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Quantum statistics and entanglement of two electromagnetic field modes coupled via a mesoscopic
SQUID ring
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In this paper we investigate the behavior of a fully quantum mechanical system consisting of a mesoscopic
SQUID ring coupled to one or two electromagnetic field modes. We show that we can use a static magnetic
flux threading the SQUID ring to control the transfer of energy, the entanglement and the statistical properties
of the fields coupled to the ring. We also demonstrate that at, and around, certain values of static flux the
effective coupling between the components of the system is large. The position of these regions in static flux
is dependent on the energy level structure of the ring and the relative field mode frequencies, In these regions
we find that the entanglement of states in the coupled system, and the energy transfer between its components,
is strong.
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I. INTRODUCTION

In an earlier publication1 we considered the interaction of
a quantum mechanical SQUID ring~a single Josephson weak
link, capacitanceCs , enclosed by a thick superconducting
ring, inductanceLs) with a classical electromagnetic~em!
field. Using quasiclassical Floquet theory2–7 to solve the time
dependent Schro¨dinger equation~TDSE! for the SQUID
ring, we were able to show that the ring-field interaction
could be very highly nonperturbative in nature. In essence
this is due to the ring Hamiltonian8 containing a cosine term
~the Josephson coupling energy! which can generate nonlin-
earities to all orders. In addition, this Hamiltonian and its
solutions areF0(5h/2e) periodic in the external static mag-
netic flux (Fxstat) applied to the ring. This quantum non-
linearity ensures that energy exchange between the field and
the ring is dominated by multiphoton absorption~and emis-
sion! processes.1 As we have demonstrated, this is the case
even at modest field amplitudes and at frequencies much less
than the separation between the ring energy levels (4h). In
this work we showed that these energy exchanges occurred
over very small regions in the bias fluxFxstat. The values in
Fxstat at which these exchanges take place are determined by
the ring energy level structure and the field frequency
(ve/2p) and flux amplitude (Fe). To be precise, it is in the
exchange regions that the energy expectation value appears
to jump ~for example, using a two level model! between the
time-averaged energies of the ground and first excited states
of the ring. Each transition~exchange! region corresponds to
the separation between the ring eigenenergies equalling
n\ve , n integer, leading to multiphoton absorption, or emis-
sion, between the ring and the field. It is in these regions that
the nonlinear nature of the ring Hamiltonian becomes mani-
fest and where strong~and nonperturbative! time dependent
superpositions occur between the original eigenstates of the
ring.

Currently there is a great deal of interest in using mesos-

copic SQUID rings~and other weak link based circuits!
in quantum technologies, for example, in quantum
computing.9–12 This interest has been stimulated by recent
experimental work on probing quantum mechanical super-
position states in Josephson weak link circuit systems,13–16

and even more so in the last year by reports of superposition
states in SQUID rings.17–19 It seems reasonable to assume
that the theoretical description of weak link systems interact-
ing with em fields ~classical and quantum mechanical! is
likely to be of great importance in the development of any
future superconducting quantum technologies. In this regard
the very strong nonlinear behavior exhibited by a single
weak link SQUID ring in the exchange regions, referred to
above, may prove to be of great utility. In order to test this
viewpoint we have recently considered, within a fully quan-
tum mechanical framework, the interaction of a SQUID ring
with an oscillator field mode,20 i.e., the simplest coupled sys-
tem we could have chosen~see Fig. 1!. We found that for the
case of the em field in a coherent state the results derived
from this quantum approach compare very well with those
obtained previously using quasiclassical Floquet theory. In
both approaches the ring and the field mode only couple
strongly together within the exchange regions, i.e., over cer-
tain narrow regions in the bias fluxFxstat. This means that

FIG. 1. Block diagram of a SQUID ring coupled to a single em
field mode of frequencyve(51/ACeLe) where the flux linkage
factor, ring to field mode, ismes. Here, it is assumed that the
temperatureT is such thatkBT!\vs ,\ve for a SQUID oscillator
frequencyvs51/ACsLs. Also shown is a static bias magnetic flux
Fxstat applied to the ring.
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Fxstat can be used to control the coupling without losing
superposition coherence in the system. We note that this
work relates to quantum optical interactions in few level at-
oms and to few level systems involving either~supercon-
ducting! electron pairs or single electrons.8,21–24

These initial results for a two mode~ring 1 oscillator!
system have encouraged us to draw more parallels with
quantum optics. Rather than simply consider the SQUID ring
as an electronic device, we may also view it as a tunable,
F0-periodic, nonlinear medium to couple a system of
quantum oscillators together. Regarded as a nonlinear me-
dium, there is a clear analogy to other nonlinear quantum
systems in the context of quantum optics. However, there are
two crucial differences, both of which may be of great
importance in future quantum technologies. First, unlike
the SQUID ring, in quantum optical systems the medium
usually displays a weak polynomial nonlinearity, even in
strong fields.25–30Second, all of the properties of the SQUID
~quantum or quasiclassical! areF0 periodic in bias flux.

In this paper, our objective is to explore the consequences
of the strong quantum nonlinearity of the SQUID ring on the
interaction, via the ring, of two oscillator field modes. This
arrangement is depicted in Fig. 2, with the two field modes
and the ring oscillator frequencies taken to beve1

/2p,

ve2
/2p, andvs/2p51/2pALsCs, respectively. As we shall

see, the addition of the second field mode makes this a much
more sophisticated and interesting system than the two mode
system~ring1field oscillator! which was the subject of a
recent publication,20 even though the computational demands
that need to be met are very much greater. In this regard it is
widely viewed31,10 that the SQUID ring, as a coherent quan-
tum device, has many potential applications in the design,
development and operation of quantum mechanical circuits
and quantum logic elements. In this paper we consider two
aspects of the quantum behavior of a SQUID ring which
could have a serious impact in these areas, namely, the trans-
fer of entanglement and frequency conversion between em
field modes via the quantum nonlinearity of the ring. In this
work we discuss frequency conversion and entanglement for
just two field modes. However, if the nonlinear aspects of
quantum SQUID ring behavior can be fully exploited more
complicated operations could be envisaged. These may in-
clude using SQUID rings to couple/decouple entangled states
in extended qubit circuit structures and allow frequency con-
version processes between field modes to be modulated, pro-

ducing coherent pulse modulated signals. In our opinion, the
combination of such strong nonlinear properties, coupled
with F0-periodic external bias flux control of this behavior,
makes the SQUID ring quite unique as a device for applica-
tion in quantum technologies. Thus, although the following
calculations are concerned with some of the basic conse-
quences of the quantum interaction of em field modes with a
SQUID ring, we also wish to emphasize the technological
possibilities which may open up as these ring-field mode
systems become more fully understood.

