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Peristaltic transport of an incompressible viscous fluid in an asymmetric compliant chan-
nel is studied. The channel asymmetry is produced by choosing the peristaltic wave train
on the walls to have different amplitudes and phases. The fluid-solid interaction problem
is investigated by considering equations of motion of both the fluid and the deformable
boundaries. The driving mechanism of the muscle is represented by assuming the chan-
nel walls to be compliant. The phenomenon of the “mean flow reversal” is discussed. The
effect of wave amplitude ratio, width of the channel, phase difference, wall elastance, wall
tension, and wall damping on mean-velocity and reversal flow has been investigated. The
results reveal that the reversal flow occurs near the boundaries which is not possible in
the elastic symmetric channel case.
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and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Peristaltic transport is a form of fluid transport induced by a progressive wave of area
contraction or expansion along the length of a distensible tube containing fluid. In phys-
iology, peristalsis is used by the body to propel or mix the contents of a tube as in ureter,
gastrointestinal tract, bile duct, and other glandular ducts. Some worms use peristalsis
as a means of locomotion. Roller and finger pumps using viscous fluids also operate on
this principle. Peristalsis has been proposed as a mechanism for the transport of sperma-
tozoa in vas deferens (Paufler and Foote [18]). Vas deferens is the duct which connects
the ductus epididymidis to an ampulla. The mechanism of peristaltic transport has been
exploited for industrial applications like sanitary fluid transport, blood pumps in heart
lung machine, and transport of corrosive fluids where the contact of the fluid with the
machinery parts is prohibited. The problem of the mechanism of peristaltic transport has
attracted the attention of many investigators since the first investigation of Latham [12].
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2 Effect of wall compliance on peristaltic transport

A number of analytical and experimental studies have been conducted to understand
peristaltic action have appeared in [1, 3, 6, 7, 11, 13–15, 19, 25, 26]. Numerical tech-
niques were used by Brown and Hung [2]; Takabatake and Ayukawa [23] for channel
flow, and Takabatake et al. [24] for axisymmetric tube flow. A summary of most of the
investigation reported up to the year 1984 has been presented by L. M. Srivastava and V.
P. Srivastava [21]. The important contributions of the recent years are referenced by Sri-
vastava and Saxena [20]. Recently, physiologists observed that the intrauterine fluid flow
due to myometrial contractions is peristaltic-type motion and the myometrial contrac-
tions may occur in both symmetric and asymmetric direction (de Vries et al. [5]). Eytan
and Elad [8] have developed a mathematical model of wall-induced peristaltic fluid flow
in a two-dimensional channel with wave trains having a phase difference moving inde-
pendently on the upper and lower walls to simulate intrauterine fluid motion in a sagittal
cross-section of the uterus. Eytan et al. [9] have observed that the width of the sagittal
cross-section of the uterine cavity increases towards the fundus, and the cavity is not fully
occluded during the contractions. Mitra and Prasad [17] extended Fung and Yih [10]
model and considered the two-dimensional analysis of peristaltic motion with flexible
(elastic or viscoelastic) wall. L. M. Srivastava and V. P. Srivastava [22] extended the work
of Mitra and Prasad [17] from single-phase Newtonian fluid analysis to a two-phase flow.
The present study extends the two-dimensional analysis of peristaltic motion by (Mitra
and Prasad [17] and Mishra and Rao [16]) to include a compliant asymmetric channel.
The main purpose of the present study is to investigate the influence of compliant wall
properties in peristaltic motion in a two-dimensional asymmetric channel which is dif-
ferent from the model used by Mitra and Prasad [17]. Also, the chief aim of the present
study is to understand the dynamic interaction of fluid and solid inherent in peristalsis.
Therefore, no attempt is made to discuss the origin of the source of energy or how a pro-
gressive wave may be imparted to the walls. The compliant wall is excited by the muscles
whose tension will control its deformation. The action of these muscles will be governed
by a set of equations in terms of variables which will be related to the compliant wall
displacement. In the present analysis this driving mechanism of the muscle is assumed in
the form of a sinusoidal wave of moderate amplitude imposed on the compliant walls of
the channel. The channel asymmetry is produced by choosing the peristaltic wave train
on the walls to have different amplitudes and phases. The equations of the motion for the
fluid are solved taking into account the nonlinearity of these equations and the action of
the walls. As the problem is complicated, it is solved by perturbation technique which is
different from the method used by Mishra and Rao [16].

