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Abstract

Background: Classical approaches to compute the genomic distance are usually limited to genomes with the
same content, without duplicated markers. However, differences in the gene content are frequently observed and
can reflect important evolutionary aspects. A few polynomial time algorithms that include genome rearrangements,
insertions and deletions (or substitutions) were already proposed. These methods often allow a block of
contiguous markers to be inserted, deleted or substituted at once but result in distance functions that do not
respect the triangular inequality and hence do not constitute metrics.

Results: In the present study we discuss the disruption of the triangular inequality in some of the available
methods and give a framework to establish an efficient correction for two models recently proposed, one that
includes insertions, deletions and double cut and join (DCJ) operations, and one that includes substitutions and
DCJ operations.

Conclusions: We show that the proposed framework establishes the triangular inequality in both distances, by
summing a surcharge on indel operations and on substitutions that depends only on the number of markers
affected by these operations. This correction can be applied a posteriori, without interfering with the already
available formulas to compute these distances. We claim that this correction leads to distances that are biologically
more plausible.

Background
The approaches to compute the distance between two
genomes often allow the rearrangement operations to be
applied to blocks of contiguous markers of arbitrary
sizes. In this context, the genomes are assumed to have
the same content, free of duplicated markers, and the
allowed operations only change the organization of the
genome (i.e. positions and orientation of markers, num-
ber and type of chromosomes, etc.). We call these
operations organizational. Furthermore, the classical
polynomial time approaches usually assign the same
weight to all organizational operations regardless of the
size of the affected blocks and the particular types of
the operations, that could represent inversions, translo-
cations, fusions and fissions [1-4].

While duplicated markers can hardly be handled by
exact models [5-8], some extensions of the classical
approaches lead to hybrid models that handle genomes
with unequal content, but without duplicated markers,
allowing, in addition to the organizational operations, a
block of contiguous markers to be inserted, deleted or
substituted at once [9-12]. Insertions, deletions and sub-
stitutions are called content-modifying operations. The
hybrid models that we analyze in the present study
assign the same weight to organizational and content-
modifying operations and lead to exact polynomial time
algorithms. However, they compute distances that do
not necessarily respect the triangular inequality.
Although the triangular inequality disruption does not
affect pairwise comparisons, this may be a major issue if
one intends to use these genomic distances to compute
the median of three or more genomes and in phyloge-
netic reconstructions.* Correspondence: mdbraga@inmetro.gov.br
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By assigning different weights to different types of
operations one can avoid the triangular inequality
disruption. These weights should actually be guided by
biological evolution criteria, but the lack of biological
understanding makes this task still difficult. In the pre-
sent work we investigate how the triangular inequality
itself can be used to determine some constraints on the
weights of rearrangement operations. Considering in
particular two hybrid models recently proposed by us
[10,11], in which double-cut-and-joins (DCJ) represent
the organizational operations, we propose a general fra-
mework to establish the triangular inequality in these
models, improving our previous results.
In the remainder of this section we will introduce some

preliminary concepts and give an overview of two differ-
ent hybrid models available in the literature, namely the
inversion-indel distance [9] and the ghost-DCJ distance
[12]. We will then summarize our DCJ-indel[10] and
DCJ-substitution distances [11], that are the basis for the
results obtained in the present work.

Genomes
We deal with models in which duplicated markers are
not allowed. Given two genomes A and B, possibly with
unequal content, let   ,  and be three disjoint sets,
such that  is the set of markers that occur once in A
and once in B,  is the set of markers that occur only
in A and  is the set of markers that occur only in B.
The markers in sets   and are also called unique
markers. We denote by u A B( , ) |= | | + |  the number
of unique markers in genomes A and B.
Each marker g in a genome is a DNA fragment and is

represented by the symbol g, if it is read in direct orien-
tation, or by the symbol ḡ, if it is read in reverse orien-
tation. Each one of the two extremities of a linear
chromosome is called a telomere, represented by the
symbol ○. Each chromosome in a genome can be then
represented by a string that can be circular, if the chro-
mosome is circular, or linear and flanked by the symbols
○ if the chromosome is linear.