In the work presented here we first consider briefly the
two mode system, including a static bias fluxFxstat ~Fig. 1!.
This allows us to relate the quasiclassical Floquet approach
to the fully quantum mechanical treatment and demonstrate
that our quantum model can produce consistent results. It
also provides the background formalism for our main goal
which is the study of two em field modes coupled through a
SQUID ring. Since our purpose is to study the full quantum
mechanics of the ring-field mode~1 or 2! system, we assume
throughout that the operating temperature~T! is such that
\ve1 ,e2

@kBT, \vs@kBT. This ensures that both the ring
and field mode~s! behave quantum mechanically. We then
consider the extended quantum circuit, the two oscillator
field modes (E1 and E2) coupled through a SQUID ring
(S)—Fig. 2—with a bias fluxFxstat also coupled to the ring.
In previous papers1,20 this bias flux was used to control the
behavior of the SQUID ring alone or the ring interacting
with one field mode. In the current paper it is used to control
the interaction between two field modes via the nonlinear
properties of the SQUID ring. At first sight there might ap-
pear to be no a priori reason why, in this three mode system,
it should prove easy to couple all the components together
strongly. However, at least for the case of weak inductive
coupling between the modes, we shall show that well char-
acterized energy exchange can take place at~or close to!
certain specific values ofFxstat. In these regions of bias flux
multiphoton absorption and emission processes occur. Thus,
the energy required for an interaction to take place is ap-
proximately equal to the energy transfer in the absorption or
emission of an integer number of photons with frequency
ve1

in the first field mode to an integer number of photons

with frequencyve2
in the second. As for the two mode~ring

1field mode! system, these are the exchange regions where
the effective coupling becomes strong because of the non-
linearity of the SQUID ring. As we shall see, it is in these
regions that many interesting quantum phenomena can be
observed.

To emphasize that the coupling across the extended three
mode system is controlled by the bias flux, we calculate the
average number of quanta in each mode and show that there
is a large exchange of energy between the three modes at
specific values ofFxstat, thus demonstrating that frequency
conversion can take place in the system. In addition, we
also calculate the second order correlationgi

(2) ~again con-
trolled by the bias flux! which quantifies the quantum
statistics~bunching of quanta! for all three modes.32,33 We
show that as the system evolves in time, strong entanglement
occurs between the three modes. We quantify this by calcu-

FIG. 2. Block diagram of a SQUID ring coupled to two em field
modes of frequencyve1

andve2
assumingkBT!\vs ,\ve1

,\ve2
,

with flux linkage factorsme1s and mse2
between, respectively, the

first field mode and the ring and the ring and the second field mode;
all else as for Fig. 1.
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lating various entropic quantities based on the von Neumann
entropy.34–37These are chosen for convenience and familiar-
ity and because they can be used to quantify the degree of
entanglement between the subsystems~field modes and
SQUID ring!. Although these entropic quantities do have de-
ficiencies as measures of entanglement,38 there is no real
consensus about which is the preferred measure within the
quantum technology community. In the absence of any con-
sensus, we opt for a familiar choice.

II. THE TWO MODE HAMILTONIAN

A. The SQUID ring in a classical field

In our earlier work we treated the em field classically1,39

and the SQUID ring quantum mechanically, using the well
known Hamiltonian8

Hs5
Qs

2

2Cs
1

~Fs2@Fxstat1Fxem sinvet# !2

2Ls

2\n cosS 2p
Fs

F0
D . ~1!

Here,Fs, the magnetic flux threading the ring andQs, the
electric displacement flux between the electrodes of the weak
link in the ring, are the conjugate variables40,41for the system
~with @Fs ,Qs#5 i\), \n/2 is the matrix element for Joseph-
son pair tunnelling through the weak link andFxem is the
amplitude of the classical magnetic flux at the ring due to the
em field mode. WithFxem set to zero we can solve the time
independent Schro¨dinger equation to find the eigenvalues of
the SQUID ring alone as a function of applied flux
Fxstat/F0. As an example, we show in Fig. 3 the first three
eigenenergies of the ring@Ek50,1,2(Fxstat/F0), wherek50
denotes the ground state, etc.# over the range 0<Fxstat/F0
<1 using parameters typical of a quantum regime SQUID
ring,1,20 i.e., Cs51310216 F, Ls53310210 H ~hence
\vs50.043F0

2/Ls or vs/2p59.831011 Hz) and \n
50.07F0

2/Ls51.63\vs(n51.63vs). With Fxem turned on,
we can use Eq.~1! to solve the corresponding TDSE. Again,
by way of illustration, we show in Fig. 4 the computed

time averaged ring energy expectation values for the first
three Floquet states~eigenvalues of the evolution operator
after one period of em field evolution! as a function of
Fxstat/Fo using the ring parameters of Fig. 3. Here,ve has
been set at 0.5vs with the associatedFxem5231023F0. As
can be seen, energy exchange between these time averaged
energies occurs at specific values of the bias fluxFxstat and,
as we have already pointed out, the number and position in
Fxstat of these exchange regions depends onve , Fxem and
the energy level structure of the ring. We have observed
that these transition~exchange! points occur for values
of bias flux such that~at least for small em field ampli-
tudes Fxem) N\ve'Ei(Fx)2Ej (Fx) where N50,61,
62, . . . .1 We note that for the SQUID ring we can write
down a renormalized oscillator frequencyVs5vs

14\2p2nF0
22Cs

21vs
21 which is related to the fact that there

is anas
†as term in a Taylor expansion of the cosine~Joseph-

son! term in the ring Hamiltonian~1!.

B. The SQUID ring in a nonclassical field

In the fully quantum description the HamiltonianHt for
the SQUID ring-em oscillator mode system can be written
as20

Ht5He1Hs2Hes, ~2!

whereHe and Hs are, respectively, the Hamiltonian contri-
butions for the field and the ring andHes is the interaction
energy linking these together.

