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Abstract
The concept of lacunary statistical convergence was introduced in intuitionistic fuzzy
n-normed spaces in Sen and Debnath (Math. Comput. Model. 54:2978-2985, 2011).
In this article, we introduce the notion of lacunary �-statistically convergent and
lacunary �-statistically Cauchy sequences in an intuitionistic fuzzy n-normed space.
Also, we give their properties using lacunary density and prove relation between
these notions.
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1 Introduction
Fuzzy set theory was introduced by Zadeh [] in . This theory has been applied not
only in different branches of engineering such as in nonlinear dynamic systems [], in the
population dynamics [], in the quantum physics [], but also in many fields of mathe-
matics such as in metric and topological spaces [–], in the theory of functions [, ], in
the approximation theory []. -normed and n-normed linear spaces were initially intro-
duced by Gähler [, ] and further studied by Kim and Cho [], Malceski [] and Gu-
nawan and Mashadi []. Vijayabalaji and Narayanan [] defined fuzzy n-normed linear
space. After Saadati and Park [] introduced the concept of intuitionistic fuzzy normed
space, Vijayabalaji et al. [] defined the notion of intuitionistic fuzzy n-normed space.
The notion of statistical convergence was investigated by Steinhaus [] and Fast [].
Then a lot of authors applied this concept to probabilistic normed spaces [, ], ran-
dom -normed spaces [] and finally intuitionistic fuzzy normed spaces [, ]. Fridy
and Orhan [] introduced the idea of lacunary statistical convergence. Using this idea,
Mursaleen and Mohiuddine [], Sen and Debnath [] investigated lacunary statisti-
cal convergence in intuitionistic fuzzy normed spaces and intuitionistic fuzzy n-normed
spaces, respectively. The idea of difference sequences was introduced by Kızmaz []
where �x = (�xk) = xk – xk+. Başarır [] introduced the �-statistical convergence of
sequences. Bilgin [] introduced the definition of lacunary strongly �-convergence of
fuzzy numbers. Hazarika [] gave the definition of lacunary generalized difference statis-
tical convergence in random -normed spaces. Also, the generalized difference sequence
spaces were studied by various authors [–]. In this article, we shall introduce lacunary
�-statistical convergence and lacunary �-statistically Cauchy sequences in IFnNLS.
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2 Preliminaries, background and notation
In this section, we give the basic definitions.

Definition. ([]) A binary operation ∗ : [, ]×[, ]→ [, ] is said to be a continuous
t-norm if it satisfies the following conditions:

(i) ∗ is associative and commutative,
(ii) ∗ is continuous,
(iii) a ∗  = a for all a ∈ [, ],
(iv) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for each a,b, c,d ∈ [, ].

Definition. ([]) Abinary operation ◦ : [, ]×[, ]→ [, ] is said to be a continuous
t-conorm if it satisfies the following conditions:

(i) ◦ is associative and commutative,
(ii) ◦ is continuous,
(iii) a ◦  = a for all a ∈ [, ],
(iv) a ◦ b ≤ c ◦ d whenever a≤ c and b ≤ d for each a,b, c,d ∈ [, ].

Definition . ([]) Let n ∈N and X be a real vector space of dimension d ≥ n (here we
allow it to be infinite). A real-valued function ‖•, . . . ,•‖ on X × · · · ×X = Xn satisfying the
following four properties:

(i) ‖x,x, . . . ,xn‖ =  if and only if x,x, . . . ,xn are linearly dependent,
(ii) x,x, . . . ,xn are invariant under any permutation,
(iii) ‖x,x, . . . ,αxn‖ = |α|‖x,x, . . . ,xn‖ for any α ∈R,
(iv) ‖x,x, . . . ,xn–, y + z‖ ≤ ‖x,x, . . . ,xn–, y‖ + ‖x,x, . . . ,xn–, z‖,

is called an n-norm on X and the pair is called an n-normed space.