Organizational operations
The organizational operations change the organization
of a genome, without changing its content [1]. Several
types of organizational operations are considered and
can be represented as follows. An inversion is an opera-
tion that reverses the order and the orientation of a
block of contiguous markers. An inversion applied to
markers b, c and d of the linear chromosome ○abcde○
results in the linear chromosome  adcbe . By a translo-
cation, a pair of linear chromosomes exchange blocks of
contiguous markers located at one of the extremities. A
translocation applied to ○abcd○ and ○efg○ could result
in chromosomes ○abfg○ and ○ecd○, for example.

Similarly, a fusion of a pair of chromosomes ○abcd○
and ○efg○ could result in ○abcdefg○, while the opposite
operation is a fission.
All rearrangements listed above can be generically

represented as a double-cut-and-join (DCJ), that is the
operation that generally performs two cuts in a genome,
creating four open ends, and joins these open ends in a
different way. This operation was introduced in 2005 by
Yancopoulos et al.[2].

Content-modifying operations
The content-modifying operations change the content of a
genome. These operations can be a deletion of a block of
contiguous markers or an insertion of a block of contigu-
ous markers, with the restriction that an insertion cannot
produce duplicated markers. As an example, a deletion of
markers x, y and z from a chromosome ○abxyzc○ results
in ○abc○. The opposite of a deletion is an insertion. Inser-
tions and deletions can be simply called indel operations.
We also consider a more parsimonious operation, in

which a block of contiguous markers can be substituted
by a different block of contiguous markers, also with the
restriction that a substitution cannot produce duplicated
markers. An example of a substitution could transform
oabxyzco into oabuvco. The opposite of a substitution is
also a substitution. Furthermore, each one of the consid-
ered blocks can be empty, allowing a substitution to
represent an insertion or a deletion. At most one chro-
mosome can be inserted, deleted or substituted at once.

Triangular inequality
Given any three genomes A, B and C and a distance
measure d, consider without loss of generality that d(A,
B) ≥ d(A, C) and d(A, B) ≥ d(B, C). Then the triangular
inequality is the property that guarantees that d(A, B) ≤
d(A, C) + d(B, C). Although this property holds for the
classical models that consider only organizational opera-
tions, it does not hold for the hybrid approaches that we
analyze in this study.
Consider for example the genomes

A abcde B acdbe C ae= = ={ }, { } { }       and [12]. While
A and B can be sorted into C with only one indel, the
minimum number of inversions required to sort A into
B is three. In this case we have d(A, B) = 3, d(A, C) = 1,
d(B, C) = 1 and the triangular inequality is disrupted.
The triangular inequality disruption may be a serious
obstacle if one intends to use the distance to compute
the median of three or more genomes and in phyloge-
netic reconstructions.

Related work
The inversion-indel distance
El Mabrouk [9] extended the classical sorting by inver-
sions approach [1] to develop a method to compare
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unichromosomal genomes considering inversions and
indels. Two algorithms were provided, an exact one,
which deals with insertions and deletions asymmetri-
cally, and a heuristic that is able to handle all operations
symmetrically. The triangular inequality can be dis-
rupted in this model, as we could see in the example
above, but this issue was not discussed by the author.
The ghost-DCJ distance
Yancopoulos and Friedberg [12] proposed an extension
of the classical DCJ model [2], leading to a hybrid
model that considers DCJ operations and indels. In their
approach, they give a method to insert ghost markers in
the genomes, so that the contents are equalized and can
be sorted with DCJ operations only. With such a strat-
egy, indels are mimicked by DCJ operations, and it is
actually not possible to make a clear separation between
organizational and content-modifying operations.
The triangular inequality disruption was detected by

the authors and an approach to avoid this problem
was proposed, imposing a kind of constraint to the
ghost insertion. However, in comparisons involving
three genomes, by the insertion of ghosts a genome
could be modified in different ways, depending on the
second genome. Consider again the genomes
A abcde B acdbe C ae= = ={ }, { } { }       and . It is neces-
sary to insert ghosts in C, generating a modified gen-
ome C′, so that d(A, C′) is minimized. We have

