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This paper is concerned with a class of discrete-time nonhomogeneous Markov jump systems with multiplicative noises and time-
varying transition probability matrices which are valued on a convex polytope. The stochastic stability and finite-time stability are
considered. Some stability criteria including infinite matrix inequalities are obtained by parameter-dependent Lyapunov function.
Furthermore, infinitematrix inequalities are converted into finite linearmatrix inequalities (LMIs) via a set of slackmatrices. Finally,
two numerical examples are given to demonstrate the validity of the proposed theoretical methods.

1. Introduction

There are a lot of dynamic systems which are subjected
to abrupt variations in parameters caused by external sur-
roundings or internal structure in practical engineering field.
Markov jump system models have attracted more and more
attention because they effectively described this kind of
systems and have become a hot topic in control theory. Many
mature and systematic results have been obtained [1–5].

It should be pointed out that most of the current research
is done in the framework of homogeneous Markov process
(or Markov chain), which is under the assumption that
the transition rate (or transition probability) matrix of the
system at any time is the same. In fact, due to the impact
of the objective environment, this assumption is difficult to
satisfy. For example, in a Markov jump networked control
system, the transition probability is time-variant because the
packet dropouts and network delays are different at different
periods. Another typical example can be found in the fault-
prone systems, where Markov process is used to describe
the failure rate that is influenced by the factors of the age
and the usage rate. Obviously, it is not a homogeneous

process. Driven by these practical problems, people turn to
the nonhomogeneous Markov jump systems [6–21].

In order to describe the nonhomogeneous property,
several assumptions are put forward. In [6], the time-varying
transition probabilities of discrete-time Markov jump sys-
tems are considered to be finite piecewise homogeneous with
two types of variations in the finite set: arbitrary variation
and stochastic variation, which implies that the transition
probabilities are varying but invariant within an interval.The𝐻∞ estimation problem is investigated. This assumption is
generalized to the continuous-timeMarkov jump system [7],
Markov jump neural networks [8, 9], complex networks [10],
and singularMarkov jump systems [11], and the robust stabil-
ity, stochastic stability, passivity analysis, and synchronization
are studied, respectively. Another way of describing time-
varying characteristics is in a polytopic sense. It is proposed
for the first time in [12] and a sufficient condition for
stochastic stability is derived by using a parameter-dependent
stochastic Lyapunov function. The main idea is that the
transition probability matrix is assumed to be valued in a
polytope convex set with some given vertices when the exact
transition probability is not known. The polytopic model
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is more general and includes the piecewise homogeneous
Markov jump systemmodel with arbitrary switch as a special
case. Subsequently, many new results are obtained on this
model. In [13–15], mode-dependent, variation-dependent,
and observer-based𝐻∞ controllers are designed to satisfy the
stochastic stability and prescribed 𝐻∞ performance index.
The other control problems, such as 𝑙2–𝑙∞ control [16] and
fault detection [17], are also considered. An application toDC
motors can be found in [18]. The model is used not only in
discrete-time systems but also in continuous-time systems;
see [19]. However, up to now, the model has not been applied
to Markov jump systems with multiplicative noises by the
authors’ knowledge. This kind of systems with multiplicative
noises is often used in engineering practice. For example, a
practical model with the control input dependent noise in
CDMA systems can be found in [22]. This note aims to make
an attempt to investigate the stability of such systems.

Our purpose is to address the stability analysis and stabi-
lization controller design for discrete-time nonhomogeneous
Markov jump systems with multiplicative noises and with
polytopic transition probabilitymatrices. It is well known that
stability analysis is the basis for the design and synthesis in all
control systems and fruitful results have been obtained; see
[23–30] and the references therein. In this article, two types
of stability, stochastic stability (SS) in mean square sense and
finite-time stability (FTS), will be considered.

The organization of this paper is as follows. In Section 2,
we provide model formulation and give some definitions.
Section 3 is devoted to stochastic stability and stabilization.
In Section 4, the finite-time stability and stabilization will
be discussed. Some numerical examples are presented in
Section 5. Finally, a brief concluding remark is given in
Section 6.

Notations 1. R𝑛 is 𝑛-dimensional Euclidean space; 𝐴T is the
transpose of matrix 𝐴; |𝐴| is the determinant of matrix 𝐴;𝐴 > 0: 𝐴 is a positive definite matrix; I is the identity matrix;‖𝑥‖ is the Euclidean norm of vector 𝑥; 𝐸(⋅) is the expectation
operator; 𝛿(⋅) is Kronecker function; diag (𝐴1, . . . , 𝐴𝑛) is a
block diagonal matrix with the block diagonal elements𝐴1, . . . , 𝐴𝑛; 𝜆min(𝐴) (𝜆max(𝐴)) is the minimum (maximum)
eigenvalue of matrix 𝐴; Cond(𝐴) is the condition number
of matrix 𝐴; ∗ is the symmetric part of a symmetric matrix;
N0 = {0, 1, 2, . . .}, N = {1, 2, . . .}, and N𝑇 = {1, 2, . . . , 𝑇}.
2. Problem Formulation