Definition . ([]) An IFnNLS is the five-tuple (X,μ,υ,∗,◦) where X is a linear space
over a field F , ∗ is a continuous t-norm, ◦ is a continuous t-conorm, μ, υ are fuzzy sets
on Xn × (,∞), μ denotes the degree of membership and υ denotes the degree of non-
membership of (x,x, . . . ,xn, t) ∈ Xn × (,∞) satisfying the following conditions for every
(x,x, . . . ,xn) ∈ Xn and s, t > :

(i) μ(x,x, . . . ,xn, t) + υ(x,x, . . . ,xn, t) ≤ ,
(ii) μ(x,x, . . . ,xn, t) > ,
(iii) μ(x,x, . . . ,xn, t) =  if and only if x,x, . . . ,xn are linearly dependent,
(iv) μ(x,x, . . . ,xn, t) is invariant under any permutation of x,x, . . . ,xn,
(v) μ(x,x, . . . , cxn, t) = μ(x,x, . . . ,xn, t

|c| ) for all c 
= , c ∈ F ,
(vi) μ(x,x, . . . ,xn, s) ∗ μ(x,x, . . . ,x′

n, t) ≤ μ(x,x, . . . ,xn + x′
n, s + t),

(vii) μ(x,x, . . . ,xn, t) : (,∞) → [, ] is continuous in t,
(viii) limt→∞ μ(x,x, . . . ,xn, t) =  and limt→ μ(x,x, . . . ,xn, t) = ,
(ix) υ(x,x, . . . ,xn, t) < ,
(x) υ(x,x, . . . ,xn, t) =  if and only if x,x, . . . ,xn are linearly dependent,
(xi) υ(x,x, . . . ,xn, t) is invariant under any permutation of x,x, . . . ,xn,
(xii) υ(x,x, . . . , cxn, t) = υ(x,x, . . . ,xn, t

|c| ) for all c 
= , c ∈ F ,
(xiii) υ(x,x, . . . ,xn, s) ◦ υ(x,x, . . . ,x′

n, t)≥ υ(x,x, . . . ,xn + x′
n, s + t)

(xiv) υ(x,x, . . . ,xn, t) : (,∞) → [, ] is continuous in t,
(xv) limt→∞ υ(x,x, . . . ,xn, t) =  and limt→ υ(x,x, . . . ,xn, t) = .
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Example . ([]) Let (X,‖•, . . . ,•‖) be an n-normed linear space. Also let a∗b = ab and
a ◦ b =min{a + b, } for all a,b ∈ [, ],

μ(x,x, . . . ,xn, t) =
t

t + ‖x,x, . . . ,xn‖ and υ(x,x, . . . ,xn, t) =
‖x,x, . . . ,xn‖

t + ‖x,x, . . . ,xn‖ .

Then (X,μ,υ,∗,◦) is an IFnNLS.

Definition . ([]) A lacunary sequence is an increasing integer sequence θ = {kr} such
that k =  and hr = kr – kr– → ∞ as r → ∞. The intervals determined by θ will be de-
noted by Ir = (kr–,kr] and the ratio kr

kr–
will be abbreviated as qr . Let K ⊆N. The number

δ
θ
(K ) = lim

r


hr

∣∣{k ∈ Ir : k ∈ K}∣∣

is said to be the θ -density of K , provided the limit exists.

Definition . ([]) Let θ be a lacunary sequence. A sequence x = {xk} of numbers is
said to be lacunary statistically convergent (or Sθ -convergent) to the number L if for every
ε > , the set K (ε) has θ -density zero, where

K (ε) =
{
k ∈N : |xk – L| ≥ ε

}
.

In this case, we write Sθ -limx = L.

3 �-Convergence and lacunary�-statistical convergence in IFnNLS
In this section, we define �-convergence and lacunary �-statistical convergence in intu-
itionistic fuzzy n-normed spaces.