2. Basic equations and formulation of the problem

A viscous incompressible fluid of density ρ and kinematic viscosity ν flows in a two-
dimensional asymmetric channel of width d1 + d2. The channel asymmetry is produced
by choosing the peristaltic wave train on the walls to have different amplitudes and phases.
The walls of the channel are flexible, considered as compliant walls (see Figure 2.1). The
basic flow is taken parallel to the x-axis with the y-axis normal to the walls. Denoting the
x and y velocity components of the fluid by u and v and the pressure by P, the equation
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Figure 2.1. Geometry of the problem.

of continuity and the equations of motion are

∂u

∂x
+
∂v

∂y
= 0, (2.1)

∂u

∂t
+u

∂u

∂x
+ v

∂u

∂y
=−1

ρ

∂P

∂x
+ ν∇2u,

∂v

∂t
+u

∂v

∂x
+ v

∂v

∂y
=−1

ρ

∂P

∂y
+ ν∇2v.

(2.2)

We define the stream function ψ(x, y, t) by

u= ∂ψ

∂y
, v =−∂ψ

∂x
. (2.3)

Substituting (2.3) into (2.2) and eliminating the pressure, we get

∂

∂t
∇2ψ +ψy∇2ψx −ψx∇2ψy = ν∇2∇2ψ, (2.4)

where ∇2 denotes the Laplacian operator, and the subscripts indicate partial differentia-
tion.

The compliant wall is modeled as spring-backed plate, it constrained to move only
in the vertical direction. Let the vertical displacements of the upper and lower walls be
η1 and η2, respectively. Further, η1 and η2 are assumed to be in the form of a sinusoidal
waves of different amplitudes and phases. Thus,

η1 = a1 Cos
2π
λ

(x− ct), η2 = a2 Cos
[

2π
λ

(x− ct) + θ
]

, (2.5)



4 Effect of wall compliance on peristaltic transport

where a1 and a2 are the amplitudes of the waves, λ is the wave length, c is the wave speed,
and θ is the phase difference which varies in the range 0 ≤ θ ≤ π. It should be noted
that θ = 0 corresponds to symmetric channel with waves out of phase, θ = π with waves
in phase, and further a1, a2, d1, d2, and θ satisfy the condition a2

1 + a2
2 + 2a1a2 Cosθ ≤

(d1 + d2)2. The equation of motion of the compliant wall can be written as (Davies and
Carpenter [4])

[
m
∂2

∂t2
+d

∂

∂t
+B

∂4

∂x4
−T ∂2

∂x2
+K

]{
η1

η2

}
= P−P0, (2.6)

where m is the plate mass per unit area, d is the wall damping coefficient, B is the flexural
rigidity of the plate, T is the longitudinal tension per unit width, K is the spring stiffness,
and P0 is the pressure on the outside surface of the wall due to the tension in the muscles.
This tension may be obtained through the constitutive relation of the muscles when the
displacements are known. It is assumed that P0 = 0 and the channel walls are inextensible
so that only their lateral motions normal to the undeformed positions occur. The hori-
zontal displacement will be assumed zero. Hence the boundary conditions for the fluid
are

ψy = 0, ψx =−∂η1

∂t
at y = d1 +η1,

ψy = 0, ψx = ∂η2

∂t
at y =−d2−η2.

(2.7)

Continuity of stresses requires that at the interfaces of the walls and the fluid P must
be the same as that which acts on the fluid at y = d1 + η1 and y = −d2 − η2. The use of
x-momentum equation leads to

∂

∂x

[
m
∂2

∂t2
+d

∂

∂t
+B

∂4

∂x4
−T ∂2

∂x2
+K

]{
η1

η2

}
= ρν∇2ψy − ρ

(
ψyt +ψyψyx −ψxψyy

)
.