Consider the following discrete-time stochasticMarkov jump
system with multiplicative noises:

𝑥𝑘+1 = 𝐴 (𝑟𝑘) 𝑥𝑘 + 𝐶 (𝑟𝑘) 𝑥𝑘𝑤𝑘,
𝑥 (0) = 𝑥0. (1)

And the corresponding controlled system is as follows:

𝑥𝑘+1 = 𝐴 (𝑟𝑘) 𝑥𝑘 + 𝐵 (𝑟𝑘) 𝑢𝑘
+ [𝐶 (𝑟𝑘) 𝑥𝑘 + 𝐷 (𝑟𝑘) 𝑢𝑘] 𝑤𝑘,

𝑥 (0) = 𝑥0,
(2)

where 𝑥𝑘 ∈ R𝑛 and 𝑢𝑘 ∈ R𝑚 are the system state and control
input, respectively. 𝑥0 ∈ R𝑛 is the initial state and 𝐴(⋅),𝐵(⋅), 𝐶(⋅), and 𝐷(⋅) are real coefficient matrices with the
appropriate dimension. {𝑤𝑘, 𝑘 ∈ N0} is a sequence of real
random variables defined on a complete probability space(Ω,F, 𝑃) with 𝐸(𝑤𝑘) = 0 and 𝐸(𝑤𝑠𝑤𝑡) = 𝛿(𝑠−𝑡). The jump
process {𝑟𝑘, 𝑘 ∈ N0} is described by a discrete-time non-
homogeneous Markov chain which takes values in a finite
set 𝑆 = {1, 2, . . . , 𝑠}. The transition probability is 𝜋𝑖𝑗(𝑘) =𝑃(𝑟𝑘+1 = 𝑗 | 𝑟𝑘 = 𝑖) which means the probability from mode𝑖 at time 𝑘 to mode 𝑗 at time 𝑘 + 1 and satisfies 𝜋𝑖𝑗(𝑘) ≥ 0,∑𝑠𝑗=1 𝜋𝑖𝑗(𝑘) = 1. The transition probability matrix is Γ(𝑘) =[𝜋𝑖𝑗(𝑘)]. It is assumed that Γ(𝑘) is time-varying and takes
values in a polytope with its vertices Γ𝑙, 𝑙 = 1, 2, . . . , 𝑚; that
is,

Γ (𝑘) = 𝑚∑
𝑙=1

𝛼𝑙 (𝑘) Γ𝑙, 𝛼𝑙 (𝑘) ≥ 0,
𝑚∑
𝑙=1

𝛼𝑙 (𝑘) = 1,
(3)

where Γ𝑙 (𝑙 = 1, 2, . . . , 𝑚) are givenmatrices and the entries ofΓ𝑙 are written by 𝜋𝑙𝑖𝑗. {𝑤𝑘, 𝑘 ∈ N0} is independent of {𝑟𝑘, 𝑘 ∈
N0}.

To be convenient, we denote the coefficient matrices
associated with 𝑟𝑘 = 𝑖 as 𝑀𝑖 = 𝑀(𝑟𝑘).

In this paper, we mainly formulate some conditions
of SS and FTS. They are two different and independent
stability concepts: SS describes the asymptotic behavior of the
systems in infinite time domain, while FTS reflects transient
performance of the systems in finite-time interval. Now, let
us recall the definitions.

Definition 2 (see [1]). System (1) is called stochastically stable
if for any initial state 𝑥0 and initial mode 𝑟0,

∞∑
𝑘=0

𝐸 (𝑥𝑘2) < ∞. (4)

System (2) is called stochastically stabilizable if there exist a
sequence of feedback controls 𝑢𝑘 = 𝐾(𝑟𝑘)𝑥𝑘 such that for any
initial state 𝑥0 and initial mode 𝑟0, the closed-loop system

𝑥𝑘+1 = [𝐴 (𝑟𝑘) + 𝐵 (𝑟𝑘) 𝐾 (𝑟𝑘)] 𝑥𝑘
+ [𝐶 (𝑟𝑘) + 𝐷 (𝑟𝑘) 𝐾 (𝑟𝑘)] 𝑥𝑘𝑤𝑘,

𝑥 (0) = 𝑥0
(5)

is stochastically stable.

Definition 3 (see [23]). System (1) is called finite-time stable
with respect to (𝑐1, 𝑐2, 𝑅, 𝑇), if

𝐸 (𝑥T
0𝑅𝑥0) ≤ 𝑐1 ⇒ 𝐸 (𝑥T

𝑘𝑅𝑥𝑘) ≤ 𝑐2, ∀𝑘 ∈ 𝑁𝑇, (6)

where 𝑅 > 0 is a given matrix, 𝑐2 > 𝑐1 > 0, and 𝑇 ∈ N
are the given real numbers. System (2) is said to be finite-
time stabilizable if there exist a sequence of feedback controls𝑢𝑘 = 𝐾(𝑟𝑘)𝑥𝑘 such that the closed-loop system (5) is finite-
time stable.
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3. Stochastic Stability and Stabilization

In this section, some sufficient conditions will be provided for
the stochastic stability and stabilization of systems (1) and (2).