′ = ∪C C bcd{ } and d(A, C′) = 2, but in this process
genome B was not considered. In the same way, while
inserting ghosts in C with respect to B to generate a
modified genome C″, genome A is not considered. We
have C″ = C ∪ {bcd} and d(A, C″) = 2. Since we have d
(A, B) = 3, the triangular inequality holds. But the gen-
omes C′ and C″ are actually different and there is no
analysis of the impact of these differences. In this case,
for instance, we have d(A, C″) = d(B, C′) = 3.
Moreover, the genomes C′ and C″ are composed of
one linear and one circular chromosome. We observe
that in general, the insertion of ghosts leads to the
insertion of one or more circular chromosomes in the
modified genomes, regardless of the fact that the origi-
nal genome is linear.

The DCJ-indel and DCJ-substitution distances
The basis for the results of the present work are two
hybrid models recently developed by us [10,11], by
doing a different extension of the classical DCJ model
[2,3]. In [10] the considered operations are DCJs and
indels, while in [11] we consider DCJs and substitutions
(that comprehend indels). Differently from the approach
of Yancopoulos et al.[12], a clear separation between
organizational and content-modifying operations is pro-
vided. The DCJ-indel distance of A and B, denoted by
dDCJ–id(A, B), is the minimum number of DCJs and

indels required to transform A into B. Similarly, the
DCJ-substitution distance of A and B, denoted by dDCJ–sb

(A, B), is the minimum number of DCJs and substitutions
required to transform A into B. Since substitutions include
indels, dDCJ–sb(A,B) is upper bounded by dDCJ–id(A,B).
Both distances can be computed in linear time, but are
subject to the inequality disruption. We give some details
of the algorithms to compute both distances in the
following.
The classical DCJ distance
Given two genomes A and B, recall that  is the set of
markers common to A and B. The two extremities of
each marker g ∈ , are denoted gt (tail) and gh (head).
A -adjacency [10] in genome A (respectively in genome
B) is in general a linear string v = g1ℓg2, such that each
gi can be a telomere or an extremity of a marker from
 . The string ℓ is the label of v: it is composed of the
markers that are between g1 and g2 in A (respectively in
B) and contains no marker that also belongs to  . If a
linear chromosome is composed only of markers that
are not in  , it is represented by a -adjacency ○ℓ○.
Similarly if a circular chromosome is composed only of
markers that are not in  , it is represented by
a-adjacency ℓ. In this particular case we have a circu-
lar instead of a linear string representing an adjacency.
Each -adjacency in genome A and each
-adjacency in genome B corresponds to a vertex in
the adjacency graph AG(A, B) [3]. For each g ∈ , we
have one edge connecting the vertex in A and the vertex
in B that contain gh and one edge connecting the vertex
in A and the vertex in B that contain gt. The graph AG(A,
B) is bipartite, composed of connected components that
alternate vertices in genome A and in genome B. Each
component can be either a cycle, or an AB-path (that
have one endpoint in genome A and the other in B), or
an AA-path (that have both endpoints in genome A), or a
BB-path (that have both endpoints in B). A component
can also be a linear (respect. circular) singleton, that is a
linear (respect. circular) chromosome represented by a
single -adjacency . The number of vertices in a compo-
nent P of AG(A, B) is denoted by |P|. An example of an
adjacency graph is given in Figure 1.
Components with 3 or more vertices need to be

reduced, by applying DCJ operations, to components
with only 2 vertices, that can be cycles or AB-paths.
This procedure is called DCJ-sorting of A into B. The
number of AB-paths in AG(A, B) is always even and a
DCJ operation can be of three types [3]: it can either
decrease the number of cycles by one, or the number of
AB-paths by two; or it does not affect the number of
cycles and AB-paths; or it can either increase the num-
ber of cycles by one, or the number of AB-paths by two.
In the last case the DCJ operation is called optimal. It is
possible to do a DCJ-sorting with optimal DCJs only [3].
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The minimum number of steps required to do a DCJ-
sorting of A into B is the DCJ distance of A and B,
denoted by dDCJ(A, B), that can be then computed by
the following formula:
Theorem 1 ( [3]) Given two genomes A and B without

