Altundağ and Kamber *Journal of Inequalities and Applications* 2014, 2014:40 http://www.journalofinequalitiesandapplications.com/content/2014/1/40

 Journal of Inequalities and Applications a SpringerOpen Journal

RESEARCH

Lacunary Δ -statistical convergence in intuitionistic fuzzy *n*-normed space

Selma Altundağ^{*} and Esra Kamber

*Correspondence: scaylan@sakarya.edu.tr Department of Mathematics, Sakarya University, Sakarya, 54187, Turkey

Abstract

The concept of lacunary statistical convergence was introduced in intuitionistic fuzzy n-normed spaces in Sen and Debnath (Math. Comput. Model. 54:2978-2985, 2011). In this article, we introduce the notion of lacunary Δ -statistically convergent and lacunary Δ -statistically Cauchy sequences in an intuitionistic fuzzy n-normed space. Also, we give their properties using lacunary density and prove relation between these notions.

MSC: 47H10; 54H25

Keywords: statistical convergence; lacunary sequence; difference sequence; intuitionistic fuzzy *n*-normed space

1 Introduction

Fuzzy set theory was introduced by Zadeh [1] in 1965. This theory has been applied not only in different branches of engineering such as in nonlinear dynamic systems [2], in the population dynamics [3], in the quantum physics [4], but also in many fields of mathematics such as in metric and topological spaces [5-7], in the theory of functions [8, 9], in the approximation theory [10]. 2-normed and *n*-normed linear spaces were initially introduced by Gähler [11, 12] and further studied by Kim and Cho [13], Malceski [14] and Gunawan and Mashadi [15]. Vijayabalaji and Narayanan [16] defined fuzzy n-normed linear space. After Saadati and Park [17] introduced the concept of intuitionistic fuzzy normed space, Vijayabalaji et al. [18] defined the notion of intuitionistic fuzzy n-normed space. The notion of statistical convergence was investigated by Steinhaus [19] and Fast [20]. Then a lot of authors applied this concept to probabilistic normed spaces [21, 22], random 2-normed spaces [23] and finally intuitionistic fuzzy normed spaces [24, 25]. Fridy and Orhan [26] introduced the idea of lacunary statistical convergence. Using this idea, Mursaleen and Mohiuddine [27], Sen and Debnath [28] investigated lacunary statistical convergence in intuitionistic fuzzy normed spaces and intuitionistic fuzzy *n*-normed spaces, respectively. The idea of difference sequences was introduced by Kızmaz [29] where $\Delta x = (\Delta x_k) = x_k - x_{k+1}$. Başarır [30] introduced the Δ -statistical convergence of sequences. Bilgin [31] introduced the definition of lacunary strongly Δ -convergence of fuzzy numbers. Hazarika [32] gave the definition of lacunary generalized difference statistical convergence in random 2-normed spaces. Also, the generalized difference sequence spaces were studied by various authors [33–35]. In this article, we shall introduce lacunary Δ -statistical convergence and lacunary Δ -statistically Cauchy sequences in IFnNLS.

©2014 Altundağ and Kamber; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

2 Preliminaries, background and notation

In this section, we give the basic definitions.

Definition 2.1 ([27]) A binary operation $* : [0,1] \times [0,1] \rightarrow [0,1]$ is said to be a continuous *t*-norm if it satisfies the following conditions:

- (i) * is associative and commutative,
- (ii) * is continuous,
- (iii) a * 1 = a for all $a \in [0, 1]$,
- (iv) $a * b \le c * d$ whenever $a \le c$ and $b \le d$ for each $a, b, c, d \in [0, 1]$.

Definition 2.2 ([27]) A binary operation \circ : $[0,1] \times [0,1] \rightarrow [0,1]$ is said to be a continuous *t*-conorm if it satisfies the following conditions:

- (i) \circ is associative and commutative,
- (ii) ∘ is continuous,
- (iii) $a \circ 0 = a$ for all $a \in [0, 1]$,
- (iv) $a \circ b \leq c \circ d$ whenever $a \leq c$ and $b \leq d$ for each $a, b, c, d \in [0, 1]$.

Definition 2.3 ([27]) Let $n \in \mathbb{N}$ and X be a real vector space of dimension $d \ge n$ (here we allow it to be infinite). A real-valued function $\|\bullet, \dots, \bullet\|$ on $X \times \dots \times X = X^n$ satisfying the following four properties:

- (i) $||x_1, x_2, \dots, x_n|| = 0$ if and only if x_1, x_2, \dots, x_n are linearly dependent,
- (ii) x_1, x_2, \ldots, x_n are invariant under any permutation,
- (iii) $||x_1, x_2, \dots, \alpha x_n|| = |\alpha| ||x_1, x_2, \dots, x_n||$ for any $\alpha \in \mathbb{R}$,
- (iv) $||x_1, x_2, \dots, x_{n-1}, y + z|| \le ||x_1, x_2, \dots, x_{n-1}, y|| + ||x_1, x_2, \dots, x_{n-1}, z||,$

is called an *n*-norm on *X* and the pair is called an *n*-normed space.