(2.8)

We introduce nondimensional variables and parameters as follows:

x∗ = x

d1
, y∗ = y

d1
, u∗ = u

c
, v∗ = v

c
, t∗ = ct

d1
, p∗ = p

ρc2
,

η∗1 =
η1

d1
, η∗2 =

η2

d1
, ψ∗ = ψ

cd1
, m∗ = m

ρd1
, d∗ = dd1

ρν
,

B∗ = B

ρd1ν2
, T∗ = Td1

ρν2
, K∗ = Kd3

1

ρν2
,

(2.9)
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ε = a1/d1, h = d2/d1, a = a2/a1, wave number α = 2πd1/λ, and Reynolds number R =
cd1/ν. Dropping the star over the symbols, (2.4)–(2.8) become

∂

∂t
∇2ψ +ψy∇2ψx −ψx∇2ψy = 1

R
∇4ψ, (2.10)

η1 = εCosα(x− t), η2 = aεCos
[
α(x− t) + θ

]
, (2.11)

ψy = 0, ψx =−αεSinα(x− t) at y = 1 +η1, (2.12)

ψy = 0, ψx = aαεSin
[
α(x− t) + θ

]
at y =−h−η2, (2.13)

∂

∂x

[
m
∂2

∂t2
+
d

R

∂

∂t
+
B

R2

∂4

∂x4
− T

R2

∂2

∂x2
+
K

R2

]{
η1

η2

}

= 1
R
∇2ψy −ψyt −ψyψyx +ψxψyy at y =

{
1 +η1

−h−η2

}
.

(2.14)

3. Method of solution

We obtain the solution for the stream function as a power series in terms of the small
amplitude ratio (wave amplitude/channel half width) ε, by expanding ψ and ∂p/∂x in
the form (see Fung and Yih [10])

ψ = ψ0 + εψ1 + ε2ψ2 + ··· , (3.1)(
∂p

∂x

)
=
(
∂p

∂x

)
0

+ ε
(
∂p

∂x

)
1

+ ε2
(
∂p

∂x

)
2

+ ··· . (3.2)

The first term on the right-hand side in (3.2) corresponds to the imposed pressure gra-
dient and the other terms correspond to the peristaltic motion. Substituting (3.1) into
(2.10), (2.12), (2.13), and (2.14) and collecting terms of like powers of ε, we obtain

∂

∂t
∇2ψ0 +ψ0y∇2ψ0x −ψ0x∇2ψ0y = 1

R
∇4ψ0,

ψ0y

{
1
−h
}
= 0, ψ0x

{
1
−h
}
= 0,

1
R
∇2ψ0y

{
1
−h
}
−ψ0ty

{
1
−h
}
−ψ0y

{
1
−h
}
ψ0yx

{
1
−h
}

+ψ0x

{
1
−h
}
ψ0yy

{
1
−h
}
= 0,

∂

∂t
∇2ψ1 +ψ0y∇2ψ1x +ψ1y∇2ψ0x −ψ0x∇2ψ1y −ψ1x∇2ψ0y = 1

R
∇4ψ1,

ψ1y

{
1
−h
}
±
{

Cosα(x− t)
aCos[α(x− t) + θ]

}
ψ0yy

{
1
−h
}
= 0,

ψ1x

{
1
−h
}
±
{

Cosα(x− t)
aCos[α(x− t) + θ]

}
ψ0xy

{
1
−h
}
=±

{
αSinα(x− t)

aαSin[α(x− t) + θ]

}
,
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∂

∂x

[
m
∂2

∂t2
+
d

R

∂

∂t
+
B

R2

∂4

∂x4
− T

R2

∂2

∂x2
+
K

R2

]{
Cosα(x− t)

aCos[α(x− t) + θ]

}

= 1
R
∇2ψ1y

{
1
−h
}
−ψ1ty

{
1
−h
}
−ψ0y

{
1
−h
}
ψ1yx

{
1
−h
}
−ψ1y

{
1
−h
}
ψ0yx

{
1
−h
}

+ψ0x

{
1
−h
}
ψ1yy

{
1
−h
}

+ψ1x

{
1
−h
}
ψ0yy

{
1
−h
}

±
{

Cosα(x− t)
aCos[α(x− t) + θ]

}[
1
R
∇2ψ0yy

{
1
−h
}
−ψ0tyy

{
1
−h
}
−ψ0y

{
1
−h
}
ψ0yyx

{
1
−h
}

−ψ0yy

{
1
−h
}
ψ0yx

{
1
−h
}

+ψ0x

{
1
−h
}
ψ0yyy

{
1
−h
}

+ψ0yx

{
1
−h
}
ψ0yy

{
1
−h
}]