Theorem 4. If there exist a set of matrices 𝑃𝑙𝑖 > 0, ∀𝑖 ∈𝑆, 𝑙 = 1, 2, . . . , 𝑚, such that for every 𝛼𝑙(𝑘) and 𝛽𝑛(𝑘), 𝑙, 𝑛 =1, 2, . . . , 𝑚,

𝐴T
𝑖 ( 𝑠∑
𝑗=1

𝑚∑
𝑙=1

𝑚∑
𝑛=1

𝛼𝑙 (𝑘) 𝛽𝑛 (𝑘) 𝜋𝑙𝑖𝑗𝑃𝑛𝑗) 𝐴 𝑖
+ 𝐶T
𝑖 ( 𝑠∑
𝑗=1

𝑚∑
𝑙=1

𝑚∑
𝑛=1

𝛼𝑙 (𝑘) 𝛽𝑛 (𝑘) 𝜋𝑙𝑖𝑗𝑃𝑛𝑗) 𝐶𝑖
− 𝑚∑
𝑙=1

𝛼𝑙 (𝑘) 𝑃𝑙𝑖 < 0,

(7)

where 0 ≤ 𝛼𝑙(𝑘), 𝛽𝑛(𝑘) ≤ 1, ∑𝑚𝑙=1 𝛼𝑙(𝑘) = 1, and ∑𝑚𝑛=1 𝛽𝑛(𝑘) =1, then system (1) is stochastically stable.

Proof. Let 𝑉(𝑥𝑘, 𝑟𝑘 = 𝑖) = 𝑥T
𝑘 (∑𝑚𝑙=1 𝛼𝑙(𝑘)𝑃𝑙𝑖 )𝑥𝑘 andF𝑘 be the𝜎-algebra generated by {(𝑟𝑡, 𝑥𝑡), 𝑡 = 0, 1, . . . , 𝑘}. Then,

△ 𝑉 (𝑥𝑘, 𝑟𝑘 = 𝑖) = 𝐸 [𝑉 (𝑥𝑘+1, 𝑟𝑘+1 = 𝑗)] − 𝑉 (𝑥𝑘, 𝑟𝑘 = 𝑖)
= 𝐸 [𝐸 (𝑥T

𝑘+1

𝑚∑
𝑙=1

𝛼𝑙 (𝑘 + 1) 𝑃𝑙𝑗𝑥𝑘+1 | F𝑘)]

= 𝐸 [
[𝑥T
𝑘+1( 𝑠∑
𝑗=1

( 𝑚∑
𝑙=1

𝛼𝑙 (𝑘 + 1) 𝑃𝑙𝑗𝑃 (𝑟𝑘+1 = 𝑗 | 𝑟𝑘 = 𝑖)))

⋅ 𝑥𝑘+1]] − 𝑥T
𝑘 ( 𝑚∑
𝑙=1

𝛼𝑙 (𝑘) 𝑃𝑙𝑖) 𝑥𝑘

= 𝐸 [
[𝑥T
𝑘+1( 𝑠∑
𝑗=1

(𝜋𝑖𝑗 (𝑘) 𝑚∑
𝑙=1

𝛼𝑙 (𝑘 + 1) 𝑃𝑙𝑗)) 𝑥𝑘+1]]
− 𝑥T
𝑘 ( 𝑚∑
𝑙=1

𝛼𝑙 (𝑘) 𝑃𝑙𝑖) 𝑥𝑘 = 𝐸 [
[𝑥T
𝑘+1( 𝑠∑
𝑗=1

( 𝑚∑
𝑙=1

𝛼𝑙 (𝑘) 𝜋𝑙𝑖𝑗)

⋅ ( 𝑚∑
𝑛=1

𝛽𝑛 (𝑘) 𝑃𝑙𝑗)) 𝑥𝑘+1]] − 𝑥T
𝑘 ( 𝑚∑
𝑙=1

𝛼𝑙 (𝑘) 𝑃𝑙𝑖) 𝑥𝑘

= 𝐸 [
[𝑥T
𝑘+1( 𝑠∑
𝑗=1

𝑚∑
𝑙=1

𝑚∑
𝑛=1

𝛼𝑙 (𝑘) 𝛽𝑛 (𝑘) 𝜋𝑙𝑖𝑗𝑃𝑙𝑗) 𝑥𝑘+1]]
− 𝑥T
𝑘 ( 𝑚∑
𝑙=1

𝛼𝑙 (𝑘) 𝑃𝑙𝑖) 𝑥𝑘

= 𝑥T
𝑘

[
[𝐴T
𝑖 ( 𝑠∑
𝑗=1

𝑚∑
𝑙=1

𝑚∑
𝑛=1

𝛼𝑙 (𝑘) 𝛽𝑛 (𝑘) 𝜋𝑙𝑖𝑗𝑃𝑙𝑗) 𝐴 𝑖

+ 𝐶T
𝑖 ( 𝑠∑
𝑗=1

𝑚∑
𝑙=1

𝑚∑
𝑛=1

𝛼𝑙 (𝑘) 𝛽𝑛 (𝑘) 𝜋𝑙𝑖𝑗𝑃𝑙𝑗) 𝐶𝑖 − 𝑚∑
𝑙=1

𝛼𝑙 (𝑘) 𝑃𝑙𝑖]]
⋅ 𝑥𝑘 ≜ 𝑥T

𝑘Ψ𝑖 (𝑘) 𝑥𝑘.
(8)