Definition 2.4 ([28]) An IFnNLS is the five-tuple $(X, \mu, \upsilon, *, \circ)$ where *X* is a linear space over a field *F*, * is a continuous *t*-norm, \circ is a continuous *t*-conorm, μ , υ are fuzzy sets on $X^n \times (0, \infty)$, μ denotes the degree of membership and υ denotes the degree of nonmembership of $(x_1, x_2, ..., x_n, t) \in X^n \times (0, \infty)$ satisfying the following conditions for every $(x_1, x_2, ..., x_n) \in X^n$ and s, t > 0:

- (i) $\mu(x_1, x_2, ..., x_n, t) + \upsilon(x_1, x_2, ..., x_n, t) \le 1$,
- (ii) $\mu(x_1, x_2, \dots, x_n, t) > 0$,
- (iii) $\mu(x_1, x_2, \dots, x_n, t) = 1$ if and only if x_1, x_2, \dots, x_n are linearly dependent,
- (iv) $\mu(x_1, x_2, \dots, x_n, t)$ is invariant under any permutation of x_1, x_2, \dots, x_n ,
- (v) $\mu(x_1, x_2, ..., cx_n, t) = \mu(x_1, x_2, ..., x_n, \frac{t}{|c|})$ for all $c \neq 0, c \in F$,
- (vi) $\mu(x_1, x_2, \dots, x_n, s) * \mu(x_1, x_2, \dots, x'_n, t) \le \mu(x_1, x_2, \dots, x_n + x'_n, s + t),$
- (vii) $\mu(x_1, x_2, \dots, x_n, t) : (0, \infty) \to [0, 1]$ is continuous in t,
- (viii) $\lim_{t\to\infty} \mu(x_1, x_2, \dots, x_n, t) = 1$ and $\lim_{t\to0} \mu(x_1, x_2, \dots, x_n, t) = 0$,
- (ix) $\upsilon(x_1, x_2, ..., x_n, t) < 1$,
- (x) $\upsilon(x_1, x_2, \dots, x_n, t) = 0$ if and only if x_1, x_2, \dots, x_n are linearly dependent,
- (xi) $\upsilon(x_1, x_2, \dots, x_n, t)$ is invariant under any permutation of x_1, x_2, \dots, x_n ,
- (xii) $\upsilon(x_1, x_2, ..., cx_n, t) = \upsilon(x_1, x_2, ..., x_n, \frac{t}{|c|})$ for all $c \neq 0, c \in F$,
- (xiii) $\upsilon(x_1, x_2, \dots, x_n, s) \circ \upsilon(x_1, x_2, \dots, x'_n, t) \ge \upsilon(x_1, x_2, \dots, x_n + x'_n, s + t)$
- (xiv) $\upsilon(x_1, x_2, \dots, x_n, t) : (0, \infty) \to [0, 1]$ is continuous in t,
- (xv) $\lim_{t\to\infty} \upsilon(x_1, x_2, ..., x_n, t) = 0$ and $\lim_{t\to0} \upsilon(x_1, x_2, ..., x_n, t) = 1$.

Example 2.1 ([28]) Let $(X, ||\bullet, ..., \bullet||)$ be an *n*-normed linear space. Also let a * b = ab and $a \circ b = \min\{a + b, 1\}$ for all $a, b \in [0, 1]$,

$$\mu(x_1, x_2, \dots, x_n, t) = \frac{t}{t + \|x_1, x_2, \dots, x_n\|} \quad \text{and} \quad \upsilon(x_1, x_2, \dots, x_n, t) = \frac{\|x_1, x_2, \dots, x_n\|}{t + \|x_1, x_2, \dots, x_n\|}.$$

Then (*X*, μ , v, *, \circ) is an IFnNLS.

Definition 2.5 ([26]) A lacunary sequence is an increasing integer sequence $\theta = \{k_r\}$ such that $k_0 = 0$ and $h_r = k_r - k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$. The intervals determined by θ will be denoted by $I_r = (k_{r-1}, k_r]$ and the ratio $\frac{k_r}{k_{r-1}}$ will be abbreviated as q_r . Let $K \subseteq \mathbb{N}$. The number

$$\delta_{\theta}(K) = \lim_{r} \frac{1}{h_{r}} \left| \{k \in I_{r} : k \in K\} \right|$$

is said to be the θ -density of *K*, provided the limit exists.

Definition 2.6 ([28]) Let θ be a lacunary sequence. A sequence $x = \{x_k\}$ of numbers is said to be lacunary statistically convergent (or S_θ -convergent) to the number *L* if for every $\varepsilon > 0$, the set $K(\varepsilon)$ has θ -density zero, where

$$K(\varepsilon) = \{k \in \mathbb{N} : |x_k - L| \ge \varepsilon\}.$$

In this case, we write S_{θ} -lim x = L.

3 Δ -Convergence and lacunary Δ -statistical convergence in IFnNLS

In this section, we define Δ -convergence and lacunary Δ -statistical convergence in intuitionistic fuzzy *n*-normed spaces.

Definition 3.1 Let $(X, \mu, \upsilon, *, \circ)$ be an IFnNLS. A sequence $x = \{x_k\}$ in X is said to be Δ -convergent to $L \in X$ with respect to the intuitionistic fuzzy n-norm $(\mu, \upsilon)^n$ if, for every $\varepsilon > 0$, t > 0 and $y_1, y_2, \ldots, y_{n-1} \in X$, there exists $k_0 \in \mathbb{N}$ such that $\mu(y_1, y_2, \ldots, y_{n-1}, \Delta x_k - L, t) > 1 - \varepsilon$ and $\upsilon(y_1, y_2, \ldots, y_{n-1}, \Delta x_k - L, t) < \varepsilon$ for all $k \ge k_0$, where $k \in \mathbb{N}$ and $\Delta x_k = (x_k - x_{k+1})$. It is denoted by $(\mu, \upsilon)^n$ -lim $\Delta x = L$ or $\Delta x_k \to L$ as $k \to \infty$.