,

∂

∂t
∇2ψ2 +ψ0y∇2ψ2x+ψ1y∇2ψ1x+ψ2y∇2ψ0x−ψ0x∇2ψ2y−ψ1x∇2ψ1y−ψ2x∇2ψ0y= 1

R
∇4ψ2,

ψ2y

{
1
−h
}
±
{

Cosα(x− t)
aCos[α(x− t) + θ]

}
ψ1yy

{
1
−h
}

+
1
2

{
Cos2α(x− t)

a2 Cos2[α(x− t) + θ]

}
ψ0yyy

{
1
−h
}
= 0,

ψ2x

{
1
−h
}
±
{

Cosα(x− t)
aCos[α(x− t) + θ]

}
ψ1xy

{
1
−h
}

+
1
2

{
Cos2α(x− t)

a2 Cos2[α(x− t) + θ]

}
ψ0xyy

{
1
−h
}
= 0,

1
R
∇2ψ2y

{
1
−h
}
−ψ2ty

{
1
−h
}
−ψ0y

{
1
−h
}
ψ2yx

{
1
−h
}

−ψ1y

{
1
−h
}
ψ1yx

{
1
−h
}
−ψ2y

{
1
−h
}
ψ0yx

{
1
−h
}

+ψ0x

{
1
−h
}
ψ2yy

{
1
−h
}

+ψ1x

{
1
−h
}
ψ1yy

{
1
−h
}

+ψ2x

{
1
−h
}
×ψ0yy

{
1
−h
}

±
{

Cosα(x− t)
aCos[α(x− t) + θ]

}[
1
R
∇2ψ1yy

{
1
−h
}
−ψ1tyy

{
1
−h
}
−ψ0y

{
1
−h
}

×ψ1yyx

{
1
−h
}
−ψ1y

{
1
−h
}
ψ0yyx

{
1
−h
}

−ψ0yy

{
1
−h
}
ψ1yx

{
1
−h
}
−ψ1yy

{
1
−h
}
ψ0yx

{
1
−h
}

+ψ0x

{
1
−h
}
ψ1yyy

{
1
−h
}

+ψ1x

{
1
−h
}
ψ0yyy

{
1
−h
}

+ψ0yx

{
1
−h
}
ψ1yy

{
1
−h
}

+ψ1yx

{
1
−h
}
×ψ0yy

{
1
−h
}]
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+
1
2

{
Cos2α(x− t)

a2 Cos2[α(x− t) + θ]

}[
1
R
∇2ψ0yyy

{
1
−h
}
−ψ0tyyy

{
1
−h
}
−ψ0y

{
1
−h
}

×ψ0yyyx

{
1
−h
}
−ψ0yy

{
1
−h
}
ψ0yyx

{
1
−h
}

−ψ0yyy

{
1
−h
}
ψ0yx

{
1
−h
}

+ψ0x

{
1
−h
}

×ψ0yyyy

{
1
−h
}

+ψ0yx

{
1
−h
}
ψ0yyy

{
1
−h
}

+ψ0yyx

{
1
−h
}
ψ0yy

{
1
−h
}]
= 0.

(3.3)

The first set of differential equations in ψ0, subject to the steady parallel flow under the
effect of a constant pressure gradient in the x-direction, yields

ψ0 = K0

[
(h− 1)

(
h2 + 4h+ 1

)
12

+hy− (h− 1)
2

y2− y3

3

]
,

K0 =−R2
(
dP

dx

)
0
.

(3.4)

The second and third sets of differential equations in ψ1 and ψ2 with their corresponding
boundary conditions are satisfied by

ψ1(x, y, t)= 1
2

(
φ1(y)eiα(x−t) +φ∗1 (y)e−iα(x−t)),

ψ2(x, y, t)= 1
2

(
φ20(y) +φ22(y)e2iα(x−t) +φ∗22(y)e−2iα(x−t)),

(3.5)

where the asterisk denotes the complex conjugate. Substituting of (3.5) into the differen-
tial equations and their corresponding boundary conditions in ψ1 and ψ2, we get

(
d2

dy2
−α2 + iαR

(
1−ψ′0

))( d2

dy2
−α2

)
φ1(y) + iαRψ′′′0 φ1(y)= 0, (3.6)

