuous variable n (continuous, differ-
entiable, etc.), that interpolates between the values of Dn at the points where n integer.

Noting that the sum in k in (A4) extends to ±∞, so that the expression is invariant
under k ↔ −k, it is possible to substitute eq. (A5a) by:

ωk (t) =
∫ ∞

0
dnD (n) cos (φn (0)− 2Sk (n, t)) = (A6)

=
∫ ∞

0
dnD (n) cos (φn (0)) cos (2Sk (n, t)) +

+
∫ ∞

0
dn sin (φn (0)) sin (2Sk (n, t)) (A7)

= Re

∫ ∞

0
dnD1 (n) exp (2iSk (n, t)) + Im

∫ ∞

0
dnD2 (n) exp (2iSk (n, t)) (A8)

where we have defined

Sk (n, t) = πkn− λt
√
n+ 1 (A9a)

D1 (n) = D (n) cos (φn (0)) (A9b)

D2 (n) = D (n) sin (φn (0)) . (A9c)

In this way, the inversion may be rewritten (without any approximation) as

〈σ̂z (t)〉 =
∞
∑

k=−∞
ω1
k (t) + ω2

k (t) + τ0 (t) (A10)

where
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ω1
k (t) ≡ Re

∫ ∞

0
dnD1 (n) exp (2iSk (n, t)) (A11a)

ω2
k (t) ≡ Im

∫ ∞

0
dnD2 (n) exp (2iSk (n, t)) (A11b)

Now, assuming the envelopes D1 (n) andD2 (n) are sufficiently smooth if compared to the
oscillating functions cos (2Sk (n, t)) , sin (2Sk (n, t)) , we may apply the method of stationary
phases, approximating these expressions by:

ω1
k (t) ≃ D1 (n = nk)Re







exp (2iSk (n = nk))×
× ∫∞0 dn exp

[

i ∂2Sk

∂n2

∣

∣

∣

n=nk

(n− nk)
2
]







(A12a)

ω2
k (t) ≃ D2 (n = nk) Im







exp (2iSk (n = nk))×
× ∫∞0 dn exp

[

i ∂2Sk

∂n2

∣

∣

∣

n=nk

(n− nk)
2
]







(A12b)

where nk is the point at which ∂Sk

∂n
= 0 :

nk + 1 =
λ2t2

4π2k2
(A13)

We note that these expressions are invalid for k = 0, since in this case the phase is always
stationary (=0). Substituting in (A9a) ,we obtain:

Sk (n = nk) = −
(

πk +
λ2t2

4πk

)

(A14)

∂2Sk

∂n2

∣

∣

∣

∣

∣

n=nk

= 2
π3k3

λ2t2
≡ F (A15)

Now, the integral in (A12a, b)may be written in terms of the Fresnel integrals [23]:

C (x) =

√

2

π

∫ x

0
dy cos

(

y2
)

dy (A16a)

S (x) =

√

2

π

∫ x

0
dy sin

(

y2
)

dy (A16b)

For instance, for F > 0 :

∫ ∞

0
dn exp

(

iF (n− nk)
2
)

=

√

π

2F

[

C (x→ ∞) + C
(√

Fnk

)

+ i
(

S (x→ ∞) + S
(√

Fnk

))]

(A17)

The asymptotic form of the Fresnel integrals for x→ ∞ [23] is:

C (x) ≃ 1

2
+

√

1

2π

sin (x2)

x
+O

(

1

x2

)

(A18a)

S (x) ≃ 1

2
+

√

1

2π

cos (x2)

x
+O

(

1

x2

)

(A18b)
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Assuming
√

|F |nk ≫ 1 and taking these approximations to zeroth order, we have:

∫ ∞

0
dn exp

(

iF (n− nk)
2
)

≃
√

π

2F
(1 + i) (valid for F > 0) (A19)

Similarly, for F < 0

∫ ∞

0
dn exp

(

iF (n− nk)
2
)

≃
√

π

2 |F | (1− i) (A20)

Using (A15) and (A13) ,condition
√

|F |nk ≫ 1 becomes:

λt≫ 2
(

√

π |k|+
√

2π |k|+ 4π2k2
)

(A21a)

ou ≪ 2
(

√

π |k| −
√

2π |k|+ 4π2k2
)

(A21b)

for k = 1, for example, this requires λt≫ 17
Substituting the asymptotic expressions (A19) , (A20)in (A12a, b) , we obtain for k > 0

(or k < 0):

ω1
k (t) ≃ D1 (n = nk)

√

π

2F

[

cos
(

2Sk|n=nk

)