Definition 3.2 Let $(X, \mu, \upsilon, *, \circ)$ be an IFnNLS. A sequence $x = \{x_k\}$ in X is said to be lacunary Δ -statistically convergent or $S_{\theta}(\Delta)$ -convergent to $L \in X$ with respect to the intuitionistic fuzzy *n*-norm $(\mu, \upsilon)^n$ provided that for every $\varepsilon > 0$, t > 0 and $y_1, y_2, \ldots, y_{n-1} \in \mathbb{X}$,

$$\delta_{\theta}(\Delta) \left(\left\{ k \in \mathbb{N} : \mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) \le 1 - \varepsilon \right. \right.$$

or $\upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) \ge \varepsilon \right\} = 0,$

or, equivalently,

$$\delta_{\theta}(\Delta) \left(\left\{ k \in \mathbb{N} : \mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) > 1 - \varepsilon \right. \right.$$

and $\upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) < \varepsilon \right\} = 1.$

It is denoted by $S_{\theta}^{(\mu,\upsilon)^n}(\Delta)$ -lim x = L or $x_k \to L(S_{\theta}(\Delta))$. Using Definition 3.2 and properties of the θ -density, we can easily obtain the following lemma.

Lemma 3.1 Let $(X, \mu, \upsilon, *, \circ)$ be an IFnNLS and θ be a lacunary sequence. Then, for every $\varepsilon > 0$, t > 0 and $y_1, y_2, \ldots, y_{n-1} \in \mathbb{X}$, the following statements are equivalent:

- (i) $S_{\theta}^{(\mu,\upsilon)^n}(\Delta)$ -lim x = L,
- (ii) $\delta_{\theta}(\Delta)(\{k \in \mathbb{N} : \mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k L, t) \le 1 \varepsilon\}) = \delta_{\theta}(\Delta)(\{k \in \mathbb{N} : \psi(y_1, y_2, \dots, y_{n-1}, \Delta x_k L, t) > \varepsilon\}) = 0,$
- (iii) $\delta_{\theta}(\Delta)(\{k \in \mathbb{N} : \mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k L, t) > 1 \varepsilon \text{ and } \upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_k L, t) < \varepsilon\}) = 1,$
- (iv) $\delta_{\theta}(\Delta)(\{k \in \mathbb{N} : \mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k L, t) > 1 \varepsilon\}) = \delta_{\theta}(\Delta)(\{k \in \mathbb{N} : \upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_k L, t) < \varepsilon\}) = 1,$
- (v) $S_{\theta} \lim \mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k L, t) = 1$ and $S_{\theta} \lim \nu(y_1, y_2, \dots, y_{n-1}, \Delta x_k L, t) = 0$.

Proceeding exactly in a similar way as in [36], the following theorem can be proved.

Theorem 3.1 Let $(X, \mu, \upsilon, *, \circ)$ be an IFnNLS and θ be a lacunary sequence. If a sequence $x = \{x_k\}$ in X is lacunary Δ -statistically convergent or $S_{\theta}(\Delta)$ -convergent to $L \in X$ with respect to the intuitionistic fuzzy n-norm $(\mu, \upsilon)^n$, $S_{\theta}^{(\mu, \upsilon)^n}(\Delta)$ -lim x is unique.

Theorem 3.2 Let $(X, \mu, \upsilon, *, \circ)$ be an IFnNLS and θ be a lacunary sequence. If $(\mu, \upsilon)^n$ lim $\Delta x = L$, then $S_{\theta}^{(\mu, \upsilon)^n}(\Delta)$ -lim x = L.

Proof Let $(\mu, \upsilon)^n$ -lim $\Delta x = L$. Then, for every $\varepsilon > 0$, t > 0 and $y_1, y_2, \ldots, y_{n-1} \in \mathbb{X}$, there exists $k_0 \in \mathbb{N}$ such that $\mu(y_1, y_2, \ldots, y_{n-1}, \Delta x_k - L, t) > 1 - \varepsilon$ and $\upsilon(y_1, y_2, \ldots, y_{n-1}, \Delta x_k - L, t) < \varepsilon$ for all $k \ge k_0$. Hence the set

$$\{k \in \mathbb{N} : \mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) \le 1 - \varepsilon$$

or $\upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) \ge \varepsilon\}$

has a finite number of terms. Since every finite subset of $\mathbb N$ has lacunary density zero,

$$\delta_{\theta}(\Delta) \left(\left\{ k \in \mathbb{N} : \mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) \le 1 - \varepsilon \right. \right.$$

or $\upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) \ge \varepsilon \right\} \right) = 0,$

that is, $S_{\theta}^{(\mu,\upsilon)^n}(\Delta)$ -lim x = L.

It follows from the following example that the converse of Theorem 3.2 is not true in general.

Example 3.1 Consider $X = \mathbb{R}^n$ with

$$\|x_1, x_2, \ldots, x_n\| = abs \left(\begin{vmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nn} \end{vmatrix} \right),$$

where $x_i = (x_{i1}, x_{i2}, \dots, x_{in}) \in \mathbb{R}^n$ for each $i = 1, 2, \dots, n$, and let $a * b = ab, a \circ b = \min\{a + b, 1\}$ for all $a, b \in [0, 1]$. Now, for all $y_1, y_2, \dots, y_{n-1}, x \in \mathbb{R}^n$ and t > 0, $\mu(y_1, y_2, \dots, y_{n-1}, x, t) = \frac{t}{t + \|y_1, y_2, \dots, y_{n-1}, x\|}$ and $\upsilon(y_1, y_2, \dots, y_{n-1}, x, t) = \frac{\|y_1, y_2, \dots, y_{n-1}, x\|}{t + \|y_1, y_2, \dots, y_{n-1}, x\|}$. Then $(\mathbb{R}^n, \mu, \upsilon, *, \circ)$ is an IFnNLS. Let I_r and h_r be as defined in Definition 2.5. Define a sequence $x = \{x_k\}$ whose terms are given by