So we have

△𝑉 (𝑥𝑘, 𝑟𝑘 = 𝑖) ≤ −min
𝑖∈S

{min
𝑘∈N0

{𝜆min (−Ψ𝑖 (𝑘))}} 𝑥T
𝑘𝑥𝑘

≜ −𝜌𝑥T
𝑘𝑥𝑘,

(9)

obviously, 𝜌 > 0; thus
𝑀∑
𝑘=0

𝐸 [Δ𝑉 (𝑥𝑘, 𝑟𝑘)] = 𝐸 [𝑉 (𝑥𝑀+1, 𝑟𝑀+1)] − 𝑉 (𝑥0, 𝑟0)
≤ −𝜌𝑀∑
𝑘=0

𝐸 (𝑥𝑘2) .
(10)

Hence,

𝑀∑
𝑘=0

𝐸 (𝑥𝑘2) ≤ 1𝜌 [𝑉 (𝑥0, 𝑟0) − 𝐸 [𝑉 (𝑥𝑀+1, 𝑟𝑀+1)]]
≤ 1𝜌𝑉 (𝑥0, 𝑟0) ,

(11)

reducing to

∞∑
𝑘=0

𝐸 (𝑥𝑘2) = lim
𝑀→∞

𝑀∑
𝑘=0

𝐸 (𝑥𝑘2) ≤ 1𝜌𝑉 (𝑥0, 𝑟0)
< ∞.

(12)

Therefore, system (1) is stochastically stable fromDefinition 2.
The proof is completed.

Remark 5. Theorem 4 develops a sufficient condition for SS
of system (1) when transition probability matrix is arbitrarily
valued in a polytope with given vertices. For finite Markov
jump switching systems, the stochastic stability is equivalent
to asymptotic mean square stability (AMSS) [1]. So Theo-
rem 4 is also a sufficient condition for AMSS.

Remark 6. A convex parameter space method was used in
control design of uncertain linear system without jumping.
State feedback conditions can be easily derived by exploiting
the change of matrix variable due to Geromel and coworkers
[31].

It is hard to verify the conditions in Theorem 4 because
there are infinite matrix inequalities. Hence it has more
theoretical significance than its practical significance. To be
solvable, we introduce a set of slack matrices and convert the
infinite matrix inequalities into finite LMIs in the following
theorem.
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Theorem 7. The following two statements are equivalent:
(1) There exist a set of matrices 𝑃𝑙𝑖 > 0, ∀𝑖 ∈ 𝑆, and 𝑙 =1, 2, . . . , 𝑚, such that (7) holds for every 𝛼𝑙(𝑘) and 𝛽𝑛(𝑘), 𝑙, 𝑛 =1, 2, . . . , 𝑚, satisfying 0 ≤ 𝛼𝑙(𝑘), 𝛽𝑛(𝑘) ≤ 1,∑𝑚𝑙=1 𝛼𝑙(𝑘) = 1, and∑𝑚𝑛=1 𝛽𝑛(𝑘) = 1.
(2) There exist a set of matrices 𝑄𝑙𝑖 > 0 and matrices 𝐺𝑙𝑖,

such that

[[[[
[

𝐺𝑙𝑖 + (𝐺𝑙𝑖)T − 𝑄𝑙𝑖 (𝐺𝑙𝑖)T 𝐴T
𝑖 Γ𝑙𝑖 (𝐺𝑙𝑖)T 𝐶T

𝑖 Γ𝑙𝑖∗ 𝑄𝑛 0
∗ ∗ 𝑄𝑛

]]]]
]

> 0,

∀𝑖 ∈ 𝑆, 𝑙, 𝑛 = 1, 2, . . . , 𝑚,
(13)

where Γ𝑙𝑖 = [√𝜋𝑙𝑖1I, . . . , √𝜋𝑙𝑖𝑠I] and 𝑄𝑛 = diag(𝑄𝑛1 , . . . , 𝑄𝑛𝑠 ).
The proof is similar to Proposition 2 in [12], so it is omitted.

FromTheorem 7, if 𝐴 𝑖, 𝐶𝑖 are replaced with 𝐴 𝑖 + 𝐵𝑖𝐾𝑖, 𝐶𝑖+ 𝐷𝑖𝐾𝑖, respectively, it is easy to get the following stabilization
condition and controller design method.