∓ sin
(

2Sk|n=nk

)]

(A22a)

ω2
k (t) ≃ D2 (n = nk)

√

π

2F

[

cos
(

2Sk|n=nk

)

± sin
(

2Sk|n=nk

)]

(A22b)

Thus, using (A15) and (A10) ,the inversion may be written:

〈σ̂z (t)〉 =
∞
∑

k=−∞,k 6=0

(

λt

2πk
3

2

)





D1 (n = nk)
[

cos
(

2Sk|n=nk

)

∓ sin
(

2Sk|n=nk

)]

+

D2 (n = nk)
[

cos
(

2Sk|n=nk

)

± sin
(

2Sk|n=nk

)]



+ ω1
0 + ω2

0 + τ0

(A23)

(where the upper(lower) sign is valid for the terms with k > 0(< 0). Finally, substituting
the value (A14) for Sk|n=nk

:

〈σ̂z (t)〉 =
∞
∑

k=−∞,k 6=0

(

λt

2πk
3

2

)





(

D1 +D2|n=nk

)

cos
(

2πk + λ2t2

2πk

)

±
±
(

D1 −D2|n=nk

)

sin
(

2πk + λ2t2

2πk

)



+ ω1
0 + ω2

0 + τ0

=
∞
∑

k=−∞,k 6=0

(

λt

2πk
3

2

)

D (n)|n=nk





(

cos (φn (0)) + sin (φn (0))|n=nk

)

cos
(

λ2t2

2πk

)

±
±
(

cos (φn (0))− sin (φn (0))|n=nk

)

sin
(

λ2t2

2πk

)



+

+ω1
0 + ω2

0 + τ0 (A24)

Finally, since:

(cos (x) + sin (x)) cos (y)± (cos (x)− sin (x)) cos (y) =
√
2 cos

(

x± y − π

4

)

(A25)

then the approximate expression for the inversion is:
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〈σ̂z (t)〉 =
∞
∑

k=−∞,k 6=0

(

λt√
2πk

3

2

) [

D (n) cos

(

φn (0)±
λ2t2

2πk
− π

4

)]∣

∣

∣

∣

∣

n+1= λ2t2

4π2k2

+ ω1
0 + ω2

0 + τ0

(A26)

where the upper (lower) sign is valid for the terms with k > 0 (< 0),and where τ0 and
ω1
0 + ω2

0 are given by

τ0 (t) =
1

2
D (0) cos (φ0 (0)− 2λt)− w−1 (A27a)

ω1
0 + ω2

0 (t) = ω0 (t) =
∫ ∞

0
dnD (n) cos

(

φn (0)− 2λt
√
n+ 1

)

(A27b)

The first of these two last terms represents the contribution to the inversion of the
states in which the field is in a vacuum state. For the initial conditions which satisfy the
approximations that have been made above, this term will normally be negligible (see below).
The second term assumes non-negligible values only in the vicinity of t = 0. This is due
to the fact that it is an integral over oscillating functions with different frequencies, which
rapidly cancel each other out; also, since these frequencies form a continuum, they cannot
re-phase substantially at subsequent times. Fleischhauer and Schleich have thus conjectured
that zero-order terms of the Poisson Formula such as this always describe the first collapse
of the inversion shortly after t = 0.

The remaining terms ( k 6= 0 ) each describe a modulated oscillation in the inversion,
with an envelope given essentially by the shape of D (n) and assuming non-negligible values

only in an interval around t ≃ 2πk
√

〈n〉+1

λ
(here 〈n〉 represents a value of n around the peak

of D (n)). If D (n) is sufficiently narrow, the first few of these modulated oscillations will be
well-separated in time, thus constituting an independent revival during which the inversion
is described by

〈σ̂z (t)〉 ≃
(

λt

π
√
2k3

) [

D (n) cos

(

φn (0)±
λ2t2

2πk
− π

4

)]∣

∣

∣

∣

∣

n+1= λ2t2

4π2k2

(A28)

When the initial state is of the form|g〉A ⊗ |ψ〉C , we have

φn (0) → π , D (n) → Pn+1 (A29)

( Pn being the photon distribution of |ψ〉C), so that Fleischhauer and Schleich’s result (A1)
is recovered (eq. (2.8b) in [8] ).