Definition . Let (X,μ,υ,∗,◦) be an IFnNLS. A sequence x = {xk} in X is said to be
�-convergent to L ∈ X with respect to the intuitionistic fuzzy n-norm (μ,υ)n if, for ev-
ery ε > , t >  and y, y, . . . , yn– ∈ X, there exists k ∈ N such that μ(y, y, . . . , yn–,
�xk – L, t) >  – ε and υ(y, y, . . . , yn–,�xk – L, t) < ε for all k ≥ k, where k ∈ N and
�xk = (xk – xk+). It is denoted by (μ,υ)n-lim�x = L or �xk → L as k → ∞.

Definition . Let (X,μ,υ,∗,◦) be an IFnNLS. A sequence x = {xk} in X is said to be
lacunary �-statistically convergent or Sθ (�)-convergent to L ∈ X with respect to the in-
tuitionistic fuzzy n-norm (μ,υ)n provided that for every ε > , t >  and y, y, . . . , yn– ∈X,

δθ (�)
({
k ∈N : μ(y, y, . . . , yn–,�xk – L, t) ≤  – ε

or υ(y, y, . . . , yn–,�xk – L, t) ≥ ε
})

= ,

or, equivalently,

δθ (�)
({
k ∈N : μ(y, y, . . . , yn–,�xk – L, t) >  – ε

and υ(y, y, . . . , yn–,�xk – L, t) < ε
})

= .
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It is denoted by Sθ
(μ,υ)n (�)-limx = L or xk → L(Sθ (�)). Using Definition . and prop-

erties of the θ -density, we can easily obtain the following lemma.

Lemma . Let (X,μ,υ,∗,◦) be an IFnNLS and θ be a lacunary sequence. Then, for every
ε > , t >  and y, y, . . . , yn– ∈X, the following statements are equivalent:

(i) Sθ
(μ,υ)n (�)-limx = L,

(ii) δθ (�)({k ∈N : μ(y, y, . . . , yn–,�xk – L, t)≤  – ε}) =
δθ (�)({k ∈N : υ(y, y, . . . , yn–,�xk – L, t) ≥ ε}) = ,

(iii) δθ (�)({k ∈N : μ(y, y, . . . , yn–,�xk – L, t) >  – ε and υ(y, y, . . . , yn–,�xk – L, t) <
ε}) = ,

(iv) δθ (�)({k ∈N : μ(y, y, . . . , yn–,�xk – L, t) >  – ε}) =
δθ (�)({k ∈N : υ(y, y, . . . , yn–,�xk – L, t) < ε}) = ,

(v) Sθ -limμ(y, y, . . . , yn–,�xk – L, t) =  and Sθ -limυ(y, y, . . . , yn–,�xk – L, t) = .

Proceeding exactly in a similar way as in [], the following theorem can be proved.

Theorem . Let (X,μ,υ,∗,◦) be an IFnNLS and θ be a lacunary sequence. If a sequence
x = {xk} in X is lacunary �-statistically convergent or Sθ (�)-convergent to L ∈ X with re-
spect to the intuitionistic fuzzy n-norm (μ,υ)n, Sθ

(μ,υ)n (�)-limx is unique.

Theorem . Let (X,μ,υ,∗,◦) be an IFnNLS and θ be a lacunary sequence. If (μ,υ)n-
lim�x = L, then Sθ

(μ,υ)n (�)-limx = L.

Proof Let (μ,υ)n-lim�x = L. Then, for every ε > , t >  and y, y, . . . , yn– ∈ X, there ex-
ists k ∈N such that μ(y, y, . . . , yn–,�xk – L, t) > – ε and υ(y, y, . . . , yn–,�xk – L, t) < ε

for all k ≥ k. Hence the set

{
k ∈N : μ(y, y, . . . , yn–,�xk – L, t) ≤  – ε

or υ(y, y, . . . , yn–,�xk – L, t) ≥ ε
}

has a finite number of terms. Since every finite subset of N has lacunary density zero,

δθ (�)
({
k ∈N : μ(y, y, . . . , yn–,�xk – L, t) ≤  – ε

or υ(y, y, . . . , yn–,�xk – L, t) ≥ ε
})

= ,

that is, Sθ
(μ,υ)n (�)-limx = L.