φ′1

{
1
−h
}
=
{−1
aeiθ

}
ψ′′0

{
1
−h
}

, (3.7)

φ′′′1

{
1
−h
}
−α(α− iR)φ′1

{
1
−h
}

+ iαψ′′0

{
1
−h
}
φ1

{
1
−h
}
=
{

1
aeiθ

}
Rδ, (3.8)

δ =− iα
R2

(
iαRd+α2R2m−α4B−α2T −K), (3.9)
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φ′′′′20 (y)=− iαR
2

(
φ1(y)φ′′∗1 (y)−φ∗1 (y)φ′′1 (y)

)′
, (3.10)

φ′20

{
1
−h
}
± 1

2

{
1

2aCosθ

}(
φ′′1

{
1
−h
}

+φ′′∗1

{
1
−h
})
=−1

2

{
1
a2

}
ψ′′′0

{
1
−h
}

, (3.11)

φ′′′20

{
1
−h
}
=− iαR

2

(
φ1

{
1
−h
}
φ′′∗1

{
1
−h
}
−φ∗1

{
1
−h
}
φ′′1

{
1
−h
})

∓ 1
2

{
1
aeiθ

}(
φ′′′′∗1

{
1
−h
}
−α(α+ iR)φ′′∗1

{
1
−h
}
− iαRφ∗1

{
1
−h
}
ψ′′′0

{
1
−h
})

∓ 1
2

{
1

ae−iθ

}(
φ′′′′1

{
1
−h
}
−α(α− iR)φ′′1

{
1
−h
}

+ iαRφ1

{
1
−h
}
ψ′′′0

{
1
−h
})

,

(3.12)

(
d2

dy2
− 4α2 + 2iαR

)(
d2

dy2
− 4α2

)
φ22(y)

= 2iαRψ′0

(
d2

dy2
− 4α2

)
φ22(y)− 2iαRψ′′′0 φ22(y) +

iαR

2

(
φ′1(y)φ′′1 (y)−φ1(y)φ′′′1 (y)

)
,

φ′22

{
1
−h
}
=−1

4

{
1

a2e2iθ

}
ψ′′′0

{
1
−h
}
∓ 1

2

{
1
aeiθ

}
φ′′1

{
1
−h
}

,

2φ′′′22

{
1
−h
}
= 4α(2α− iR)φ′22

{
1
−h
}

+ iαRφ′21

{
1
−h
}
− iαRφ1

{
1
−h
}
φ′′1

{
1
−h
}

∓
{

1
aeiθ

}(
φ′′′′1

{
1
−h
}

+α(iR−α)φ′′1

{
1
−h
}

+ iαRψ′′′0

{
1
−h
}
φ1

{
1
−h
})

− 4iαRψ′′0

{
1
−h
}
φ22

{
1
−h
}

,

(3.13)

where (′) denotes the derivative with respect to y. These equations are sufficient to de-
termine the solution up to the second order in ε. But these equations are fourth-order
ordinary differential equations with variable coefficients, the boundary conditions are
not all homogeneous, and the problem is not an eigenvalue problem. However, we can
restrict our investigation to the case of free-pumping. Physically, this means that the fluid
is stationary if there is no peristaltic waves. In this case we put (∂p/∂x)0 = 0 which means
K0 = 0, under this assumption we get a solution of (3.6) in the form

φ1(y)= L1Sinhαy +L2Coshαy +L3Sinhβy +L4Coshβy, (3.14)
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where

L1= −(αL2Sinhα+βL3Coshβ+βL4Sinhβ)
αCoshα

,

L2= −(N3Rδ +N5N9L3)
N1N5

,

L3= Rδ
(
N1N8−N3N6− aN1N5eiθ

)
N5(N6N9−N1N10)

,

L4= −(N1L2 +N2L3)
N3

,

N1= α(CoshαhSinhα+ CoshαSinhαh)
Coshα

,

N2= β(CoshαhCoshβ−CoshβhCoshα)
Coshα

,

N3= β(CoshαhSinhβ+ SinhβhCoshα)
Coshα

,

N4= β(β2−α2)Coshβ, N5= β(β2−α2)Sinhβ,

N6= −iα
2R(CoshαhSinhα+ CoshαSinhαh)

Coshα
,

N7= β
((
β2−α(α− iR)

)
CoshαCoshβh− iαRCoshαhCoshβ

)
Coshα

,

N8= −β
((
β2−α(α− iR)

)
CoshαSinhβh+ iαRCoshαhSinhβ

)
Coshα

,

N9= (N5N2−N3N4)
N5

, N10= (N5N7−N4N8)
N5

,

β2 = α2− iαR.