$$x_{k} = \begin{cases} \left(\frac{(n - [\sqrt{h_{r}}] + 1)(-n + [\sqrt{h_{r}}])}{2}, 0, \dots, 0\right) \in \mathbb{R}^{n} & \text{if } 1 \le k \le n - [\sqrt{h_{r}}], \\ \left(-\frac{1}{2}k^{2} + \frac{1}{2}k, 0, \dots, 0\right) \in \mathbb{R}^{n} & \text{if } n - [\sqrt{h_{r}}] + 1 \le k \le n, \\ \left(-\frac{1}{2}n^{2} - \frac{1}{2}n, 0, \dots, 0\right) \in \mathbb{R}^{n} & \text{if } k > n \end{cases}$$

such that

$$\Delta x_k = \begin{cases} (k, 0, \dots, 0) \in \mathbb{N} & \text{if } n - [\sqrt{h_r}] + 1 \le k \le n, \\ (0, 0, \dots, 0) \in \mathbb{N} & \text{otherwise.} \end{cases}$$

For every $0 < \varepsilon < 1$ and for any $y_1, y_2, \dots, y_{n-1} \in X$, t > 0, let

$$K(\varepsilon, t) = \left\{ k \in I_r : \mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) \le 1 - \varepsilon \right\}$$

or $\upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) \ge \varepsilon \right\}.$

Now,

$$K(\varepsilon,t) = \left\{ k \in I_r : \|y_1, y_2, \dots, y_{n-1}, \Delta x_k\| \ge \frac{\varepsilon t}{1-\varepsilon} > 0 \right\}$$
$$\subseteq \left\{ k \in I_r : \Delta x_k = (k, 0, \dots, 0) \in \mathbb{R}^n \right\}.$$

Thus we have $\frac{1}{h_r} |\{k \in I_r : k \in K(\varepsilon, t)\}| \leq \frac{[\sqrt{h_r}]}{h_r} \to 0$ as $r \to \infty$. Hence $S_{\theta}^{(\mu, \upsilon)^n}(\Delta)$ -lim x = 0.

On the other hand, $x = \{x_k\}$ in X is not Δ -convergent to 0 with respect to the intuitionistic fuzzy *n*-norm since

$$\mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k, t) = \frac{t}{t + \|y_1, y_2, \dots, y_{n-1}, \Delta x_k\|}$$
$$= \begin{cases} \frac{t}{t + \|y_1, y_2, \dots, y_{n-1}, \Delta x_k\|} & \text{if } n - [\sqrt{h_r}] + 1 \le k \le n, \\ 1, & \text{otherwise,} \end{cases}$$
$$< 1$$

and

$$\upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_k, t) = \frac{\|y_1, y_2, \dots, y_{n-1}, \Delta x_k\|}{t + \|y_1, y_2, \dots, y_{n-1}, \Delta x_k\|}$$
$$= \begin{cases} \frac{\|y_1, y_2, \dots, y_{n-1}, \Delta x_k\|}{t + \|y_1, y_2, \dots, y_{n-1}, \Delta x_k\|} & \text{if } n - [\sqrt{h_r}] + 1 \le k \le n, \\ 0, & \text{otherwise} \end{cases}$$
$$\ge 0.$$

This completes the proof of the theorem.

Theorem 3.3 Let $(X, \mu, \upsilon, *, \circ)$ be an IFnNLS. Then $S_{\theta}^{(\mu, \upsilon)^{n}}(\Delta)$ -lim x = L if and only if there exists an increasing sequence $K = \{k_{n}\}$ of the natural numbers such that $\delta_{\theta}(\Delta)(K) = 1$ and $(\mu, \upsilon)^{n}$ -lim $_{k \in K} \Delta x_{k} = L$.

Proof Necessity. Suppose that $S_{\theta}^{(\mu,\upsilon)^n}(\Delta)$ -lim x = L. Then, for every $y_1, y_2, \ldots, y_{n-1} \in \mathbb{X}$, t > 0 and $j = 1, 2, \ldots$,

$$K(j,t) = \left\{ k \in \mathbb{N} : \mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) > 1 - \frac{1}{j} \\ \text{and } \upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) < \frac{1}{j} \right\} \text{ and} \\ M(j,t) = \left\{ k \in \mathbb{N} : \mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) \le 1 - \frac{1}{j} \\ \text{or } \upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) \ge \frac{1}{j} \right\}.$$

Then $\delta_{\theta}(\Delta)(M(j,t)) = 0$ since

$$K(j,t) \supset K(j+1,t) \tag{3.1}$$

and

$$\delta_{\theta}(\Delta) \big(K(j,t) \big) = 1 \tag{3.2}$$

for t > 0 and j = 1, 2, ... Now we have to show that for $k \in K(j, t)$ suppose that for some $k \in K(j, t)$, $x = \{x_k\}$ not Δ -convergent to L with respect to the intuitionistic fuzzy *n*-norm $(\mu, \upsilon)^n$. Therefore there is $\alpha > 0$ and a positive integer k_0 such that $\mu(y_1, y_2, ..., y_{n-1}, \Delta x_k - L, t) \le 1 - \alpha$ or $\upsilon(y_1, y_2, ..., y_{n-1}, \Delta x_k - L, t) \ge \alpha$ for all $k \ge k_0$. Let $\alpha > \frac{1}{i}$ and

$$K(\alpha, t) = \{k \in \mathbb{N} : \mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) > 1 - \alpha$$

and $\upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) < \alpha\}.$

Then $\delta_{\theta}(\Delta)(K(\alpha, t)) = 0$. Since $\alpha > \frac{1}{j}$, by (3.1) we have $\delta_{\theta}(\Delta)(K(j, t)) = 0$, which contradicts by equation (3.2).