It follows from the following example that the converse of Theorem . is not true in
general.

Example . Consider X =R
n with

‖x,x, . . . ,xn‖ = abs

⎛
⎜⎜⎝

∣∣∣∣∣∣∣∣

x · · · xn
...

. . .
...

xn · · · xnn

∣∣∣∣∣∣∣∣

⎞
⎟⎟⎠ ,
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where xi = (xi,xi, . . . ,xin) ∈ R
n for each i = , , . . . ,n, and let a∗b = ab, a◦b =min{a + b, }

for all a,b ∈ [, ]. Now, for all y, y, . . . , yn–,x ∈ R
n and t > , μ(y, y, . . . , yn–,x, t) =

t
t+‖y,y,...,yn–,x‖ and υ(y, y, . . . , yn–,x, t) = ‖y,y,...,yn–,x‖

t+‖y,y,...,yn–,x‖ . Then (Rn,μ,υ,∗,◦) is an IFnNLS.
Let Ir and hr be as defined in Definition .. Define a sequence x = {xk} whose terms are
given by

xk =

⎧⎪⎪⎨
⎪⎪⎩
( (n–[

√
hr ]+)(–n+[

√
hr ])

 , , . . . , ) ∈R
n if  ≤ k ≤ n – [

√
hr],

(– 
k

 + 
k, , . . . , ) ∈R

n if n – [
√
hr] +  ≤ k ≤ n,

(– 
n

 – 
n, , . . . , ) ∈R

n if k > n

such that

�xk =

⎧⎨
⎩
(k, , . . . , ) ∈ N if n – [

√
hr] +  ≤ k ≤ n,

(, , . . . , ) ∈N otherwise.

For every  < ε <  and for any y, y, . . . , yn– ∈ X, t > , let

K (ε, t) =
{
k ∈ Ir : μ(y, y, . . . , yn–,�xk – L, t) ≤  – ε

or υ(y, y, . . . , yn–,�xk – L, t) ≥ ε
}
.

Now,

K (ε, t) =
{
k ∈ Ir : ‖y, y, . . . , yn–,�xk‖ ≥ εt

 – ε
> 

}

⊆ {
k ∈ Ir :�xk = (k, , . . . , ) ∈R

n}.
Thus we have 

hr |{k ∈ Ir : k ∈ K (ε, t)}| ≤ [
√
hr ]
hr →  as r → ∞. Hence Sθ

(μ,υ)n (�)-limx = .
On the other hand, x = {xk} in X is not �-convergent to  with respect to the intuition-

istic fuzzy n-norm since

μ(y, y, . . . , yn–,�xk , t) =
t

t + ‖y, y, . . . , yn–,�xk‖

=

⎧⎨
⎩

t
t+‖y,y,...,yn–,�xk‖ if n – [

√
hr] +  ≤ k ≤ n,

, otherwise,

≤ 

and

υ(y, y, . . . , yn–,�xk , t) =
‖y, y, . . . , yn–,�xk‖

t + ‖y, y, . . . , yn–,�xk‖

=

⎧⎨
⎩

‖y,y,...,yn–,�xk‖
t+‖y,y,...,yn–,�xk‖ if n – [

√
hr] +  ≤ k ≤ n,

, otherwise

≥ .

This completes the proof of the theorem. �
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Altundağ and Kamber Journal of Inequalities and Applications 2014, 2014:40 Page 6 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/40

Theorem. Let (X,μ,υ,∗,◦) be an IFnNLS.Then Sθ
(μ,υ)n (�)-limx = L if and only if there

exists an increasing sequence K = {kn} of the natural numbers such that δθ (�)(K) =  and
(μ,υ)n-limk∈K �xk = L.