This expression is valid as long as:

a) The distributions Dn cos (φn (0)) and Dn sin (φn (0)) vary slowly with n if compared
with cosSk (n, t) = cos(πkn− λt

√
n + 1).

b) The value of t obeys conditions (A21a, b) . This implies that, for the kth term of the
sum above to describe well the kth revival, D (n) must assume its largest values in the
region of n where:

n + 1 ≫
4
(

3πk + 4π2k2 + 2πk
√
2 + 4πk

)

4π2k2
= 4 +

1

2πk

(

3

2
+
√
2 + 4πk

)

(A30)
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Thus, the approximation can be expected to be good for all revivals if the initial state
has at least 10 or so photons on average in the field. This will usually also ensure that
the component τ0, which depends on D (0), (eq. (A27a)), can be ignored.

It is straightforward to show that in the examples of section IV, where the dressed-state
coordinates are given by expressions (30) and where |α| = 7, both of these conditions are
satisfied.

1. Variation for ‘even-odd’ states [where w2n−1 = 0]

In the case of ‘even-odd’-type states such as |ΨEO (α, γ, ξ)〉, where only the dressed-state
coordinates wn with even index are non-null (w2n−1 = 0), condition (a) above is violated
and expression (A26) is thus invalid. Nevertheless, a similar analytical expression for the
inversion can still be derived if eq. (A2) is rewritten considering only the terms with even
n. In this case, it is straightforward to show that, as long as the ‘continuous versions’ of
distributions D2n cos (φ2n (0)) and D2n sin (φ2n (0)) are sufficiently smooth as a function of

n, then the same stationary-phase method as was used above can be applied, resulting in:

〈σ̂z (t)〉 ≃
∞
∑

k=−∞,k 6=0

(

λt

πk
3

2

) [

D (m) cos

(

φ2m (0)± λ2t2

2πk
+ πk − π

4

)]∣

∣

∣

∣

∣

m+1= λ2t2

π2k2

+ ω1
0 + ω2

0 + τ0

(A31)

Here D (m) is a continuous interpolation of the even-indexed terms of Dn, renumbered
with the new index m (D (m = 3) = D6, for instance). τ0 and ω1

0 + ω2
0 are still given by

(A27a, b) ,except one must substitute n→ m.

Once again, it is possible to show that the approximations realised in the course of
obtaining this formula remain valid as long as D (m) assumes significant values only for
2m >∼ 10. (Thus, whenever the formula is applicable the term τ0 can be ignored).

19



REFERENCES

[1] E.T. Jaynes and F.W. Cummings, Proc. IEEE 51, 89 (1963).
[2] B.W. Shore and P.L. Knight, J. Mod. Opt.40, 1195 (1993).
[3] J.H. Eberly, N.B. Narozhny, and J.J.Sanchez-Mondragon, Phys. Rev. Lett. 44, 1323

(1980); N.B. Narozhny, J.J. Sanchez-Mondragon, and J.H. Eberly, Phys. Rev. A 23,
236 (1981); H.I. Yoo, J.J. Sanchez-Mondragon and J.H. Eberly, J. Phys A 14 ,1383
(1981).

[4] S.J.D. Phoenix and P.L. Knight, Ann. Phys. (N.Y.), 186, 381 (1988); Phys. Rev. A 44,
6023 (1991); A. Ekert and P.L. Knight, Am. J. Phys. 63, 415 (1995).

[5] See for instance: S. Haroche and J.M. Raimond, in Adv. At. Mol. Opt. Phys., Suppl. 2

(Academic Press, New York, 1994) and references therein.
[6] C.A. Blockley, D.F. Walls and H. Risken, Europhys. Lett. 17, 509 (1992); D.M. Meekhof,

C.Monroe, B.E. King, W.M. Itano and D.J. Wineland, Phys. Rev. Lett. 76 ,1796; 77,
2346 (1996)

[7] M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, J.M. Raimond, and S. Haroche, Phys.
Rev. Lett. 76, 1800 (1996).

[8] M. Fleischhauer and W.P. Schleich, Phys. Rev. A 47, 4258 (1993).
[9] K. Zaheer and M.S. Zubairy, Phys. Rev. A 39, 2000 (1989).
[10] Julio Gea-Banacloche, Phys. Rev. A 44, 5913 (1991).
[11] J.I. Cirac and L.L. Sánchez-Soto, Phys. Rev. A 42, 2851 (1990).
[12] J.H. Shapiro and S.R. Shepard, Phys. Rev. A 43, 3795 (1991).
[13] L. Susskind and J. Glogower, Physics, 1, 49 (1964).
[14] J.I. Cirac and L.L. Sánchez-Soto, Phys. Rev. A 44, 3317 (1991).
[15] P. Meystre and M. Sargent III, Elements of Quantum Optics, 2nd ed. (Springer-Verlag,