Sufficiency. Suppose that there exists an increasing sequence $K = \{k_n\}$ of the natural numbers such that $\delta_{\theta}(\Delta)(K) = 1$ and $(\mu, \upsilon)^n$ -lim $_{k \in K} \Delta x_k = L$, *i.e.*, for every $y_1, y_2, \ldots, y_{n-1} \in \mathbb{X}$, $\varepsilon > 0$ and t > 0, there exists $n_0 \in \mathbb{N}$ such that $\mu(y_1, y_2, \ldots, y_{n-1}, \Delta x_k - L, t) > 1 - \varepsilon$ and $\upsilon(y_1, y_2, \ldots, y_{n-1}, \Delta x_k - L, t) < \varepsilon$.

Let

$$M(\varepsilon, t) := \left\{ k \in \mathbb{N} : \mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) \le 1 - \varepsilon \right\}$$

or $\upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) \ge \varepsilon \right\}$
 $\subseteq -\{k_{n_0+1}, k_{n_0+2}, \dots\}$

and consequently $\delta_{\theta}(\Delta)(M(\varepsilon, t)) \leq 1 - 1 = 0$. Hence $S_{\theta}^{(\mu, \upsilon)^{n}}(\Delta)$ -lim x = L. This completes proof of the theorem.

Theorem 3.4 Let $(X, \mu, \upsilon, *, \circ)$ be an IFnNLS. Then $S_{\theta}^{(\mu,\upsilon)^n}(\Delta)$ -lim x = L if and only if there exist a convergent sequence $y = \{y_k\}$ and a lacunary Δ -statistically null sequence $z = \{z_k\}$ with respect to the intuitionistic fuzzy n-norm $(\mu, \upsilon)^n$ such that $(\mu, \upsilon)^n$ -lim y = L, $\Delta x = y + \Delta z$ and $\delta_{\theta}(\Delta)(\{k \in \mathbb{N} : \Delta z_k = 0\}) = 1$.

Proof Necessity. Suppose that $S_{\theta}^{(\mu, \upsilon)^n}(\Delta)$ -lim x = L and

$$K(j,t) = \left\{ k \in \mathbb{N} : \mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) > 1 - \frac{1}{j} \right\}$$

and $\upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) < \frac{1}{j} \right\}.$

Using Theorem 3.3 for any $y_1, y_2, ..., y_{n-1} \in X$, t > 0 and $j \in \mathbb{N}$, we can construct an increasing index sequence $\{r_j\}$ of the natural numbers such that $r_j \in K(j, t)$, $\delta_{\theta}(\Delta)(K(j, t)) = 1$, and so we can conclude that for all $r > r_j$ $(j \in \mathbb{N})$,

$$\frac{1}{h_r} \left| \left\{ k \in I_r : \mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) > 1 - \frac{1}{j} \right.$$

and $\upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) < \frac{1}{j} \right\} \right| > \frac{j-1}{j}.$

We define $y = \{y_k\}$ and $z = \{z_k\}$ as follows. If $1 < k < r_1$, we set $y_k = \Delta x_k$ and $z_k = 0$. Now suppose that $j \ge 1$ and $r_j < k \le r_{j+1}$. If $k \in K(j, t)$, *i.e.*, $\mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) > 1 - \frac{1}{j}$ and $\upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) < \frac{1}{j}$, we set $y_k = \Delta x_k$ and $\Delta z_k = 0$. Otherwise $y_k = L$ and $\Delta z_k = \Delta x_k - L$. Hence it is clear that $\Delta x = y + \Delta z$.

We claim that $(\mu, \upsilon)^n$ -lim y = L. Let $\varepsilon > \frac{1}{j}$. If $k \in K(j, t)$ for all $k > r_j$, $\mu(y_1, y_2, \dots, y_{n-1}, y_k - L, t) > 1 - \varepsilon$ and $\upsilon(y_1, y_2, \dots, y_{n-1}, y_k - L, t) < \varepsilon$. Since ε was arbitrary, we have proved the claim.

Next we claim that $z = \{z_k\}$ is a lacunary Δ -statistically null sequence with respect to the intuitionistic fuzzy *n*-norm $(\mu, \upsilon)^n$, *i.e.*, $S_{\theta}^{(\mu, \upsilon)^n}(\Delta)$ -lim z = 0. It suffices to see that $\delta_{\theta}(\Delta)(\{k \in \mathbb{N} : \Delta z_k = 0\}) = 1$ to prove the claim. This follows from observing that

$$\left| \{k \in I_r : \Delta z_k = 0\} \right|$$

$$\leq \left| \left\{ k \in I_r : \mu(y_1, y_2, \dots, y_{n-1}, \Delta z_k, t) > 1 - \varepsilon \text{ and } \upsilon(y_1, y_2, \dots, y_{n-1}, \Delta z_k, t) < \varepsilon \right\} \right|$$

for any $r \in \mathbb{N}$ and $\varepsilon > 0$.

We show that if $\delta > 0$ and $j \in \mathbb{N}$ such that $\frac{1}{i} < \delta$, then

$$\frac{1}{h_r} \Big| \{k \in I_r : \Delta z_k = 0\} \Big| > 1 - \delta$$

for all $r > r_j$. Recall from the construction that if $k \in K(j, t)$, then $\Delta z_k = 0$ for $r_j < k \le r_{j+1}$.