(3.15)

Next, in the expansion of ψ2, we need only to concern ourselves with the terms φ′20(y) as
our aim is to determine the mean flow only. Thus, the solution of the differential equation
(3.10) subject to boundary conditions (3.11) and (3.12), under the assumption that K0 =
0, gives the expression

φ′20(y)= F(y) + g(y) + c1y
2 + c2y + c3. (3.16)

Thus, the peristaltic mean flow is obtained as

ū(y)= ε
2

2
φ′20(y)= ε

2

2

(
F(y) + g(y) + c1y

2 + c2y + c3
)
, (3.17)
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c1 = (D3− s)
2

,

c2 =
(
2
(
D1−F(1)

)− 2
(
D2−F(−h)

)− 2g(1) + 2g(−h)− (1−h2
)
(D3− s))

2(1 +h)
,

c3 =
(
2h
(
D1−F(1)

)
+ 2
(
D2−F(−h)

)
+ 2g(−h)− 2hg(1)−h(1 +h)(D3− s))

2(1 +h)
,

D1= −1
2

(
α2(L1 +L1∗

)
Sinhα+α2(L2 +L2∗

)
Coshα+β2L3Sinhβ+β2L4Coshβ

+β∗2L3∗ Sinhβ∗ +β∗2L4∗Coshβ∗
)
,

D2=−aCosθ
(
α2(L1 +L1∗

)
Sinhαh−α2(L2 +L2∗

)
Coshαh+β2L3Sinhβh

−β2L4Coshβh+β∗2L3∗ Sinhβ∗h−β∗2L4∗Coshβ∗h
)
,

D3= −iαR
2

((
β∗2−α2)(L1L3∗ SinhαSinhβ∗ +L1L4∗ SinhαCoshβ∗

)

+
(
β∗2−α2)(L2L3∗CoshαSinhβ∗ +L2L4∗CoshαCoshβ∗

)
+
(
α2−β2)(L3L1∗ SinhαSinhβ+L4L1∗ SinhαCoshβ

)
+
(
α2−β2)(L3L2∗CoshαSinhβ+L4L2∗CoshαCoshβ

)
+
(
β∗2−β2)(L3L3∗ SinhβSinhβ∗ +L3L4∗ SinhβCoshβ∗

)
+
(
β∗2−β2)(L4L3∗CoshβSinhβ∗ +L4L4∗CoshβCoshβ∗

))

− 1
2

((
α4(L1 +L1∗

)−α3(α+ iR)L1∗ −α3(α− iR)L1
)

Sinhα

+
(
α4(L2 +L2∗

)−α3(α+ iR)L2∗ −α3(α− iR)L2
)

Coshα

+
(
β∗4−αβ∗2(α+ iR)

)
L3∗ Sinhβ∗ +

(
β∗4−αβ∗2(α+ iR)

)
L4∗Coshβ∗

+
(
β4−αβ2(α− iR)

)
L3Sinhβ+

(
β4−αβ2(α− iR)

)
L4Coshβ

)
,

s= −iαR
4

((
β∗2−α2)(L1L3∗ +L2L4∗

)
Cosh

(
α+β∗

)

− (β∗2−α2)(L1L3∗ −L2L4∗
)

Cosh
(
α−β∗)

+
(
α2−β2)(L3L1∗ +L4L2∗

)
Cosh(α+β)

− (α2−β2)(L3L1∗ −L4L2∗
)

Cosh(α−β)

+
(
β∗2−β2)(L3L3∗ +L4L4∗

)
Cosh

(
β+β∗

)
− (β∗2−β2)(L3L3∗ −L4L4∗

)
Cosh

(
β−β∗)

+
(
β∗2−α2)(L1L4∗ +L2L3∗

)
Sinh

(
β∗ +α

)
− (β∗2−α2)(L1L4∗ −L2L3∗

)
Sinh

(
β∗ −α)