Proof Necessity. Suppose that Sθ
(μ,υ)n (�)-limx = L. Then, for every y, y, . . . , yn– ∈ X,

t >  and j = , , . . . ,

K (j, t) =
{
k ∈ N : μ(y, y, . . . , yn–,�xk – L, t) >  –


j

and υ(y, y, . . . , yn–,�xk – L, t) <

j

}
and

M(j, t) =
{
k ∈N : μ(y, y, . . . , yn–,�xk – L, t) ≤  –


j

or υ(y, y, . . . , yn–,�xk – L, t) ≥ 
j

}
.

Then δθ (�)(M(j, t)) =  since

K (j, t) ⊃ K (j + , t) (.)

and

δθ (�)
(
K (j, t)

)
=  (.)

for t >  and j = , , . . . . Now we have to show that for k ∈ K (j, t) suppose that for
some k ∈ K (j, t), x = {xk} not �-convergent to L with respect to the intuitionistic
fuzzy n-norm (μ,υ)n. Therefore there is α >  and a positive integer k such that
μ(y, y, . . . , yn–,�xk – L, t) ≤  – α or υ(y, y, . . . , yn–,�xk – L, t) ≥ α for all k ≥ k. Let
α > 

j and

K (α, t) =
{
k ∈N : μ(y, y, . . . , yn–,�xk – L, t) >  – α

and υ(y, y, . . . , yn–,�xk – L, t) < α
}
.

Then δθ (�)(K(α, t)) = . Since α > 
j , by (.) we have δθ (�)(K(j, t)) = , which contradicts

by equation (.).
Sufficiency. Suppose that there exists an increasing sequence K = {kn} of the natural

numbers such that δθ (�)(K) =  and (μ,υ)n-limk∈K �xk = L, i.e., for every y, y, . . . , yn– ∈
X, ε >  and t > , there exists n ∈ N such that μ(y, y, . . . , yn–,�xk – L, t) >  – ε and
υ(y, y, . . . , yn–,�xk – L, t) < ε.
Let

M(ε, t) :=
{
k ∈N : μ(y, y, . . . , yn–,�xk – L, t) ≤  – ε

or υ(y, y, . . . , yn–,�xk – L, t) ≥ ε
}

⊆ –{kn+,kn+, . . .}

http://www.journalofinequalitiesandapplications.com/content/2014/1/40
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and consequently δθ (�)(M(ε, t)) ≤  –  = . Hence Sθ
(μ,υ)n (�)-limx = L. This completes

proof of the theorem. �

Theorem. Let (X,μ,υ,∗,◦) be an IFnNLS.Then Sθ
(μ,υ)n (�)-limx = L if and only if there

exist a convergent sequence y = {yk} and a lacunary �-statistically null sequence z = {zk}
with respect to the intuitionistic fuzzy n-norm (μ,υ)n such that (μ,υ)n-lim y = L, �x =
y +�z and δθ (�)({k ∈N :�zk = }) = .

Proof Necessity. Suppose that Sθ
(μ,υ)n (�)-limx = L and

K (j, t) =
{
k ∈ N : μ(y, y, . . . , yn–,�xk – L, t) >  –


j

and υ(y, y, . . . , yn–,�xk – L, t) <

j

}
.

Using Theorem . for any y, y, . . . , yn– ∈ X, t >  and j ∈ N, we can construct an in-
creasing index sequence {rj} of the natural numbers such that rj ∈ K (j, t), δθ (�)(K(j, t)) = ,
and so we can conclude that for all r > rj (j ∈N),


hr

∣∣∣∣
{
k ∈ Ir : μ(y, y, . . . , yn–,�xk – L, t) >  –


j

and υ(y, y, . . . , yn–,�xk – L, t) <

j

}∣∣∣∣ > j – 
j

.