Now, for t > 0 and $s \in \mathbb{N}$, let

$$K(s,t) = \left\{ k \in \mathbb{N} : \mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) > 1 - \frac{1}{s} \right\}$$

and $\upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) < \frac{1}{s} \right\}.$

For s > j and $r_s < k \le r_{s+1}$ by (3.2),

$$K(s,t) = \left\{ k \in \mathbb{N} : \mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) > 1 - \frac{1}{s} \right\}$$

and $\upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) < \frac{1}{s} \right\}$
 $\subset \{k \in \mathbb{N} : \Delta z_k = 0\}.$

Consequently, if $r_s < k \le r_{s+1}$ and s > j, then

$$\frac{1}{h_r} |\{k \in I_r : \Delta z_k = 0\}|$$

$$\geq \frac{1}{h_r} |\{k \in I_r : \mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) > 1 - \frac{1}{s}$$
and $\upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) < \frac{1}{s}\}|$

$$> 1 - \frac{1}{s} > 1 - \frac{1}{j} > 1 - \delta.$$

Hence we get $\delta_{\theta}(\Delta)(\{k \in \mathbb{N} : \Delta z_k = 0\}) = 1$, which establishes the claim.

Sufficiency. Let *x*, *y* and *z* be sequences such that $(\mu, \upsilon)^n$ -lim y = L, $\Delta x = y + \Delta z$ and $\delta_{\theta}(\Delta)(\{k \in \mathbb{N} : \Delta z_k = 0\}) = 1$. Then, for any $y_1, y_2, \ldots, y_{n-1} \in X$, $\varepsilon > 0$ and t > 0, we have

$$\{k \in \mathbb{N} : \mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) \le 1 - \varepsilon \text{ or } \upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) \ge \varepsilon\}$$
$$\subseteq \{k \in \mathbb{N} : \mu(y_1, y_2, \dots, y_{n-1}, y_k - L, t) \le 1 - \varepsilon \text{ or } \upsilon(y_1, y_2, \dots, y_{n-1}, y_k - L, t) \ge \varepsilon\}$$
$$\cup \{k \in \mathbb{N} : \Delta z_k \neq 0\}.$$

Therefore

$$\begin{split} \delta_{\theta}(\Delta) \Big(\Big\{ k \in \mathbb{N} : \mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) \leq 1 - \varepsilon \\ & \text{or } \upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) \geq \varepsilon \Big\} \Big) \\ & \leq \delta_{\theta} \Big(\Big\{ k \in \mathbb{N} : \mu(y_1, y_2, \dots, y_{n-1}, y_k - L, t) \leq 1 - \varepsilon \text{ or } \upsilon(y_1, y_2, \dots, y_{n-1}, y_k - L, t) \geq \varepsilon \Big\} \Big) \\ & + \delta_{\theta}(\Delta) \Big(\{ k \in \mathbb{N} : \Delta z_k \neq 0 \} \Big). \end{split}$$

Since $(\mu, \upsilon)^n$ -lim y = L, the set

$$\left\{k \in \mathbb{N} : \mu(y_1, y_2, \dots, y_{n-1}, y_k - L, t) \le 1 - \varepsilon \text{ or } \upsilon(y_1, y_2, \dots, y_{n-1}, y_k - L, t) \ge \varepsilon\right\}$$

contains at most finitely many terms and thus

$$\delta_{\theta}\left(\left\{k \in \mathbb{N} : \mu(y_1, y_2, \dots, y_{n-1}, y_k - L, t) \leq 1 - \varepsilon \text{ or } \upsilon(y_1, y_2, \dots, y_{n-1}, y_k - L, t) \geq \varepsilon\right\}\right).$$

Also by hypothesis, $\delta_{\theta}(\Delta)(\{k \in \mathbb{N} : \Delta z_k \neq 0\})$. Hence,

$$\delta_{\theta}(\Delta) \left(\left\{ k \in \mathbb{N} : \mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) \le 1 - \varepsilon \right. \right.$$

or $\upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t) \ge \varepsilon \right\} = 0,$

and consequently $S_{\theta}^{(\mu,\upsilon)^n}(\Delta)$ -lim x = L.

4 Δ -Cauchy and lacunary Δ -statistically Cauchy sequences in IFnNLS

In this section, we introduce the notion of Cauchy sequences and lacunary statistically Cauchy sequences in IFnNLS.

Definition 4.1 Let $(X, \mu, \upsilon, *, \circ)$ be an IFnNLS. A sequence $x = \{x_k\}$ in X is said to be Δ -Cauchy with respect to the intuitionistic fuzzy n-norm $(\mu, \upsilon)^n$ if, for every $\varepsilon > 0$, t > 0 and $y_1, y_2, \ldots, y_{n-1} \in \mathbb{X}$, there exists $k_0 \in \mathbb{N}$ such that $\mu(y_1, y_2, \ldots, y_{n-1}, \Delta x_k - \Delta x_m, t) > 1 - \varepsilon$ and $\upsilon(y_1, y_2, \ldots, y_{n-1}, \Delta x_k - \Delta x_m, t) < \varepsilon$ for all $k, m \ge k_0$.

Definition 4.2 Let $(X, \mu, \upsilon, *, \circ)$ be an IFnNLS. A sequence $x = \{x_k\}$ in X is said to be lacunary Δ -statistically Cauchy or $S_{\theta}(\Delta)$ -Cauchy with respect to the intuitionistic fuzzy n-norm $(\mu, \upsilon)^n$ if, for every $\varepsilon > 0$, t > 0 and $y_1, y_2, \ldots, y_{n-1} \in \mathbb{X}$, there exists a number $m \in \mathbb{N}$ satisfying

$$\delta_{\theta}(\Delta)(\{k \in \mathbb{N} : \mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k - \Delta x_m, t) \le 1 - \varepsilon$$

or $\upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_k - \Delta x_m, t) \ge \varepsilon\}) = 0.$

Theorem 4.1 Let $(X, \mu, \upsilon, *, \circ)$ be an IFnNLS. If a sequence $x = \{x_k\}$ in X is lacunary Δ -statistically convergent with respect to the intuitionistic fuzzy n-norm $(\mu, \upsilon)^n$ if and only if it is lacunary Δ -statistically Cauchy with respect to the intuitionistic fuzzy n-norm $(\mu, \upsilon)^n$.