+
(
α2−β2)(L3L2∗ +L4L1∗

)
Sinh(α+β)

− (α2−β2)(L3L2∗ −L4L1∗
)

Sinh(α−β)

+
(
β∗2−β2)(L3L4∗ +L4L3∗

)
Sinh

(
β∗ +β

)
− (β∗2−β2)(L3L4∗ −L4L3∗

)
Sinh

(
β∗ −β)),

(3.18)
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F(y)= −iαR
4

((
β∗2−α2

)(
L1L3∗ +L2L4∗

)
(
α+β∗

)2 Cosh
(
α+β∗

)
y

−
(
L1L3∗ −L2L4∗

)
(
α−β∗)2 × (β∗2−α2)Cosh

(
α−β∗)y

+

(
α2−β2

)(
L3L1∗ +L4L2∗

)
(α+β)2

Cosh(α+β)y

−
(
α2−β2

)(
L3L1∗ −L4L2∗

)
(α−β)2

Cosh(α−β)y +

(
L3L3∗ +L4L4∗

)
(
β+β∗

)2

× (β∗2−β2)Cosh
(
β+β∗

)
y−
(
β∗2−β2

)(
L3L3∗−L4L4∗

)
(
β−β∗)2 Cosh

(
β−β∗)y

)
,

g(y)= −iαR
4

((
β∗2−α2

)(
L1L4∗ +L2L3∗

)
(
α+β∗

)2 Sinh
(
α+β∗

)
y +

(
L1L4∗ −L2L3∗

)
(
α−β∗)2

× (β∗2−α2)Sinh
(
α−β∗)y +

(
α2−β2

)(
L3L2∗ +L4L1∗

)
(α+β)2

Sinh(α+β)y

−
(
α2−β2

)(
L3L2∗ −L4L1∗

)
(α−β)2

Sinh(α−β)y +

(
L3L4∗ +L4L3∗

)
(
β+β∗

)2

× (β∗2−β2)Sinh
(
β+β∗

)
y+

(
β∗2−β2

)(
L3L4∗−L4L3∗

)
(
β−β∗)2 Sinh

(
β−β∗)y

)
.

(3.19)

The last solution (3.17) differs with that of Fung and Yih [10] in many respects. Inter-
estingly enough, when the equation of motion of the wall is satisfied, c1 is determined
completely. In the cited reference, c1 remained arbitrary and its determination was at-
tributed to the considerations of conditions at the ends of the channel. It should be noted
that if we put a = h = 1, θ = 0, and the wall parameters tend to zero, then the results of
the problem reduce exactly to the same as that found by Fung and Yih [10]. Also, if we
put a = h = 1, θ = 0, and wall tension T and wall elastance K → 0 (thin plate) and wall
rigidity B and wall elastance K → 0 (membrane), then the results of the problem agree
with the work of Mitra and Prasad [17].

4. Numerical results and discussion

In order to observe the quantitative effects of various parameters involved in the analysis,
the mean velocity at the boundaries of the channel, the time-averaged mean-axial veloc-
ity distribution, and reversal flow are calculated for various values of these parameters.
Computer codes were developed for the numerical evaluations of the analytical results
and some important results are displayed graphically in Figures 4.1–4.10. The constant
D1, which initially arose from the nonslip condition of the axial velocity on the upper
wall, is due to the value of φ′20 at the upper wall and is related to the mean velocity by
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Figure 4.1. Effect of the wave amplitude ratio a on variation of D1 with wave number α for m= 0.01,
B = 20, T = 10, K = 10, d = 0.5, h= 0.5, θ = π/3, and R= 15.
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Figure 4.2. Effect of the width of the channel h on variation of D1 with wall damping d for m= 0.01,
B = 20, T = 10, K = 10, α= 0.5, a= 0.5, θ = π/3, and R= 15.
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Figure 4.3. Effect of the phase difference θ on variation of D1 with wall elastance K for m = 0.01,
B = 10, T = 5, d = 0.2, α= 0.5, a= 0.5, h= 0.5, and R= 15.
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Figure 4.4. Effect of the wall tension T on variation of D1 with Reynolds number R for m = 0.01,
B = 100, d = 0.2, θ = π/6, α= 0.4, a= 0.5, h= 0.5, and K = 50.
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Figure 4.5. Effect of the wave amplitude ratio a on the mean-velocity distribution and reversal flow
for m= 0.01, B = 20, T = 10, K = 10, d = 0.5, h= 0.5, θ = π/3, ε = 0.5, α= 0.5, and R= 50.
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Figure 4.6. Effect of the width of the channel h on the mean-velocity distribution and reversal flow
for m= 0.01, B = 20, T = 10, K = 10, d = 0.5, a= 0.5, θ = π/3, ε = 0.5, α= 0.5, and R= 50.
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�1