We define y = {yk} and z = {zk} as follows. If  < k < r, we set yk = �xk and zk = . Now
suppose that j ≥  and rj < k ≤ rj+. If k ∈ K (j, t), i.e., μ(y, y, . . . , yn–,�xk – L, t) >  – 

j
and υ(y, y, . . . , yn–,�xk – L, t) < 

j , we set yk = �xk and �zk = . Otherwise yk = L and
�zk =�xk – L. Hence it is clear that �x = y +�z.
We claim that (μ,υ)n-lim y = L. Let ε > 

j . If k ∈ K (j, t) for all k > rj, μ(y, y, . . . , yn–,
yk – L, t) >  – ε and υ(y, y, . . . , yn–, yk – L, t) < ε. Since ε was arbitrary, we have proved
the claim.
Next we claim that z = {zk} is a lacunary �-statistically null sequence with respect to

the intuitionistic fuzzy n-norm (μ,υ)n, i.e., Sθ
(μ,υ)n (�)-lim z = . It suffices to see that

δθ (�)({k ∈N :�zk = }) =  to prove the claim. This follows from observing that

∣∣{k ∈ Ir :�zk = }∣∣
≤ ∣∣{k ∈ Ir : μ(y, y, . . . , yn–,�zk , t) >  – ε and υ(y, y, . . . , yn–,�zk , t) < ε

}∣∣

for any r ∈N and ε > .
We show that if δ >  and j ∈ N such that 

j < δ, then


hr

∣∣{k ∈ Ir :�zk = }∣∣ >  – δ

for all r > rj. Recall from the construction that if k ∈ K (j, t), then �zk =  for rj < k ≤ rj+.

http://www.journalofinequalitiesandapplications.com/content/2014/1/40
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Now, for t >  and s ∈N, let

K (s, t) =
{
k ∈N : μ(y, y, . . . , yn–,�xk – L, t) >  –


s

and υ(y, y, . . . , yn–,�xk – L, t) <

s

}
.

For s > j and rs < k ≤ rs+ by (.),

K (s, t) =
{
k ∈N : μ(y, y, . . . , yn–,�xk – L, t) >  –


s

and υ(y, y, . . . , yn–,�xk – L, t) <

s

}

⊂ {k ∈N :�zk = }.

Consequently, if rs < k ≤ rs+ and s > j, then


hr

∣∣{k ∈ Ir :�zk = }∣∣

≥ 
hr

∣∣∣∣
{
k ∈ Ir : μ(y, y, . . . , yn–,�xk – L, t) >  –


s

and υ(y, y, . . . , yn–,�xk – L, t) <

s

}∣∣∣∣
>  –


s
>  –


j
>  – δ.

Hence we get δθ (�)({k ∈N :�zk = }) = , which establishes the claim.
Sufficiency. Let x, y and z be sequences such that (μ,υ)n-lim y = L, �x = y + �z and

δθ (�)({k ∈N :�zk = }) = . Then, for any y, y, . . . , yn– ∈ X, ε >  and t > , we have

{
k ∈N : μ(y, y, . . . , yn–,�xk – L, t) ≤  – ε or υ(y, y, . . . , yn–,�xk – L, t) ≥ ε

}
⊆ {

k ∈N : μ(y, y, . . . , yn–, yk – L, t) ≤  – ε or υ(y, y, . . . , yn–, yk – L, t) ≥ ε
}

∪ {k ∈N :�zk 
= }.

Therefore

δθ (�)
({
k ∈N : μ(y, y, . . . , yn–,�xk – L, t) ≤  – ε

or υ(y, y, . . . , yn–,�xk – L, t) ≥ ε
})

≤ δθ

({
k ∈N : μ(y, y, . . . , yn–, yk – L, t)≤  – ε or υ(y, y, . . . , yn–, yk – L, t) ≥ ε

})
+ δθ (�)

({k ∈ N : �zk 
= }).
Since (μ,υ)n-lim y = L, the set

{
k ∈N : μ(y, y, . . . , yn–, yk – L, t)≤  – ε or υ(y, y, . . . , yn–, yk – L, t) ≥ ε

}
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contains at most finitely many terms and thus

δθ

({
k ∈ N : μ(y, y, . . . , yn–, yk – L, t) ≤  – ε or υ(y, y, . . . , yn–, yk – L, t) ≥ ε

})
.