Corollary 8. If there exist a set ofmatrices𝑄𝑙𝑖 > 0 andmatrices𝐺𝑖, 𝑅𝑖 such that the LMIs

[[[
[

𝐺𝑖 + 𝐺T
𝑖 − 𝑄𝑙𝑖 (𝐺T

𝑖 𝐴T
𝑖 + 𝑅T
𝑖 𝐵T
𝑖 ) Γ𝑙𝑖 (𝐺T

𝑖 𝐶T
𝑖 + 𝑅T
𝑖 𝐷T
𝑖 ) Γ𝑙𝑖∗ 𝑄𝑛 0

∗ ∗ 𝑄𝑛
]]]
]

> 0, ∀𝑖 ∈ 𝑆, 𝑙, 𝑛 = 1, 2, . . . , 𝑚,
(14)

hold, then system (2) is stochastically stabilized by 𝑢𝑘 =𝐾(𝑟𝑘)𝑥𝑘 with the feedback gains 𝐾𝑖 = 𝑅𝑖𝐺−1𝑖 .
4. Finite-Time Stability and Control

In this section, we will consider the finite-time stability.
Firstly a theoretical criterion is given.

Theorem 9. If there exist a scalar 𝛾 ≥ 1 and matrices 𝑃𝑙𝑖 > 0,∀𝑖 ∈ 𝑆, such that
𝐴T
𝑖 ( 𝑠∑
𝑗=1

𝑚∑
𝑙=1

𝑚∑
𝑛=1

𝛼𝑙 (𝑘) 𝛽𝑛 (𝑘) 𝜋𝑙𝑖𝑗𝑃𝑛𝑗) 𝐴 𝑖
+ 𝐶T
𝑖 ( 𝑠∑
𝑗=1

𝑚∑
𝑙=1

𝑚∑
𝑛=1

𝛼𝑙 (𝑘) 𝛽𝑛 (𝑘) 𝜋𝑙𝑖𝑗𝑃𝑛𝑗) 𝐶𝑖
− 𝛾 𝑚∑
𝑙=1

𝛼𝑙 (𝑘) 𝑃𝑙𝑖 < 0,

(15)

𝑐1𝛾𝑇Cond (𝑃𝑖) < 𝑐2,
𝑃𝑖 = 𝑚∑
𝑙=1

𝛼𝑙 (𝑘) 𝑅−1/2𝑃𝑙𝑖𝑅−1/2, (16)

where 0 ≤ 𝛼𝑙(𝑘), 𝛽𝑛(𝑘) ≤ 1, ∑𝑚𝑙=1 𝛼𝑙(𝑘) = 1, and ∑𝑚𝑛=1 𝛽𝑛(𝑘) =1, then system (1) is finite-time stable with respect to (𝑐1, 𝑐2, 𝑅,𝑇).
Proof. Let 𝑉(𝑥𝑘, 𝑟𝑘 = 𝑖) = 𝑥T

𝑘 (∑𝑚𝑙=1 𝛼𝑙(𝑘)𝑃𝑙𝑖 )𝑥𝑘. Applying the
same procedure as the proof of Theorem 4, we can get

𝐸 [𝑉 (𝑥𝑘+1, 𝑟𝑘+1 = 𝑗)]
= 𝑥T
𝑘

[
[𝐴T
𝑖 ( 𝑠∑
𝑗=1

𝑚∑
𝑙=1

𝑚∑
𝑛=1

𝛼𝑙 (𝑘) 𝛽𝑛 (𝑘) 𝜋𝑙𝑖𝑗𝑃𝑙𝑖) 𝐴 𝑖

+ 𝐶T
𝑖 ( 𝑠∑
𝑗=1

𝑚∑
𝑙=1

𝑚∑
𝑛=1

𝛼𝑙 (𝑘) 𝛽𝑛 (𝑘) 𝜋𝑙𝑖𝑗𝑃𝑙𝑖) 𝐶𝑖]] 𝑥𝑘.
(17)

It follows from (15) that𝐸[𝑉(𝑥𝑘+1, 𝑟𝑘+1)] < 𝛾𝐸[𝑉(𝑥𝑘, 𝑟𝑘)]; that
is,

𝐸 [𝑉 (𝑥𝑘, 𝑟𝑘)] < 𝛾𝑘𝐸 [𝑉 (𝑥0, 𝑟0)] ≤ 𝛾𝑇𝐸 [𝑉 (𝑥0, 𝑟0)] . (18)