Proof Let $x = \{x_k\}$ be a lacunary Δ -statistically convergent sequence which converges to L. For a given $\varepsilon > 0$, choose s > 0 such that $(1 - \varepsilon) * (1 - \varepsilon) > 1 - s$ and $\varepsilon \circ \varepsilon < s$. Let

$$A(\varepsilon, t) = \left\{ k \in \mathbb{N} : \mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t/2) \le 1 - \varepsilon \right\}$$

or $\upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t/2) \ge \varepsilon \right\}.$

Then, for any t > 0 and $y_1, y_2, \ldots, y_{n-1} \in \mathbb{X}$,

$$\delta_{\theta}(\Delta)(A(\varepsilon,t)) = 0, \tag{4.1}$$

which implies that $\delta_{\theta}(\Delta)(A^{c}(\varepsilon, t)) = 1$. Let $q \in A^{c}(\varepsilon, t)$. Then

$$\mu(y_1, y_2, \dots, y_{n-1}, \Delta x_q - L, t/2) > 1 - \varepsilon$$

and

$$\upsilon(y_1, y_2, \ldots, y_{n-1}, \Delta x_k - L, t/2) < \varepsilon.$$

Now, let

$$B(s,t) = \left\{ k \in \mathbb{N} : \mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k - \Delta x_q, t) \le 1 - s \right.$$

or $\upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_k - \Delta x_q, t) \ge s \right\}.$

We need to show that $B(s,t) \subset A(\varepsilon,t)$. Let $k \in B(s,t) \cap A^c(\varepsilon,t)$. Hence $\mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k - \Delta x_q, t) \leq 1 - s$ and $\mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t/2) > 1 - \varepsilon$, in particular, $\mu(y_1, y_2, \dots, y_{n-1}, \Delta x_q - L, t/2) > 1 - \varepsilon$. Then

$$\begin{aligned} 1 - s &\ge \mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k - \Delta x_q, t) \\ &\ge \mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t/2) * \mu(y_1, y_2, \dots, y_{n-1}, \Delta x_q - L, t/2) \\ &> (1 - \varepsilon) * (1 - \varepsilon) > 1 - s, \end{aligned}$$

which is not possible. On the other hand, $\upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_k - \Delta x_q, t) \ge s$ and $\upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t/2) < \varepsilon$, in particular, $\upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_q - L, t/2) < \varepsilon$. Hence,

$$s \leq \upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_k - \Delta x_q, t)$$

$$\leq \upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t/2) \circ \upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_q - L, t/2)$$

$$< \varepsilon \circ \varepsilon < s,$$

which is not possible. Hence $B(s,t) \subset A(\varepsilon,t)$ and by (4.1) $\delta_{\theta}(\Delta)(B(\varepsilon,t)) = 0$. This proves that *x* is lacunary Δ -statistically Cauchy with respect to the intuitionistic fuzzy *n*-norm $(\mu, \upsilon)^n$.

Conversely, let $x = \{x_k\}$ be lacunary Δ -statistically Cauchy but not lacunary Δ -statistically convergent with respect to the intuitionistic fuzzy *n*-norm $(\mu, \upsilon)^n$. For a given $\varepsilon > 0$, choose s > 0 such that $(1 - \varepsilon) * (1 - \varepsilon) > 1 - s$ and $\varepsilon \circ \varepsilon < s$. Since x is not lacunary Δ -convergent

$$\begin{split} \mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k - \Delta x_m, t) \\ &\geq \mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t/2) * \mu(y_1, y_2, \dots, y_{n-1}, \Delta x_q - L, t/2) \\ &> (1 - \varepsilon) * (1 - \varepsilon) > 1 - s, \\ \upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_k - \Delta x_m, t) \\ &\leq \upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_k - L, t/2) \circ \upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_q - L, t/2) \\ &< \varepsilon \circ \varepsilon < s. \end{split}$$

Therefore $\delta_{\theta}(\Delta)(E^c(s,t)) = 0$, where

$$B(s,t) = \left\{ k \in \mathbb{N} : \mu(y_1, y_2, \dots, y_{n-1}, \Delta x_k - \Delta x_q, t) \le 1 - s \right\}$$

or $\upsilon(y_1, y_2, \dots, y_{n-1}, \Delta x_k - \Delta x_q, t) \ge s \right\}$

and so $\delta_{\theta}(\Delta)(E(s,t)) = 1$, which is a contradiction, since *x* was lacunary Δ -statistically Cauchy with respect to the intuitionistic fuzzy *n*-norm $(\mu, \upsilon)^n$. So, *x* must be lacunary Δ -statistically convergent with respect to the intuitionistic fuzzy *n*-norm $(\mu, \upsilon)^n$.

Corollary 4.1 Let $(X, \mu, \upsilon, *, \circ)$ be an IFnNLS and θ be a lacunary sequence. Then, for any sequence $x = \{x_k\}$ in X, the following conditions are equivalent:

- (i) x is $S_{\theta}(\Delta)$ -convergent with respect to the intuitionistic fuzzy n-norm $(\mu, \upsilon)^n$.
- (ii) x is $S_{\theta}(\Delta)$ -Cauchy with respect to the intuitionistic fuzzy n-norm $(\mu, \upsilon)^n$.
- (iii) There exists an increasing sequence $K = \{k_n\}$ of the natural numbers such that $\delta_{\theta}(\Delta)(K) = 1$ and the subsequence $\{x_{k_n}\}$ is $S_{\theta}(\Delta)$ -Cauchy with respect to the intuitionistic fuzzy n-norm $(\mu, \upsilon)^n$.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The authors did not provide this information.