Following Eq. ~1!, the Hamiltonian for the SQUID ring
alone is8

Hs5
Qs

2

2Cs
1

~Fs2Fxstat!
2

2Ls
2\n cosS 2p

Fs

F0
D ~3!

while the Hamiltonian for the em field@modelled as a paral-
lel capacitance (Ce) inductance (Le) cavity mode equivalent
circuit with infinite parallel resistance on resonance# takes
the form He5Qe

2/2Ce1Fe
2/2Le . Here,Fe and Qe are, re-

spectively, the cavity mode magnetic flux and charge opera-

FIG. 3. First three energy eigenvaluesEk50,1,2 of a quantum
mechanical SQUID ring as a function of bias fluxFxstat/F0

over the range 0<Fxstat/F0<1 for Cs51310216F, Ls

53310210H (\vs50.043F0
2/Ls), and \n50.07F0

2/Ls

51.63\vs (n51.63vs).

FIG. 4. First three time averaged Floquet energies as a function
of Fxstat/F0 for the SQUID ring of Fig. 3 where, again,\vs

50.043F0
2/Ls (vs/2p'1 THz) and \n50.07F0

2/Ls (n
51.63vs) with a classical em field of frequencyve50.5vs and
amplitudeFxem5231023F0 applied. Here, the energy has been
normalized to the ring oscillator energy\vs .
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tors for a field mode frequencyve51/ACeLe. This cavity
mode is coupled inductively to the SQUID ring with a cou-
pling energyHes5(mes/Ls)(Fs2Fxstat)Fe , wheremes is
the em field-SQUID ring flux linkage factor.

By making a suitable transformation@using the unitary
translation operatorT5exp(2iFxstatQs /\)] the Hamiltonian
~3!—now in script—can be written more conveniently as

Hs5T†HsT5
Qs

2

2Cs
1

Fs
2

2Ls
2\n cosS 2p

Fs1Fxstat

F0
D ~4!

while the Hamiltonian for the em field mode remains unaf-
fected. However, the interaction energy does transform to
Hes5(mes/Ls)FsFe . We denote the magnetic flux depen-
dent eigenstates ofHs by us&S . In our computations we then
use a truncated energy eigenbasis both for the ring (us&) and
the em field mode (un&). The basis statesus&,un&, wheres
5a, . . . ,V andn50, . . . ,N, are taken so thatV andN are,
respectively, much greater than the average number of
quanta in the ring and em field.

Using this truncated basis, we can then solve

Htujn&5Jnujn& ~5!

to obtain the eigenfunctions and eigenenergies of the two
mode system HamiltonianHt . The eigenenergies for the
ring-field mode system are shown in Fig. 5 for theCs , Ls ,
and\n values used for Fig. 3, withvs52ve , as in Fig. 4.
Here, in Fig. 5~a! the field mode-ring linkage factormes
50.0 while in Fig. 5~b! it is 0.1. From this spectral decom-
position we can form the evolution operator via

U~ t !5(
n

ujn&expS 2
iJnt

\ D ^jnu. ~6!

The time averaged energy expectation values^^Hi 5s,e&& for
the ring1 and the field~i.e., Hs andHe) can then be calcu-
lated using the expression

^^Hi&&5 lim
t→`

1

tE0

t

Tr@r i~ t !Hi #dt, ~7!

wherer i , i 5e,s are the reduced density operators for the
em mode and the SQUID ring, respectively. In practice, we
have been able to ensure the convergence of the integral~7!
by integrating numerically from 0 up to 20 000/vs .

Clearly, provided we select the correct initial state for the
em field in the two mode system, there should exist a corre-
spondence between the Floquet method used in Sec. II A
@using~1!# and the result of a fully quantum mechanical cal-
culation. As an initial state the coherent state is an obvious
choice since it is the closest quantum state to a monochro-
matic em field, as used in the Floquet approach above. With
this choice we would expect a reasonable agreement between
the fully quantum and quasiclassical computations. In fact
the match between these two approaches can be very good.
To compare with the quasiclassical result of Sec. II A, we set
the zero time (t50) product state asua5 iA20&E^ us&S ,
whereua&E is a coherent state of the field (aeua&E5aua&E).
Using this coherent state we show in Fig. 6 the calculated
^^Hs&& for an integration timet523104/vs with the ener-
gies normalized in units of\vs . The computations have
been made over the range 0<Fxstat/F0<1 for the values of
s50,1,2, using the SQUID ring capacitance, inductance and
Fx-dependent energy level structure of Fig. 4. Here, as for
Fig. 3, we have madeve50.5vs while setting the flux link-
age factormes50.00076. We chose this value ofmes so that
the amplitude of oscillation of the coherent state in the em
field coupled to the SQUID ring is equivalent to that used in
the Floquet calculation of Fig. 4. It is apparent that the time
averaged energy expectation values, and their exchange re-

FIG. 5. Eigenenergies of the SQUID ring-em field mode system
~normalized in units of\vs) versusFxstat/F0 using the ring pa-
rameters of Fig. 3 withCs5Ce51310216F, vs52ve ~where
vs /2p'1 THz) and n51.63vs . In ~a! the field mode-SQUID
ring flux linkage factormes50; in ~b! mes50.1.

FIG. 6. Time averaged energy expectation values ofHs ~in units
of \vs) as a function ofFxstat/F0 for comparison with Fig. 4
where the em-field mode is in a coherent state and the SQUID ring
is in one of its first three energy eigenstates, i.e., the initial states are
ua5 iA20&E^ us&S , (s50,1,2). Here, as for Fig. 5,Cs5Ce51
310216F, ve50.5vs ~where vs/2p'1 THz), n51.63vs but
with mes57.631024 for comparison with Fig. 4.
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gions, calculated in the quantum model as a function of
Fxstat are very close to those found using the quasi-classical
Floquet approach. To emphasise this, we show in Fig. 7 the
two calculations superimposed. The very close fit between
the two gives us confidence that the quantum model is physi-
cally valid with an accurate correspondence to the quasiclas-
sical regime when a coherent state is chosen for the em field.

As we have already noted for the SQUID ring in a clas-
sical field ~Sec. II A!, we observed that transition~or strong
coupling! regions occur whenN\ve'Ei(Fx)2Ej (Fx).
From Fig. 5 we can see that this situation exists when degen-
eracies in the spectrum of the system are lifted due to the
coupling term between the Hamiltonians for the SQUID ring
and em field.