While

𝐸 [𝑉 (𝑥0, 𝑟0)] = 𝑥T
0 ( 𝑚∑
𝑙=1

𝛼𝑙 (𝑘) 𝑃𝑙𝑖) 𝑥0
= 𝑥T
0𝑅1/2𝑃𝑖𝑅1/2𝑥0 ≤ 𝜆max (𝑃𝑖) 𝑥T

0𝑅𝑥0
≤ 𝜆max (𝑃𝑖) 𝑐1,

𝐸 [𝑉 (𝑥𝑘, 𝑟𝑘)] = 𝐸 [𝑥T
𝑘 ( 𝑚∑
𝑙=1

𝛼𝑙 (𝑘) 𝑃𝑙𝑖) 𝑥𝑘]
= 𝐸 [𝑥T

𝑘𝑅1/2𝑃𝑖𝑅1/2𝑥𝑘]
≥ 𝜆min (𝑃𝑖) 𝐸 (𝑥T

𝑘𝑅𝑥𝑘) ,

(19)

so

𝐸 (𝑥T
𝑘𝑅𝑥𝑘) ≤ 𝐸 [𝑉 (𝑥𝑘, 𝑟𝑘)]𝜆min (𝑃𝑖) ≤ 𝑐1𝛾𝑇𝜆max (𝑃𝑖)𝜆min (𝑃𝑖)

= 𝑐1𝛾𝑇Cond (𝑃𝑖) < 𝑐2.
(20)

Hence, fromDefinition 3, system (1) is finite-time stable with
respect to (𝑐1, 𝑐2, 𝑅, 𝑇). The proof is completed.

Next, we convert the infinite matrix inequalities (15) and
(16) into finitematrix inequalities by use of slackmatrices and
properties of the condition number and design a state feed-
back controller to make system (2) finite-time stabilizable.

Theorem 10. (1) If there exist a scalar 𝛾 ≥ 1, matrices 𝑄𝑙𝑖 > 0,
and matrices 𝐺𝑙𝑖, such that
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[[[[
[

𝛾 [𝐺𝑙𝑖 + (𝐺𝑙𝑖)T − 𝑄𝑙𝑖] (𝐺𝑙𝑖)T 𝐴T
𝑖 Γ𝑙𝑖 (𝐺𝑙𝑖)T 𝐶T

𝑖 Γ𝑙𝑖∗ 𝑄𝑛 0
∗ ∗ 𝑄𝑛

]]]]
]

> 0, ∀𝑖 ∈ 𝑆, 𝑙, 𝑛 = 1, 2, . . . , 𝑚,
(21)

𝑐1𝛾𝑇 max
𝑙=1,...,𝑚

{Cond (𝑅1/2𝑄𝑙𝑖𝑅1/2)} < 𝑐2, ∀𝑖 ∈ 𝑆, (22)

where Γ𝑙𝑖 = [√𝜋𝑙𝑖1I, . . . , √𝜋𝑙𝑖𝑠I] and 𝑄𝑛 = diag(𝑄𝑛1 , . . . , 𝑄𝑛𝑠 ),
then system (1) is finite-time stable.

(2) If there exist a scalar 𝛾 ≥ 1, matrices 𝑄𝑙𝑖 > 0, and
matrices 𝐺𝑖, 𝑅𝑖 such that

[[[
[

𝛾 [𝐺𝑖 + 𝐺T
𝑖 − 𝑄𝑙𝑖] (𝐺T

𝑖 𝐴T
𝑖 + 𝑅T
𝑖 𝐵T
𝑖 ) Γ𝑙𝑖 (𝐺T

𝑖 𝐶T
𝑖 + 𝑅T
𝑖 𝐷T
𝑖 ) Γ𝑙𝑖∗ 𝑄𝑛 0

∗ ∗ 𝑄𝑛
]]]
]

> 0, ∀𝑖 ∈ 𝑆, 𝑙, 𝑛 = 1, 2, . . . , 𝑚,
(23)

and (22) hold, then system (2) is finite-time stabilized by 𝑢𝑘 =𝐾(𝑟𝑘)𝑥𝑘 with the feedback gains 𝐾𝑖 = 𝑅𝑖𝐺−1𝑖 .
Proof. (1) The proof can be divided into two parts. Firstly, we
prove that (15) holds if (21) holds. We adopt the method used
in Proposition 2 of [12].

From (21), 𝐺𝑙𝑖 + (𝐺𝑙𝑖)T − 𝑄𝑙𝑖 > 0. As 𝑄𝑙𝑖 is positive definite,𝐺𝑙𝑖+(𝐺𝑙𝑖)Tmust be positive definite.While |(1/2)(𝐺𝑙𝑖+(𝐺𝑙𝑖)T)| ≤|𝐺𝑙𝑖|, it follows that 𝐺𝑙𝑖 is invertible. On the other hand,

𝛾 [(𝑄𝑙𝑖 − 𝐺𝑙𝑖)T (𝑄𝑙𝑖)−1 (𝑄𝑙𝑖 − 𝐺𝑙𝑖)]
= 𝛾 [(𝑄𝑙𝑖)−1/2 (𝑄𝑙𝑖 − 𝐺𝑙𝑖)]T [(𝑄𝑙𝑖)−1/2 (𝑄𝑙𝑖 − 𝐺𝑙𝑖)]
≥ 0,