duplicated markers, we have d A B n cDCJ b( , ) = − − 2
,

where n is the number of common markers between A
and B, and c and b are the number of cycles and of AB-
paths in AG(A,B), respectively.
Runs of unique markers and tight distance upper bounds
We can obtain a string ℓ(P) by concatenating only the
labels of the vertices of a component P of AG(A, B). We
have to be careful if P is a cycle and has labels in both
genomes A and B. In this case we need to start to read
between a labeled -adjacency of A and a labeled
-adjacency of B; otherwise P has labels in at most
one genome and we can start anywhere. An -run
(respectively a -run ) is then a maximal substring of
ℓ(P) composed only of markers in  (respectively in
 ). Each -run or -run can be simply called run.
We denote by Λ(P) the number of runs in a component
P (see an example in Figure 2). Observe that Λ(P) ≤ |P|,
where |P| is the number of vertices in component P.
A set of labels of one genome can be accumulated

with DCJs. In particular, when we apply optimal DCJs
on only one component of the adjacency graph, we can
accumulate an entire run in a single -adjacency [10].
Runs can also be merged by DCJ operations. Conse-
quently, while sorting a genome into another with DCJs,
we can reduce the overall number of runs. In the end of
this process, each run can be sorted with one indel
operation. Alternatively, a pair of consecutive runs can
be sorted with one substitution.
It is possible to do a separate DCJ-sorting using only

optimal DCJs in any component P of AG(A, B) [4]. We

denote by dDCJ (P) the number of DCJ operations used
for DCJ-sorting P separately. The DCJ distance can also
be re-written as dDCJ(A, B) = ∑PÎAG(A ,B)d

DCJ(P) [4].
Then, the indel-potential of P, denoted by l(P), is
defined as the minimum number of runs that we can
obtain by doing a separate DCJ-sorting in P with dDCJ

(P) DCJ operations. It can be computed with a simple
formula that depends only on the number of runs in P:
l( ) ( )P P= ⎡

⎢
⎤
⎥

+Λ 1
2 , if Λ(P) ≥ 1 (otherwise l(P) = 0) [10].

This gives a tight upper bound for the DCJ-indel
distance:
Lemma 1 ( [10]) Given two genomes A and B without

duplicated markers, we have

d A B d A B PDCJ id DCJ

P AG A B

−

∈

≤ + ∑( , ) ( , ) ( ).
( , )

l

Similarly, the substitution-potential of a component P,
that is the minimum number of substitutions that we
can obtain by DCJ-sorting P with dDCJ (P) DCJ opera-
tions, is denoted by s(P) and can be computed as fol-
lows: s( ) ( )P P= ⎡

⎢
⎤
⎥

+Λ 1
4 , if Λ(P) ≥ 1 (otherwise s(P) = 0)

[11]. With the substitution-potential we also have a
tight upper bound for the DCJ-substitution distance:
Lemma 2 ( [11]) Given two genomes A and B without

duplicated markers, we have

d A B d A B PDCJ sb DCJ

P AG A B

−

∈

≤ + ∑( , ) ( , ) ( ).
( , )

s

Based on the upper bounds above and some additional
technical aspects that we omit here, it is possible to
exactly compute both distances in linear time [10,11].
Establishing the triangular inequality
In the case of the DCJ-indel distance, there is a method to
establish the triangular inequality a posteriori[10]. Let A, B
and C be three genomes and let       , , , , ,  and 
be seven disjoint sets of markers, such that   ,  and 
are the sets of unique markers that occur respectively only
in A, B and C. Furthermore, the markers in  are com-
mon only to A and B, the markers in  are common only
to B and C, the markers in  are common only to A and
C, and, finally,  is the set of markers that are common
to A, B and C. The sets       , , , , ,  and are repre-
sented in Figure 3.
Consider without loss of generality that dDCJ–id(A, B)