�0.5

0

0.5

1

y-
ax

is

θ = 0
θ = π/6
θ = π/4

θ = 2π/3
θ = 5π/6
θ = π

Figure 4.7. Effect of the phase difference θ on the mean-velocity distribution and reversal flow for
m= 0.01, B = 20, T = 10, K = 10, d = 0.5, a= 0.5, h= 0.5, ε = 0.5, α= 0.5, and R= 50.
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Figure 4.8. Effect of the wall elastance K on the mean-velocity distribution and reversal flow for
m= 0.01, B = 20, T = 10, θ = π/3, d = 0.5, a= 0.5, h= 0.5, ε = 0.5, α= 0.5, and R= 50.
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Figure 4.10. Effect of the wall damping d on the mean-velocity distribution and reversal flow for
m= 0.01, B = 20, T = 10, θ = π/3, K = 40, a= 0.5, h= 0.5, ε = 0.5, α= 0.5, and R= 50.
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ū(1)= (ε2/2)φ′20(1)= (ε2/2)D1. The variation of the mean velocity at the upper bound-
ary D1 with the wave number α is presented in Figure 4.1 for different values of wave
amplitude ratio a. It is observed that D1 increases with the increasing of a. Further, it
is easy to observe that D1 decreases for some α small in the beginning but it starts in-
creasing for α large as the Poiseuille flow due to pressure loss dominates the peristaltic
flow. Figure 4.2 shows the variation of D1 with the wall damping d for different values
of the width of the channel h. It shows that D1 increases with the increasing of h, and
little differences are seen at large values of h. Also, we observe that D1 decreases as d in-
creases, becomes zero for some d, and remains negative afterwards until d becomes 1,
indicating that damping may cause the mean flow reversal at the walls, which is not pos-
sible in the elastic symmetric channel case. Figure 4.3 depicts the variation of D1 with
the wall elastance K for different values of phase difference θ. It is observed that by the
increasing of θ, D1 increases for all 0 ≤ θ ≤ π/2 and decreases for all π/2 < θ ≤ π. Also,
we show that D1 increases with the increasing of K . The effect of the wall tension T on
the variation of D1 with the Reynolds number R is depicted in Figure 4.4. It is observed
that D1 increases with the increasing of T and it decreases with the increasing of R. Yin
and Fung [27] define a flow reflux whenever there is a negative-mean velocity in the flow
field. The effects of wave amplitude ratio a, width of the channel h, phase difference θ,
wall elastance K , wall tension T , and wall damping d on mean-velocity and reversal flow
are displayed in Figures 4.5–4.10. The results reveal that the reversal flow occurs near the
boundaries where the direction of the velocity changes from positive to negative. Further,
it can be shown that the reversal flow near the upper wall is much less than that near the
lower wall. A comparison of the results with those for symmetric channel reveals that the
curves do shift towards the upper wall in an asymmetric channel, whereas in a symmetric
channel these are symmetric about the center line of the channel. As shown in Figures
4.5 and 4.6, in the narrow part of the channel near the upper wall, the possibility of flow
reversal decreases by the increasing of a and increases with the increasing of h. While in
the remaining wide part of the channel, the possibility of flow reversal increases by the
increasing of a and decreases with the increasing of h. It is also seen from Figures 4.7–4.9
that, in the narrow part of the channel near the upper wall, the possibility of flow rever-
sal increases by the increasing of θ, K , and T . While in the remaining wide part of the
channel, the possibility of flow decreases with the increasing of θ, K , and T . Finally, from
Figure 4.10 it is noticed that, near the boundaries of the channel, the possibility of flow
reversal increases by the increasing of d, while in the remaining wide part of the channel,
the possibility of flow decreases with increasing d.
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