(24)

which means that 𝛾(𝐺𝑙𝑖)T(𝑄𝑙𝑖)−1𝐺𝑙𝑖 ≥ 𝛾[𝐺𝑙𝑖 + (𝐺𝑙𝑖)T − 𝑄𝑙𝑖]. Then,

[[[[
[

𝛾 (𝐺𝑙𝑖)T (𝑄𝑙𝑖)−1 𝐺𝑙𝑖 (𝐺𝑙𝑖)T 𝐴T
𝑖 Γ𝑙𝑖 (𝐺𝑙𝑖)T 𝐶T

𝑖 Γ𝑙𝑖∗ 𝑄𝑛 0
∗ ∗ 𝑄𝑛

]]]]
]

≥ [[[[
[

𝛾 [𝐺𝑙𝑖 + (𝐺𝑙𝑖)T − 𝑄𝑙𝑖] (𝐺𝑙𝑖)T 𝐴T
𝑖 Γ𝑙𝑖 (𝐺𝑙𝑖)T 𝐶T

𝑖 Γ𝑙𝑖∗ 𝑄𝑛 0
∗ ∗ 𝑄𝑛

]]]]
]

> 0,

(25)

which is equivalent to

[[[[
[

(𝐺𝑙𝑖)T 0 0
∗ 𝑄𝑛 0
∗ ∗ Q𝑛

]]]]
]

[[[[
[

𝛾 (𝑄𝑙𝑖)−1 𝐴T
𝑖 Γ𝑙𝑖 (𝑄𝑛)−1 𝐶T

𝑖 Γ𝑙𝑖 (𝑄𝑛)−1
∗ (𝑄𝑛)−1 0
∗ ∗ (𝑄𝑛)−1

]]]]
]

[[[
[

𝐺𝑙𝑖 0 0
∗ 𝑄𝑛 0
∗ ∗ 𝑄𝑛

]]]
]

> 0. (26)

Because of the invertibility of 𝐺𝑙𝑖 and 𝑄𝑛, we have

[[[[
[

𝛾 (𝑄𝑙𝑖)−1 𝐴T
𝑖 Γ𝑙𝑖 (𝑄𝑛)−1 𝐶T

𝑖 Γ𝑙𝑖 (𝑄𝑛)−1
∗ (𝑄𝑛)−1 0
∗ ∗ (𝑄𝑛)−1

]]]]
]

> 0. (27)

Let 𝑃𝑙𝑖 = (𝑄𝑙𝑖)−1; then (27) can be rewritten as

[[[
[

𝛾𝑃𝑙𝑖 𝐴T
𝑖 Γ𝑙𝑖𝑃𝑛 𝐶T

𝑖 Γ𝑙𝑖𝑃𝑛∗ 𝑃𝑛 0
∗ ∗ 𝑃𝑛

]]]
]

> 0, (28)

where 𝑃𝑛 = diag(𝑃𝑛1 , 𝑃𝑛2 , . . . , 𝑃𝑛𝑠 ). By Schur complement, (28)
is equivalent to

𝛾𝑃𝑙𝑖 − 𝐴T
𝑖 ( 𝑠∑
𝑗=1

𝜋𝑙𝑖𝑗𝑃𝑛𝑗) 𝐴 𝑖 − 𝐶T
𝑖 ( 𝑠∑
𝑗=1

𝜋𝑙𝑖𝑗𝑃𝑛𝑗) 𝐶𝑖 > 0. (29)

Obviously, (15) holds after multiplying (29) by the corre-
sponding coefficients and adding them.

Next, we prove that (16) holds if (22) is true. Before
proving this, we need to recall two properties of the condition
number:

(a) Cond(𝑐𝐴) = Cond(𝐴) = Cond(𝐴−1), 𝑐 > 0;
(b) Cond(𝐴1 + 𝐴2) ≤ max{Cond(𝐴1),Cond(𝐴2)}.
It follows from (a) and (b) that

Cond (𝛼1𝐴1 + 𝛼2𝐴2 + ⋅ ⋅ ⋅ + 𝛼𝑛𝐴𝑛)
≤ max
𝑖=1,2,...,𝑛

{Cond (𝐴 𝑖)} , 𝛼𝑖 > 0. (30)

When (22) holds and 𝑃𝑙𝑖 = (𝑄𝑙𝑖)−1, one has
𝑃𝑖 = 𝑚∑
𝑙=1

𝛼𝑙 (𝑘) 𝑅−1/2𝑃𝑙𝑖𝑅−1/2

= 𝑚∑
𝑙=1

𝛼𝑙 (𝑘) 𝑅−1/2 (𝑄𝑙𝑖)−1 𝑅−1/2,
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𝑐1𝛾𝑇Cond (𝑃𝑖)
≤ 𝑐1𝛾𝑇 max

𝑙=1,...,𝑚
{Cond (𝑅−1/2 (𝑄𝑙𝑖)−1 𝑅−1/2)}

= 𝑐1𝛾𝑇 max
𝑙=1,...,𝑚

{Cond (𝑅1/2𝑄𝑙𝑖𝑅1/2)} < 𝑐2.
(31)

(2)This can be easily proved by the same procedure as (1).
Remark 11. We should point out that unlike the equivalence
of (7) and (13), (21) is just a sufficient condition of (15) due to
the existence of 𝛾.
Remark 12. In fact, (22) can be guaranteed by the following
LMIs:

𝑐1𝛾𝑇I < 𝑅1/2𝑄𝑙𝑖𝑅1/2 < 𝑐2I, 𝑙 = 1, 2, . . . , 𝑚. (32)

So we can obtain a set of feasible feedback controls by solving
(23) and (32) or by solving (23) and checking if they satisfy
(22).