III. THE THREE MODE HAMILTONIAN

Following on from Eq.~2!, we now consider a SQUID
ring with oscillator frequencyvs , threaded, as before, by a
static bias fluxFxstat, but now coupled to two em field
modes of frequencyv e1

andve2
~see Fig. 2!. With the usual

flux (F i) charge (Qi) commutation relation @F i ,Qj #
5 i\d i j , the total HamiltonianHT for this system can be
written as

HT5He1
1He1s1Hs1Hse2

1He2
, ~8!

where the SQUID ring Hamiltonian is given by Eq.~4!
which has been transformed into theFxstat basis. We choose
to write our component Hamiltonians in Eq.~8! in terms of
the annihilation @ai5(1/A2)(xi1 ipi)# and creation @ai

†

5(1/A2)(xi2 ipi)# operators as

He1
5\ve1S ae1

†ae1
1

1

2D ,

He2
5\ve2S ae2

†ae2
1

1

2D ,

Hs5\vsS as
†as1

1

2D2\n cosF2p

Fo
A \

2Csvs
~as

†1as!

12p
Fx

F0
G ,

where the position and momentum operators can be defined
in terms of the magnetic flux and the charge operators via
xi5ACiv i /\F i andpi5A1/Ci\v iQi for oscillator frequen-
ciesv i51/ACiL i , with the subscripti denotinge1 ,e2 for the
fields ors for the ring. Hence the Hamiltonians of the com-
ponents of the system are identical~but extended to include
an extra field mode! to those used in Sec. II B, but written in
terms of creation and annihilation operators. The interaction
energiesHe1s andHse2

in Eq. ~8!, each of which represents

FIG. 7. ~Color! Comparison between time averaged energies of Figs. 4~red! and 6~blue!.
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the inductive coupling between the SQUID ring and the os-
cillator modese1 ande2, respectively, are given by

He1s52\vs

me1s

2 A Csvs

Ce1
ve1

~as
†1as!~ae1

† 1ae1
!,

Hse2
52\vs

mse2

2 A Csvs

Ce2
ve2

~as
†1as!~ae2

† 1ae2
!.

IV. TIME EVOLUTION OF THE THREE MODE SYSTEM

The Hilbert spaceT for the SQUID ring-em field system
is a tensor product of the Hilbert spaceS for the ring and the
Hilbert spacesE1 andE2 for the fields, that is to sayT5E1
^ S^ E2. We denote in roman script the simple harmonic, em
oscillator mode number eigenstatesun& i (ai

†ai un& i5nun& i).
In representing the SQUID ring we use greek script, for ex-
ample ua&s ,ub&s ,ug&s , . . . , to represent the eigenstates of
the HamiltonianHs in order to distinguish these from the
number eigenstatesun&s of the ring (as

†asun&s5nun&s).
In dealing with the time evolution of the coupled three

mode system we must first solve the eigenproblem@see Eq.
~5!#. As in Sec. II for the two mode system, we use a trun-
cated basis. This has the form

$uNn,k,m&[un&E1
^ uk&S^ um&E2

u

n50, . . . ,N1 ,

k5a, . . . ,V,

m50, . . . ,N2%, ~9!

whereun&E1
andum&E2

are the number states for the two field

modes anduk&S are the energy eigenstates of the SQUID ring
Hamiltonian. Here,N1 , V and N2 are taken to be much
greater than the average number of quanta in each compo-
nent of the system. With the eigenfunctions and eigenener-
gies of Eq.~5!, but using the three mode Hamiltonian, the
evolution operator can be calculated using the expression~6!.
Then, assuming that the system att50 is described by the
density matrix r(0), the density matrix r(t)
5U(t)r(0)U†(t) at a later timet can be found, as can the
reduced density matricesre1

5TrS^ E2
(r), rs5TrE1^ E2

(r),

re2
5TrE1^ S(r) and re1s5TrE2

(r), rse2
5TrE1

(r), re1e2

5TrS(r). With these density matrices determined, we can
then investigate a range of parameters which reveal much of
the quantum behavior of the three mode system, for example,
the von Neumann entropy.

In the following sections of the paper we present numeri-
cal results demonstrating various aspects of this behavior.
Since the examples given are intended to be illustrative in
nature, for simplicity we have made the capacitances for all
three modes of the system the same, these being typical of
quantum regime oscillators operating at a few K, i.e.,Ce1

5C e2
5Cs510216 F. Amongst other things we wish to

show that quantum frequency conversion can occur between
the two oscillator field modes, via the SQUID ring. We have

therefore made the two mode frequencies differ by a factor
of two, i.e., ve1

52ve2
while again, for simplicity, setting

ve1
5vs . With all capacitances identical these frequencies

correspond toLe1
5 1

4 Le2
5Ls for a typical SQUID ring in-

ductanceLs53310210 H ~see Sec. II!. Again, as in Sec. II,
we have put\n50.07F0

2/Ls (n51.63vs) which is typical
value of the pair tunnelling matrix element for quantum re-
gime SQUID rings operating at a few K. In addition, we
have set the ring-field mode flux linkage factors atme1s

50.01 andmse2
50.1 which approximates to some reported

experiments in the literature involving two oscillator field
modes coupled through a SQUID ring.42,43

A. Strong coupling of the SQUID ring to em field modes

In Sec. II we demonstrated that strong coupling between
the SQUID ring and the em field occurs when degeneracies
in the spectrum of the Hamiltonian are lifted due to the cou-
pling between the components of the system. Numerically,
this equates to the conditionN\ve'Ei(Fx)2Ej (Fx),
whereN is integer and theEi(Fx) and Ej (Fx) are thei th
and j th eigenvalues of the system HamiltonianHt . These
regions of strong coupling~the exchange regions!, which de-
velop at specific values of the bias flux (Fxstat) applied to the
SQUID ring, are dependent on the ring eigenenergy structure
and the frequency of the em field. Similarly, for the three
mode system strong energy exchange will occur between the
two field modes and the SQUID ring when the coupling
terms lift degeneracies in the spectrum of the Hamiltonian.
This will occur when

Ne1
\ve1

2Ne2
\ve2

'Ei~Fx!2Ej~Fx!, ~10!

where, now, theEi , j (Fx) are thei th/ j th eigenvalues ofHS
andNe1 ,e2

are integers~positive or negative!. In this caseNe1

photons with frequencyve1
in the first field mode are used to

excite the SQUID from thej th state to thei th state with the
emission ofNe2

photons of frequencyve2
into the second

field mode. Taking the ring-field parameters set above, we
have calculated the energy eigenvalues for the three mode
system. These are shown in Fig. 8. It can be seen that these
eigenenergies possess a very rich structure which leads di-
rectly to the results presented in this paper.