Berlin, 1991).
[16] D. Jonathan, M.Sc. thesis, Universidade Estadual de Campinas, 1997.
[17] D. Jonathan, K. Furuya and A.Vidiella-Barranco, in preparation.
[18] A similar bound on the degree of deviation of the field photon statistics from an initial

Poissonian distribution has been given in M.Hillery, Phys. Rev. A 35, 4186 (1987).
[19] We remark that expression (16a) given in [11] for the atomic state in this case is actually

mistaken, and should be replaced with the one given in expression (21) above.
[20] This phenomenon, which we address quantitatively in the next section, is essentially

due to the increased spacing between adjacent Rabi functions. See [21].
[21] A. Vidiella-Barranco, H. Moya-Cessa and V. Buzek, J. Mod. Opt. 39, 1441 (1992).
[22] R. Courant and D. Hilbert, Methods of Mathematical Physics, vol I (Interscience , 1953).
[23] I.S. Gradsteyn and L.M. Ryzhik, Tables of Integrals, Series and Products (Academic

Press, New York, 1965).
[24] H.-I. Yoo and J.H. Eberly, Phys. Rep. 118, 239 (1985).

20



FIGURE CAPTIONS

FIG. 1. ‘Dressed-state coordinates’ for the Jaynes-Cummings model. Any state of
the atom-field system can be represented in terms of the set of parameters θn, φn, wn, ξn as
defined in eqs.(10) and (11). For each n, the first two of these can be pictured as forming a
Bloch-type unit sphere, while the second two parametrise a circle of radius wn. Under the
effect of the Jaynes-Cummings Hamiltonian, wn and θn are constants of the motion, while
φn and ξn undergo periodic motion at a frequency determined by the Rabi frequency Ωn.

FIG. 2.Evolution of the atomic population inversion for an initial state where the field is
in a coherent state and the atom is in an equally-weighed coherent superposition of |e〉 and
|g〉, with relative phase ξ (see eq. (29)). The amplitude of the coherent state is α = |α| eiνα,
where |α| = 7 (49 photons on average in the field). In (a), the relative phase (να − ξ)is
equal to π

2
, and the evolution follows the familiar collapse-revival pattern. As this phase

difference is lowered to π
10

(b) and finally zero (c), the revivals are quenched, and the atomic
populations become effectively trapped (notice the scale change in (c) ). Simultaneously to
this flattening, the revivals also assume a doublet structure.

FIG. 3. ‘Weighted dressedness’ distributions Dn = w2
n sin θn for states where the field is

in a coherent state |α〉 with amplitude α = 7eiνα and the atom is in a coherent superposition
cos γ |e〉+e−iξ sin γ |g〉. In (a), γ is fixed at π

4
(equal weights), while the relative phase (να−ξ)

varies from π
2
(I) to π

4
(II) to zero (III). The resulting flattening of Dn is due to the increasing

dressedness of the components with the greatest weights wn. In (b), (να−ξ) is fixed at zero,
while γ varies from π

2
(1) to π

3
(2) to π

4
(III). In this case, the flattening corresponds to the

matching of the points nmax of maximum weight and nmin of maximum dressedness (see eqs.
30 ). The limit of maximum flattening corresponds to the greatest degree of population
trapping in the time evolution. The appearance of a doublet structure in this limit is due
to the most important component of the state becoming completely dressed (sin θnmax

→ 0).
This is reflected in the shape of the quenched revivals, as can be seen in Fig. 2.

FIG. 4. Evolution of the atomic population inversion when the atom-field system is
initially in the entangled ‘even-odd’ state |ΨEO (α, γ, ξ)〉 given in expression (33). The
parameters in (a)-(c) are the same as those in Fig. 2. As in that case, a quenching of
revivals and appearance of a doublet structure is observed as (να − ξ) → 0. The main
difference in the present case is the halving of the interval between adjacent revivals, due to
the doubled spacing between the Rabi frequencies present.

FIG. 5. First and second revivals in the inversion for an initial state where the atom
is in a coherent superposition of |e〉 and |g〉 and the field is in a coherent state |α〉 with
amplitude α = 7. The top two graphs are close-ups of Figs. 2(a) and 2(c) and depict
the numerical calculation of the Jaynes-Cummings sum (18). The bottom two plot the
approximate analytical expression (39), obtained from the Poisson Summation Formula.
Despite a little distortion, agreement is seen to be good. Note that, at the tail end of (a1)
and (a2), the beginning of the third revival can already be seen interfering with the second
one, while in (b1) and (b2) only the analytical expressions for first two revivals are plotted.
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