5. Numerical Examples

In this section, two illustrative examples are presented to
show the effectiveness of the proposed main results.

Example 1. Consider system (2) with coefficient matrices as
follows:

𝐴1 = [ 0.22 1.52
−1.10 1.37] ,

𝐴2 = [0.17 −0.64
0.73 1.05 ] ,

𝐴3 = [0.47 0.11
0.14 0.30] ,

𝐵1 = [ 0.73 1.13
−0.47 1.37] ,

𝐵2 = [−0.02 1.18
0.37 −0.46] ,

𝐵3 = [−0.47 0.11
0.14 −1.30] ,

𝐶1 = [1.10 −0.46
1.86 1.23 ] ,

𝐶2 = [ 1.45 −0.10
−0.49 0.17 ] ,

𝐶3 = [−1.01 0.20
0.04 1.20] ,

𝐷1 = [1.05 −0.24
0.89 1.01 ] ,

𝐷2 = [1.05 −0.11
0.55 0.41 ] ,

𝐷3 = [−0.51 0.25
1.23 0.21] .

(33)

The initial state is given as 𝑥0 = (−0.5, 0.5)T. The vertices
of the polytope transition probability matrices are given as
follows:

Γ1 = [[
[

0.3 0.5 0.2
0.5 0.5 0
0.1 0.4 0.5

]]
]

,

Γ2 = [[
[

0 1 0
0.1 0.1 0.8
0.3 0.4 0.3

]]
]

,

Γ3 = [[
[

0.4 0.2 0.4
0.2 0.1 0.7
0.1 0.3 0.6

]]
]

.

(34)

By solving LMIs (14), it can be concluded that system (2)
is stochastically stabilized via feedback gains

𝐾1 = [−1.1058 −0.0365
0.1262 −1.2281] ,

𝐾2 = [−1.2668 −0.0051
0.0747 0.6577 ] ,

𝐾3 = [−0.3565 −0.4793
0.0552 −0.0928] .

(35)

The system modes and the state trajectories of the open-
loop and closed-loop systems are, respectively, shown in
Figures 1–3.

Example 2. Consider system (2) with coefficient matrices as
follows:

𝐴1 = [0.22 −0.78
0.56 0.01 ] ,

𝐴2 = [0.27 −0.85
0.23 0.58 ] ,

𝐵1 = [ 0.07
−0.93] ,

𝐵2 = [ 0.91
−0.18] ,
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Figure 1: The system modes for Example 1.
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Figure 2: The states of open-loop system for Example 1.
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Figure 3: The states of closed-loop system for Example 1.
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Figure 4: The system modes for Example 2.

𝐶1 = [ 0.06 0.45
−0.44 −0.52] ,

𝐶2 = [−1.07 0.06
−0.89 0.46] ,

𝐷1 = [−0.04
0.27 ] ,

𝐷2 = [ 0.15
−0.11] .

(36)

The initial state is given as 𝑥0 = (−2, 1)T and the vertices
of the polytope transition probability matrices are given as
follows:

Γ1 = [0.1 0.9
0.5 0.5] ,

Γ2 = [0.4 0.6
1 0 ] ,

Γ3 = [0.2 0.8
0.3 0.7] .

(37)

Given 𝑐1 = 5, 𝑐2 = 70, 𝑅 = I, and 𝑇 = 15 and choosing𝛾 = 1.05, by solving LMIs (23) and checking (22), it can be
concluded that system (2) is finite-time stabilized via feed-
back gains

𝐾1 = [0.5537 0.6242] ,
𝐾2 = [−0.1028 1.1531] . (38)

The system modes and the state trajectories of the open-
loop and closed-loop systems are, respectively, shown in
Figures 4–6.
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Figure 5: 𝐸(𝑥T
𝑘𝑅𝑥𝑘) of the open-loop system for Example 2.
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𝑘𝑅𝑥𝑘) of the closed-loop system for Example 2.

6. Conclusions

In this paper, we have investigated the stochastic stability
and finite-time stability of a kind of discrete-time nonho-
mogeneous Markov jump systems with multiplicative noises
and polytopic transition probability matrices. Some sufficient
conditions for stability are proposed by parameter-dependent
Lyapunov function and stabilization controllers are designed
by using LMI toolbox. The simulation results show the
effectiveness of the developed techniques. This research will
motivate us to study the continuous-time version in future.
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