Given a choice of the initial state for the fields in the two
oscillator modes, we can calculate the time averaged energy
expectation values~normalized in units of\vs5\/ACsLs)
of H e1

, He2
, andHs using Eq.~7! and integrating numeri-

cally from 0 up to 23104/vs . As an example, we show in
Fig. 9~a! these time averaged energies plotted as a function
of Fxstat/F0 assuming that att50 the system is in the state
u1&E1

^ ua&S^ u0&E2
, i.e., with one photon in the first em mode

and none in the second. The peaks are a manifestation of the
strong coupling between the various oscillators at and around
specific values ofFxstat/F0 where the energy transfer be-
tween the various components of the three mode system oc-
curs. Thus, starting in the initial stateu1&E1

^ ua&S^ u0&E2
, it

can be seen that in the exchange regions, on average, energy
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is being transferred from the first mode to the SQUID ring
and to the second mode. This will become more transparent
when we compute the time evolution of the expectation val-
ues of the number operators for the components of the sys-
tem ~below!. In Fig. 9~b! we show one of the three mode
exchange regions~aroundFxstat/F050.426) of Fig. 9~a! on
a much expanded scale so that the details can be seen more
clearly.

B. Quantum statistics of the SQUID ring-field system

An important aspect of non-classical electromagnetic
fields is the quantum statistics of photons~bunching of pho-
tons! described by the second order correlations32,33

gi
(2)5

^Ni
2&2^Ni&

^Ni&
2

,^Ni
M&5Tr@r i~ai

†ai !
M#,i 5e1 ,e2 ,s.

~11!

The value ofg(2)51 corresponds to Poissonian statistics.
Values ofg(2) greater than 1 indicate photon bunching~i.e.,
where the photons arrive in groups! while values ofg(2)

smaller than one indicate antibunching~i.e., the regular ar-
rival of photons!. The latter regime is characteristic of non-
classical electromagnetic fields since it can be shown that in
classical opticsg(2)>1. Only in quantum mechanical sys-
tems cang(2),1.32,33 This is well known in quantum optics
but is, perhaps, less familiar in condensed matter physics.

In this work we show that the statistics of photons thread-
ing the SQUID ring affects the statistics of electron pair con-
densate tunnelling through the Josephson junction in the

ring. This is quantified by the second order correlations al-
though higher order correlations can also be calculated.32

These correlations fully describe the quantum statistics and
quantum noise of the photons in the two field modes and the
superconducting condensate.

C. Quantum entanglement in the three mode system

The creation of entangled states of multi-particle systems
is a key feature of all quantum technologies. In their pursuit
the generation of entanglements in real physical systems is
clearly of very considerable interest. In this regard, it appears
that the nonlinear properties of the SQUID ring can be used
very efficiently to entangle circuit subsystems~here, field
oscillator modes! that are coupled to it. As we shall also
show, the ring nonlinearity can also be used with facility to
generate energy conversion between the two oscillator field
modes. Again, taking as our example the three mode system
of Fig. 2, we shall demonstrate that as this system evolves in
time its three components become, to a greater or lesser ex-
tent, entangled. The degree of this entanglement can be
quantified by using entropic quantities. The entanglement for
a two mode~ring-oscillator! system can be quantified by34–37

I AB5S~rA!1S~rB!2S~r!, ~12!

whereS(r) is the von Neumann entropy given by

S~r!52Tr@r ln~r!# ~13!

FIG. 9. ~a! Time averaged energy expectation values~in units of
\vs) over the range 0<Fxstat/F0<1 for the three mode system of
Fig. 8 and~b! as for ~a!, but expanded aroundFxstat/F050.426.
The initial state for the system isu1&E1

^ ua&S^ u0&E2
and the circuit

parameters are as in Fig. 8.

FIG. 8. Eigenenergies~in units of\vs) versusFxstat/F0 of the
three mode~em-mode–ring–em-mode! system withCs5Ce1

5Ce2

51310216F, vs5v e1
52ve2

~where vs/2p'1 THz), n

51.63vs and flux linkage factorsme1s and mse2
. In ~a! me1s and

mse2
are set equal to zero while in~b! me1s50.01 andmse2

50.1.
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with rA5TrBr andrB5TrAr. This entanglement entropy is
positive or zero~subadditivity property of the entropy!. Ex-
amples of the calculation of this entanglement for the two
mode system can be found in our previous work.20

An analogous quantity can be used to characterize the
entanglement of a three component system.52–55Thus, for the
field mode-SQUID ring-field mode system, this takes the
form

I 5S~re1
!1S~rs!1S~r e2

!2S~r! ~14!

which can be written as

I 5I e1s1I se2
1I ~e1s;se2!, ~15!

where I e1s and I se2
are the entanglement entropies between

E1^ S andS^ E2, as defined above Eq.~12!, and

I ~e1s;se2!5S~re1s!1S~rse2
!2S~rs!2S~r! ~16!

describes a deeper entanglement betweenE1^ S andS^ E2.
Understanding of this deeper entanglement, that exists in
three component systems, is intimately connected to the
strong subadditivity property of the entropy. This can be used
to demonstrate that the quantityI (e1s;se2) is positive or
zero. We note that to prove this presented a very difficult
problem in the theory of entropy~it was a conjecture for
many years until a proof was provided52–55!.

In this paper we are not going to proceed further into
this deep problem of entanglement in three component
systems as it has been discussed in detail elsewhere.30

However, we note that the entanglementI can also be ex-
pressed as

I 5S~re1
!1S~rs!1S~re2

!2S~r!

5I e1s1I e1e2
1I ~e1s;e1e2!

5I e2s1I e1e2
1I ~e2s;e1e2!, ~17!

where I (e1s;e1e2) and I (e2s;e1e2) are non-negative num-
bers. On physical grounds, i.e., because we are using the
SQUID ring as the intermediary between the two field
modes, we choose to show numerical results for the en-
tanglement between the SQUID and the first mode (I e1s), the

SQUID and the second mode (I e2s), and also theI (e1s;se2).