Acknowledgements

The authors would like to thank the referees for their careful reading of the manuscript and for their suggestions.

Received: 8 October 2013 Accepted: 26 December 2013 Published: 24 Jan 2014

References

- 1. Zadeh, LA: Fuzzy sets. Inf. Control 8, 338-353 (1965)
- Hong, L, Sun, JQ: Bifurcations of fuzzy nonlinear dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 1, 1-12 (2006)
- 3. Barros, LC, Bassanezi, RC, Tonelli, PA: Fuzzy modelling in population dynamics. Ecol. Model. 128, 27-33 (2000)
- 4. Madore, J: Fuzzy physics. Ann. Phys. 219, 187-198 (1992)
- 5. Erceg, MA: Metric spaces in fuzzy set theory. J. Math. Anal. Appl. 69, 205-230 (1979)
- 6. George, A, Veeramani, P: On some result in fuzzy metric space. Fuzzy Sets Syst. 64, 395-399 (1994)
- 7. Kaleva, O, Seikkala, S: On fuzzy metric spaces. Fuzzy Sets Syst. 12, 215-229 (1984)
- 8. Jäger, G: Fuzzy uniform convergence and equicontinuity. Fuzzy Sets Syst. 109, 187-198 (2000)
- 9. Wu, K: Convergences of fuzzy sets based on decomposition theory and fuzzy polynomial function. Fuzzy Sets Syst. 109, 173-185 (2000)
- 10. Anastassiou, GA: Fuzzy approximation by fuzzy convolution type operators. Comput. Math. Appl. 48, 1369-1386 (2004)
- 11. Gähler, S: Lineare 2-normietre Räume. Math. Nachr. 28, 1-43 (1965)
- 12. Gähler, S: Untersuchungen über verallgemeinerte m-metrische Räume. I. Math. Nachr. 40, 165-189 (1969)
- 13. Kim, SS, Cho, YJ: Strict convexity in linear n-normed spaces. Demonstr. Math. 29, 739-744 (1996)
- 14. Malceski, R: Strong *n*-convex *n*-normed spaces. Mat. Bilt. **21**, 81-102 (1997)
- 15. Gunawan, H, Mashadi, M: On n-normed spaces. Int. J. Math. Sci. 27, 631-639 (2001)
- 16. Vijayabalaji, S, Narayanan, A: Fuzzy n-normed linear space. J. Math. Sci. 24, 3963-3977 (2005)
- 17. Saadati, R, Park, JH: Intuitionistic fuzzy Euclidean normed spaces. Commun. Math. Anal. 12, 85-90 (2006)
- Vijayabalaji, S, Thillaigovindan, N, Jun, YB: Intuitionistic fuzzy n-normed linear space. Bull. Korean Math. Soc. 44, 291-308 (2007)
- 19. Steinhaus, H: Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 2, 73-74 (1951)
- 20. Fast, H: Sur la convergence statistique. Colloq. Math. 2, 241-244 (1951)
- 21. Karakuş, S: Statistical convergence on probabilistic normed space. Math. Commun. 12, 11-23 (2007)
- 22. Mursaleen, M, Mohiuddine, SA: On ideal convergence in probabilistic normed space. Math. Slovaca 62, 49-62 (2012)
- 23. Mursaleen, M: On statistical convergence in random 2-normed spaces. Acta Sci. Math. 76(1-2), 101-109 (2010)
- 24. Karakuş, S, Demirci, K, Duman, O: Statistical convergence on intuitionistic fuzzy normed spaces. Chaos Solitons Fractals **35**, 763-769 (2008)
- Mursaleen, M, Mohiuddine, SA: Statistical convergence of double sequences in intuitionistic fuzzy normed space. Chaos Solitons Fractals 41, 2414-2421 (2009)
- 26. Fridy, JA, Orhan, C: Lacunary statistical convergence. Pac. J. Math. 160, 43-51 (1993)
- 27. Mursaleen, M, Mohiuddine, SA: On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space. J. Comput. Appl. Math. 233(2), 142-149 (2009)
- Sen, M, Debnath, P: Lacunary statistical convergence in intuitionistic fuzzy *n*-normed spaces. Math. Comput. Model. 54, 2978-2985 (2011)
- 29. Kızmaz, H: On certain sequence spaces. Can. Math. Bull. 24, 169-176 (1981)
- 30. Başarır, M: On the statistical convergence of sequences. Firat Univ. J. Sci. 2, 1-6 (1995)
- 31. Bilgin, T: Lacunary strongly Δ -convergent sequences of fuzzy numbers. Inf. Sci. 160, 201-206 (2004)

- Hazarika, B: Lacunary generalized difference statistical convergence in random 2-normed spaces. Proyecciones 31, 373-390 (2012)
- Gökhan, A, Et, M, Mursaleen, M: Almost lacunary statistical and strongly almost lacunary convergence of fuzzy numbers. Math. Comput. Model. 49(3-4), 548-555 (2009)
- Çolak, R, Altınok, H, Et, M: Generalized difference sequences of fuzzy numbers. Chaos Solitons Fractals 40(3), 1106-1117 (2009)
- Altın, Y, Başarır, M, Et, M: On some generalized difference sequences of fuzzy numbers. Kuwait J. Sci. Eng. 34(1A), 1-14 (2007)
- Thillaigovindan, N, Anita Shanth, S, Jun, YB: On lacunary statistical convergence in intuitionistic fuzzy n-normed spaces. Ann. Fuzzy Math. Inform. 1, 119-131 (2011)

10.1186/1029-242X-2014-40

Cite this article as: Altundağ and Kamber: Lacunary Δ -statistical convergence in intuitionistic fuzzy *n*-normed space. Journal of Inequalities and Applications 2014, 2014:40

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com