Also by hypothesis, δθ (�)({k ∈N :�zk 
= }). Hence,

δθ (�)
({
k ∈ N : μ(y, y, . . . , yn–,�xk – L, t)≤  – ε

or υ(y, y, . . . , yn–,�xk – L, t) ≥ ε
})

= ,

and consequently Sθ
(μ,υ)n (�)-limx = L. �

4 �-Cauchy and lacunary�-statistically Cauchy sequences in IFnNLS
In this section, we introduce the notion of Cauchy sequences and lacunary statistically
Cauchy sequences in IFnNLS.

Definition . Let (X,μ,υ,∗,◦) be an IFnNLS. A sequence x = {xk} in X is said to be
�-Cauchy with respect to the intuitionistic fuzzy n-norm (μ,υ)n if, for every ε > , t > 
and y, y, . . . , yn– ∈ X, there exists k ∈ N such that μ(y, y, . . . , yn–,�xk –�xm, t) >  – ε

and υ(y, y, . . . , yn–,�xk –�xm, t) < ε for all k,m≥ k.

Definition . Let (X,μ,υ,∗,◦) be an IFnNLS. A sequence x = {xk} in X is said to be
lacunary �-statistically Cauchy or Sθ (�)-Cauchy with respect to the intuitionistic fuzzy
n-norm (μ,υ)n if, for every ε > , t >  and y, y, . . . , yn– ∈X, there exists a numberm ∈N

satisfying

δθ (�)
({
k ∈N : μ(y, y, . . . , yn–,�xk –�xm, t) ≤  – ε

or υ(y, y, . . . , yn–,�xk –�xm, t) ≥ ε
})

= .

Theorem . Let (X,μ,υ,∗,◦) be an IFnNLS. If a sequence x = {xk} in X is lacunary �-
statistically convergent with respect to the intuitionistic fuzzy n-norm (μ,υ)n if and only if
it is lacunary�-statistically Cauchy with respect to the intuitionistic fuzzy n-norm (μ,υ)n.

Proof Let x = {xk} be a lacunary�-statistically convergent sequencewhich converges to L.
For a given ε > , choose s >  such that ( – ε) ∗ ( – ε) >  – s and ε ◦ ε < s. Let

A(ε, t) =
{
k ∈N : μ(y, y, . . . , yn–,�xk – L, t/) ≤  – ε

or υ(y, y, . . . , yn–,�xk – L, t/) ≥ ε
}
.

Then, for any t >  and y, y, . . . , yn– ∈X,

δθ (�)
(
A(ε, t)

)
= , (.)

which implies that δθ (�)(Ac(ε, t)) = .
Let q ∈ Ac(ε, t). Then

μ(y, y, . . . , yn–,�xq – L, t/) >  – ε

http://www.journalofinequalitiesandapplications.com/content/2014/1/40
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and

υ(y, y, . . . , yn–,�xk – L, t/) < ε.

Now, let

B(s, t) =
{
k ∈N : μ(y, y, . . . , yn–,�xk –�xq, t) ≤  – s

or υ(y, y, . . . , yn–,�xk –�xq, t)≥ s
}
.

We need to show that B(s, t) ⊂ A(ε, t). Let k ∈ B(s, t) ∩ Ac(ε, t). Hence μ(y, y, . . . , yn–,
�xk – �xq, t) ≤  – s and μ(y, y, . . . , yn–,�xk – L, t/) >  – ε, in particular, μ(y, y,
. . . , yn–,�xq – L, t/) >  – ε. Then

 – s ≥ μ(y, y, . . . , yn–,�xk –�xq, t)

≥ μ(y, y, . . . , yn–,�xk – L, t/) ∗ μ(y, y, . . . , yn–,�xq – L, t/)