V. NUMERICAL CALCULATIONS

As we have shown in Figs. 6 and 9, strong coupling be-
tween the various of components of ring-field mode systems
only occurs over small regions inFxstat—the exchange re-
gions. We now see how the variation in coupling across an
exchange region affects the number operator expectation val-
ues, quantum statistics and entanglements—all important
quantities reflecting on the quantum behavior of these sys-
tems. Continuing from Fig. 9, we calculate these quantities at
each of the three flux bias points A, B, and C~at Fxstat/F0
50.0,0.4246 and 0.4263, respectively!. In each of the fol-
lowing computed examples we assume that att50 the first
field modeE1 contains one or more photons while the second

contains none. In our first set of examples we choose thet
50 state in the first mode to be a number state; in the second
set we make this a coherent stateuA&E1

, where ae1
uA&E1

5AuA&E1
. For the case of the number state we assume that at

t50 the three mode system is in the stateu1&E1
^ ua&S

^ u0&E2
. For the example where we adopt a coherent state for

the first mode we choose for illustrative purposes~and com-
putational ease! the system stateuA5 iA3&E1

^ ua&S^ u0&E2
.

A. Number state computations

As is evident from Figs. 9~a! and 9~b!, the flux bias points
have been selected either to be well away from, or within, an
exchange region, i.e., point A and points B and C, respec-
tively. For a complete, quantitative view of the system we
should compute, in sequence, the number expectation values
^ne1 ,s,e2

&, the entropies@ I e1s ,I se2
,I (e1s;se2), andI ] and the

ge1 ,s,e2

(2) correlations for the first field mode (E1), the SQUID

ring (S), and the second field mode (E2) as a function of
normalized timevst. However, it is apparent in Fig. 10~bias
point A! that, starting in a pure stateu1&E1

^ ua&S^ u0&E2
for

E1, the number expectation values~a! and entropies~b! re-
main constant as a function of time. We note that^ns& is not
zero because the ground stateua&S of the SQUID ring is not
the same as the ground state of a simple harmonic oscillator
u0&. From the definition given in Sec. IV B, the fact that
^ne2

&50 makes the calculation ofg(2) for the second mode

FIG. 10. Starting in a pure stateu1&E1
^ ua&S^ u0&E2

, plots of ~a!

the number expectation values^ne1
&, ^ns&, ^ne2

& and ~b! the en-
tanglement entropiesI e1s , I se2

, I (e1s;se2), I versus dimensionless
time vst for the three component system of Fig. 9 with the ring flux
biased at A in Fig. 9~a!. Here, the system parameter values are as for
Fig. 8~b!.
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at bias point A physically unmeaningful since this is division
by zero. It is therefore very sensitive to numerical error.
However, such is not the case when the bias point point is
shifted into an exchange region. Starting again with the sys-
tem stateu1&E1

^ ua&S^ u0&E2
, we show in Figs. 11~bias point

B! and 12~bias point C! the average number of quanta—the
^ni&—in each of the three modes as a function of time. With
this choice of starting state these results demonstrate clearly
the quasiperiodic exchange of energy between the various
components of the system. Since the exchange coupling is
strongest at C, this is where we would expect to find the
maximum energy transfer between the first and second field
modes, as is the case~Fig. 12!. We note that in the computed
results of Fig. 12 the second field mode number expectation
value~and that of the SQUID ring to a much smaller extent!
is a maximum when that for the first field mode is a mini-
mum. This is the signature for frequency~down! conversion,
in this example by a factor of 2. The process could, of
course, be run backwards to generate frequency up conver-
sion from the second to the first field mode via the quantum
nonlinearity of the SQUID ring. Given that this nonlinearity
can be to all orders, we see no obvious reason why much
higher ratio frequency conversions should not prove practi-
cable.

From a theoretical viewpoint the problem with demon-
strating high ratio frequency conversions is the rapid rise in
the number of basis states required as the down~up! conver-
sion frequency ratio increases. The computational difficulties
increase accordingly. Nevertheless, even given the limita-
tions on the computational power we have available~Com-
paq XP1000 alphaserver with 2GB RAM!, we have been
able to demonstrate quantum down conversion by a factor of
10 in frequency. We intend to deal with this in a future pub-
lication. There is some indication that these down conversion
processes occur.43 In Fig. 12 the input state is the number
stateu1&E1

but, as we shall show, down conversion can occur
for a coherent input state. It may well be that this ability to
generate photon down/up conversion could have practical
application for pure state sources in quantum information
processing and quantum computing. For example, it may
prove desirable to take single photon terahertz sources, as are
now being developed,44,45 and use these to provide the input
state to a SQUID ring to generate photons at much lower
frequencies suitable for solid state quantum circuit technolo-
gies. It is also clear that if very large down/up frequency
conversion ratios can be achieved experimentally, there
could well be interesting metrological applications, for ex-
ample, in frequency standards.

This role in linking the two field modes together in a
strongly nonlinear, quantum mechanical manner is empha-
sized in Figs. 13 and 14. Here, the time varying entangle-
ment entropies are computed for bias points B~Fig. 13! and
C ~Fig. 14! following the definitions given in Sec. IV C.
Here, again, we have started the system in stateu1&E1

^ ua&S^ u0&E2
. It can be seen that the entanglement between

the various components of the system@ I e1s , I se2
, and

I (e1s;se2)], and the total entanglement entropy for the sys-
tem (I ), are stronger at C than at B which, from Figs. 9~b!,
11, and 12, is to be expected. In our opinion it is this ability
to control the degree of entanglement between the compo-
nents of ~for example! this three mode system simply by
changingFxstat which marks out the SQUID ring as a poten-
tially very useful device in future quantum circuit technolo-
gies. This is emphasized by the contrast between figures

FIG. 11. With the initial pure stateu1&E1
^ ua&S^ u0&E2

, and with
the parameter values of Fig. 8~b!, a plot of the number expectation
values ^ne1

&, ^ns&, ^ne2
& versus dimensionless timevst for the

static magnetic flux on the SQUID ring set at point B in Fig. 9~b!.

FIG. 12. Starting in the pure stateu1&E1
^ ua&S^ u0&E2

, and with
the parameter values of Fig. 8~b!, plots of the number expectation
values ^ne1

&, ^ns&, ^ne2
& versus dimensionless timevst for the

three component system of Fig. 9 with the SQUID ring flux biased
at point C in Fig. 9~b!.

FIG. 13. Entanglement entropiesI e1s , I se2
, I (e1s;se2) and I

versus dimensionless timevst for the three component system of
Fig. 9, with the parameter values of Fig. 8~b!, starting in state
u1&E1

^ ua&S^ u0&E2
with the SQUID ring flux set at point B@Fig.

9~b!#.
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10~b! ~for bias point A! and 14, where the system and sub-
system entanglement go from zero to a maximum for an
adjustment inFxstat around 0.04F0 .

Although, in the above we have considered in some detail
entanglement between two field modes~input and output!
interacting via a SQUID ring, there are many other coupled
systems of field modes and SQUID rings which could be
studied. One which may be of importance, both scientifically
and technologically, is an input field mode linked through a
SQUID ring to two separate output modes at half the input
frequency. From the results obtained in this paper we would
expect the two~down converted! photons to be strongly en-
tangled with the degree of entanglement controlled, again, by
the bias fluxFxstatapplied to the ring. Furthermore, given the
nonlinearity of the SQUID ring, we would also expect it to
be possible to entangle a large number of output photons
starting at an initial input frequency and down converting to
a whole set of lower frequency output modes. As a tech-
nique, the use of a SQUID ring to generate entanglements
between several systems could well be applied to great ad-
vantage in fundamental experimental studies of quantum
mechanics.48–50 It could also have implications in quantum
computing, for example, in creating an entangled input reg-
ister for a quantum computer. It has also been suggested that
the creation of~large number! multiparticle entangled sys-
tems could lead to new sensors and instrumentation of un-
paralleled sensitivity47 and it may be that SQUID rings are
very well suited to creating these entanglements, at least for
photons.

There are other possible ways that the input register of a
quantum computer could be based on the nonlinear proper-
ties of SQUID rings described in this paper. For example, we
could set the three modes of the coupled system in Fig. 2 all
to have the same oscillator frequencyvs . Then, withFxstat
biased within an exchange region, we could arrange to create
a qubit superposition state ofu0& andu1& in the output mode
starting from the number stateu1& of the input mode. As our
results have demonstrated, this could be done in such a way
as to ensure that the input and output oscillator modes are
entangled. Once the desired qubit state of the output mode
had been realized, in principle the bias flux could then be

switched away rapidly from the exchange region~or
switched off! thus leaving the input and output modes en-
tangled but uncoupled. An array of these circuits could then
be used as an qubit register for a quantum computer, where
the qubits would be entangled but not coupled to the input
modes. Conceivably, this arrangement could facilitate quan-
tum error correction for quantum computation.46 Schemes of
this kind may well find application in quantum encryption
and transmission of information at a more complex level
than is usually considered.9,46,51

Since the underlying purpose of this work is to demon-
strate the influence of the SQUID ring nonlinearity on a
coupled quantum system, it is important to show quantita-
tively the way in which the quantum statistics of the photons
affects the quantum statistics of the electron pairs~i.e., the
superconducting condensate flowing through the weak link
in the ring!. As we explained above~Sec. IV B!, this is quan-
tified with the second order correlationsgi

(2) . In Figs. 15 and
16 we plot the second order correlationsge1

(2) , gs
(2) , andge2

(2)

for bias points B and C as functions of time with, again, a
starting state for the system ofu1&E1

^ ua&S^ u0&E2
. As with

the number expectation values and the entanglement entro-

FIG. 14. Entanglement entropiesI e1s , I se2
, I (e1s;se2), and I

versus dimensionless timevst for the three component system of
Fig. 9, with the parameter values of Fig. 8~b!, starting in state
u1&E1

^ ua&S^ u0&E2
with the SQUID ring flux biased at point C in

Fig. 9~b!.

FIG. 15. Second order correlationsge1

(2) , gs
(2) , andge2

(2) versus
dimensionlessvst for the three component system of Fig. 9, start-
ing in a pure stateu1&E1

^ ua&S^ u0&E2
with the static magnetic flux

on the SQUID ring set at bias point B in Fig. 9~b!. Here, the system
parameter values are as for Fig. 8~b!.

FIG. 16. Second order correlationsge1

(2) , gs
(2) , andge2

(2) versus
dimensionlessvst for the three component system of Fig. 9@pa-
rameter values as for Fig. 8~b!#, starting in a pure stateu1&E1

^ ua&S^ u0&E2
with the SQUID ring bias flux set at bias point C in

Fig. 9~b!.
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pies, we see a strong oscillatory behavior, particularly in Fig.
16 ~biased at point C!. In order to interpret the results we first
note that for the stateu0& i ( i 5E1 ,E2 ,S), or other states
close to this state, the average number of photons is near
zero. From Eq.~11! this means that the second order corre-
lation becomes very large. We also note for the number state
u1&, ^N2&2^N&50 and the correspondingg(2)50. With this
in mind, we see in Fig. 15~bias point B! that the first field
mode, in number stateu1&E1

at t50, starts with ag(2) at zero.
It remains extremely close to this value over the time of the
computation, i.e., this field mode stays reasonably close to
the number stateu1&E1

. By contrast, the second field mode,

assumed to be in the stateu0&E2
at t50, has on average a

largeg(2) value, although this dips well below unity almost
periodically with time. This demonstrates that even at bias
point B, on the edge of the exchange region, the value ofge2

(2)

regularly falls below 1. It also shows that for this initial
condition the quantum statistics of the second field mode
cannot be described by classical means. In Fig. 16~bias point
C!, at t50, we again assume that the first field mode is in
stateu1&E1

with the second in stateu0&E2
. As before, the first

field mode starts atge1

(2)50 but as the wavefunction for the

system evolves with time we see thatge1

(2) regularly shifts

away from zero. Correspondingly, the first field mode is no
longer in the pure number stateu1&E1

due to its interaction
with the rest of the system. The first field mode is described
by a reduced density operator which, at these points, repre-
sents statistical mixture of states with a low photon number
expectation value~as can be seen from Fig. 12!. As a conse-
quence,ge1

(2) increases since the denominator in Eq.~11! be-

comes very small around these points.

B. Coherent state computations

In Figs. 17, 18 and 19 we show the number expectation
values, the entanglement entropies and theg(2) correlations
for the bias point C in Fig. 9~b!, taking the initial state of the
system asuA5 iA3&E1

^ ua&S^ u0&E2
, i.e., where the first field

mode is in the coherent stateu iA3&E1
at t50. It is apparent

~Fig. 17! that there is energy transfer, via the SQUID ring,
between the first and second field modes of the system, just
as in Fig. 12 for the pure stateu1&E1

^ ua&S^ u0&E2
. Thus,

when ^ne1
& decreaseŝne2

& increases, and vice versa. How-
ever, it is evident that the regular oscillatory behavior seen in
Figs. 11 and 12 has been lost. We note that, as in Figs. 11 and
12, the number expectation value of the SQUID ring remains
at a roughly constant value, highlighting the view that the
SQUID ring is acting as a nonlinear control medium linking
the two quantum field modes together. In Fig. 18 we see that
the components of the system again entangled very strongly
but, unlike the previous computations of Figs. 13 and 14,
there is no longer any quasiperiodic disentanglement to be
seen. The system remains entangled at all points in time, i.e.,
the total entanglement entropy is always high. In Fig. 19
there is clearly a significant deviation from the behavior of
the g(2) coefficients displayed in Figs. 15 and 16. Thus, in
Fig. 19,ge1