> ( – ε) ∗ ( – ε) >  – s,

which is not possible. On the other hand, υ(y, y, . . . , yn–,�xk – �xq, t) ≥ s and υ(y, y,
. . . , yn–,�xk – L, t/) < ε, in particular, υ(y, y, . . . , yn–,�xq – L, t/) < ε. Hence,

s ≤ υ(y, y, . . . , yn–,�xk –�xq, t)

≤ υ(y, y, . . . , yn–,�xk – L, t/) ◦ υ(y, y, . . . , yn–,�xq – L, t/)

< ε ◦ ε < s,

which is not possible. Hence B(s, t) ⊂ A(ε, t) and by (.) δθ (�)(B(ε, t)) = . This proves
that x is lacunary �-statistically Cauchy with respect to the intuitionistic fuzzy n-norm
(μ,υ)n.
Conversely, let x = {xk} be lacunary �-statistically Cauchy but not lacunary �-statisti-

cally convergent with respect to the intuitionistic fuzzy n-norm (μ,υ)n. For a given ε > ,
choose s >  such that ( – ε) ∗ ( – ε) >  – s and ε ◦ ε < s. Since x is not lacunary �-
convergent

μ(y, y, . . . , yn–,�xk –�xm, t)

≥ μ(y, y, . . . , yn–,�xk – L, t/) ∗ μ(y, y, . . . , yn–,�xq – L, t/)

> ( – ε) ∗ ( – ε) >  – s,

υ(y, y, . . . , yn–,�xk –�xm, t)

≤ υ(y, y, . . . , yn–,�xk – L, t/) ◦ υ(y, y, . . . , yn–,�xq – L, t/)

< ε ◦ ε < s.

Therefore δθ (�)(Ec(s, t)) = , where

B(s, t) =
{
k ∈N : μ(y, y, . . . , yn–,�xk –�xq, t)≤  – s

or υ(y, y, . . . , yn–,�xk –�xq, t) ≥ s
}
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and so δθ (�)(E(s, t)) = , which is a contradiction, since x was lacunary �-statistically
Cauchy with respect to the intuitionistic fuzzy n-norm (μ,υ)n. So, x must be lacunary
�-statistically convergent with respect to the intuitionistic fuzzy n-norm (μ,υ)n. �

Corollary . Let (X,μ,υ,∗,◦) be an IFnNLS and θ be a lacunary sequence. Then, for any
sequence x = {xk} in X, the following conditions are equivalent:

(i) x is Sθ (�)-convergent with respect to the intuitionistic fuzzy n-norm (μ,υ)n.
(ii) x is Sθ (�)-Cauchy with respect to the intuitionistic fuzzy n-norm (μ,υ)n.
(iii) There exists an increasing sequence K = {kn} of the natural numbers such that

δθ (�)(K) =  and the subsequence {xkn} is Sθ (�)-Cauchy with respect to the
intuitionistic fuzzy n-norm (μ,υ)n.
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24. Karakuş, S, Demirci, K, Duman, O: Statistical convergence on intuitionistic fuzzy normed spaces. Chaos Solitons

Fractals 35, 763-769 (2008)
25. Mursaleen, M, Mohiuddine, SA: Statistical convergence of double sequences in intuitionistic fuzzy normed space.

Chaos Solitons Fractals 41, 2414-2421 (2009)
26. Fridy, JA, Orhan, C: Lacunary statistical convergence. Pac. J. Math. 160, 43-51 (1993)
27. Mursaleen, M, Mohiuddine, SA: On lacunary statistical convergence with respect to the intuitionistic fuzzy normed

space. J. Comput. Appl. Math. 233(2), 142-149 (2009)
28. Sen, M, Debnath, P: Lacunary statistical convergence in intuitionistic fuzzy n-normed spaces. Math. Comput. Model.

54, 2978-2985 (2011)
29. Kızmaz, H: On certain sequence spaces. Can. Math. Bull. 24, 169-176 (1981)
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