(2) is close to one for all of the time evolution~and

for most of the time just greater than one! whereasgs
(2)

spends most of its time just less than one andge2

(2) is almost

always greater than 1.
In all the examples given above we observe that, as ex-

pected, the system displays strong entanglement when the
first field mode has a low number expectation value, i.e., the

FIG. 17. Starting the three component system with the first field
mode in a coherent state, i.e.,uA5 iA3&E1

^ ua&S^ u0&E2
, and using

the parameter values of Fig. 8~b!, plots of the number expectation
values ^ne1

&, ^ns&, ^ne2
& against dimensionless timevst for the

static flux on the SQUID ring set at point C in Fig. 9~b!.

FIG. 18. With initial stateuA5 iA3&E1
^ ua&S^ u0&E2

for the three
component system, the entanglement entropiesI e1s , I s e2

,
I (e1s;se2), andI versus dimensionless timevst, where the system
parameters are as for Fig. 8~b! and the SQUID ring is flux biased at
point C in Fig. 9~b!.

FIG. 19. Second order correlationsge1

(2) , gs
(2) , andge2

(2) versus
dimensionless timevst for the three component system@parameter
values as for Fig. 8~b!# starting in stateuA5 iA3&E1

^ ua&S^ u0&E2

with the flux on the SQUID ring set at bias point C in Fig. 9~b!.
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components of the system have evolved away from their
initial pure states. We also note that when we start the first
field mode in the pure stateu1&E1

^ ua&S^ u0&E2
, at bias points

B and C, we find strong entanglement between the various
components of the coupled system which, at certain times
~semiperiodically!, disentangle. The entanglement entropies
are, of course, theoretical quantities that demonstrate the de-
velopment of quantum correlations between the three modes.
In principle, experimental observation of these quantum cor-
relations can be achieved by determining Bell type
inequalities.32,56,46In the context of the work presented here
this will require further theoretical investigation. In Figs. 15,
16, and 19 it is evident that theg(2) correlation coefficient
for at least one of the components of the system becomes
less than 1 at some point in the evolution of the system.
Hence, for the initial conditions used in this work, we con-
clude that the photon statistics of this system cannot be de-
scribed by classical optics.

VI. CONCLUSIONS

In this paper we have studied the coupling of a SQUID
ring to two em field modes. For this we have made the as-
sumption that the ambient temperature of the system is low
enough to be able to treat each of the three components~ring
1 two field modes! quantum mechanically. Our purpose has
been to demonstrate that the SQUID ring, as a nonlinear
quantum object, can be used to couple a number of quantum
oscillators together to generate physical phenomena of great
interest. As we have emphasized, there exist obvious paral-
lels with the field of quantum optics. However, in quantum
optical systems the coupling media involved generally dis-
play only weak polynomial nonlinearity. In contrast the
SQUID ring, with the cosine term in its Hamiltonian descrip-
tion, can generate nonlinear interactions to all orders. It is
this, plus theF0-periodic nature of its behavior as a function
of external fluxFx , which makes the SQUID ring of such
interest in the burgeoning field of quantum circuit technol-
ogy. Viewed from the perspective of quantum optics, the
SQUID ring ~or a set of coupled SQUID rings! can be
thought of as a nonlinear medium par excellence which can
easily create very strongly coupled regimes~albeit at lower
frequencies—for example, at THz frequencies and below!
which are inaccessible using conventional optical materials.

In our theoretical investigations of the two em field modes
coupled through a quantum SQUID ring we have also ap-
plied a static external magnetic flux (Fxstat) to the ring. In
this paper we started with the simpler example of a SQUID
ring interacting with a single em mode. We showed that the
coupling between the components of the system can be
strong. This strong coupling only occurs over small ranges in
Fxstat, centred around specific values of this bias flux, i.e., in
what we term exchange regions which are govern by the
energy eigenstructure of the system. It is in and around the
exchange regions that the quantum nonlinear nature of the

SQUID ring is made manifest through the coupling of the
field modes via the ring. For example, in these regions en-
ergy can be exchanged between the field modes and the
SQUID ring and, through the intermediary of the ring, be-
tween the field modes themselves. From this we suggest that,
suitably driven, this system may act as a frequency converter
suitable for operation up to the THz range. From our view-
point this illustrates the utility of these exchange regions
since it is here that the strong quantum couplings develop
between the components of the system. We have added to
this perspective by calculating other physical phenomena as-
sociated with such a coupled quantum system. To illustrate
this we have computed the statistics of the various quanta
~quantified with the second order correlations! and the de-
gree of entanglement~quantified with various entropies! be-
tween the components of the system, both outside and within
the exchange regions. Our results demonstrate quite clearly
that the mesoscopic SQUID ring can be used as a flux tun-
able element to manipulate these~and presumably other!
quantum properties of these coupled circuit systems. As
such, the work presented here may be of considerable rel-
evance to current experiments on quantum superposition of
states in SQUID rings and on probing crossing/anticrossing
regions of their energy level structure.17,18,57

We note that we have neglected dissipation in the results
presented in this paper. Thus, we have computed the time
evolution of the three mode system using the equation] tr
52 i @H,r#. A more realistic calculation, with dissipation
due to the environment taken into account~for example, in
Refs. 58–60! is now being developed. The equation for the
time evolution then takes the form] tr52 i @H,r#1 f (r),
where a dissipative termf (r) has been introduced to repre-
sent the environment. We intend to extend our work to in-
vestigate in detail the effects of this environmental dissipa-
tion on the behavior of SQUID ring-field mode systems.

We suggest that the three component system~SQUID ring
1 two field modes!, and its extensions, is rich in possibilities
for device applications~e.g., in quantum gates, quantum en-
cryption, and frequency conversion!; it is also a pointer to
more sophisticated quantum technologies in the future.9

Given that the technical problems associated with such tech-
nologies can be overcome, it seems likely that the SQUID
ring ~and related weak link circuits! will, in the future, be
able to operate at THz frequencies. This could complement
the current drive to develop THz applications in~classical!
communications and imaging.44,45 It would also allow for
quantum circuit technologies to be utilized at quite acces-
sible temperatures.
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