≥ dDCJ–id(A, C) and dDCJ–id(A, B) ≥ dDCJ–id(B, C). If
 = ∅ , meaning that genomes A and B have no com-
mon marker that does not occur in C, the triangular
inequality holds for the DCJ-indel distance [10]. How-
ever, in the case in which  = ∅ , the triangular
inequality can be disrupted.
A solution to this problem is to apply a correction a pos-

teriori, by summing to the distance a surcharge that

A ◦bt bhuvch ctat ahwdh dtet eh
◦

B ◦at ahxbt bhyct ch
◦ ◦dt dhzet eh

◦

Figure 1 For genomes A and B, the adjacency graph contains one
BB-path and two AB-paths.

�1 �2 �5

︸ ︷︷ ︸

A-run

�3 �4
︸ ︷︷ ︸

B-run

︸︷︷︸

A-run

Figure 2 An AB-path with 3 runs.
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depends on the number of unique markers. The triangular
inequality holds for the function mid(X, Y) = dDCJ–id (X, Y)
+ k · u(X, Y), taking any constant k ≥ 3/2. Recall that u(X,
Y) is the number of unique markers between genomes X
and Y. We then have

m A B d A B k m A C

d

id DCJ id id

DCJ id

( , ) ( , ) (| | | | | | | |), ( , )= + + + +

=

−

−

     

(( , ) (| | | | | | | |)A C k+ + + +   

and m B C d B C kid DCJ id( , ) ( , ) (| | | | | | | |)= + + + +−     . Observe
that mid depends only on the DCJ-indel distance and the
number of unique markers.
The lower bound of 3/2 for the constant k was

obtained by an overestimation for the DCJ-indel dia-
meter, that is the maximum DCJ-indel distance between
any two genomes A and B. It was also conjectured in
[10] that the lower bound for the constant k could be
reduced to 1.

Results and discussion
The main results of this paper are a framework to assign
weights to different operations in a hybrid model and
the use of this framework to establish the triangular
inequality for both the DCJ-indel and the DCJ-substitu-
tion distances.

Framework to assign weights in a hybrid model
Let w(r) be the weight of an operation r. We propose a
framework in which we have w(r) = 1 if r is an organi-
zational operation. For each content-modifying opera-
tion r, we denote by m(r) the number of markers
affected by r, that is the number of inserted or deleted
markers. In the case of a substitution r, m(r) counts the
markers that are deleted plus the markers that are
inserted by r. The weight of r is then defined as w(r) =
p + km(r), that is a linear function on the number m(r),
with non-negative constants p and k. This framework
adds a priori a surcharge km(r) to any content-modify-
ing operation r.
Consider a generic hybrid model H that assigns to the

rearrangement operations the weights given by the

framework described above. Observe that, in a sequence
of operations sorting a genome A into a genome B
under H, each unique marker is affected by only one
content-modifying operation:
Proposition 1 Given two genomes A and B, free of

duplicated markers, and a generic hybrid model H,
if r r r1 2

cm cm
t
cm, , , are the content-modifying operations

in a sequence sorting A into B under H,
then u A B m m mcm cm

t
cm( , ) ( ) ( ) ( )= + + +r r r1 2  .

We denote by d A Bp k
H
, ( , ) the distance between gen-

omes A and B under H. We will first show in the fol-
lowing that for any positive k, the distance dp k

H
, is

equivalent to the distance dp
H
,0 up to an a posteriori

correction made to the second distance.
Lemma 3 Given two genomes A and B without duplicated

markers, d A B d A B k u A Bp k
H

p
H

, ,( , ) ( , ) ( , )= + ⋅0 where u(A,B)
is the number of unique markers between A and B.
Proof: Recall that w(r) = 1 if r is organizational, and

w(r) = p + km(r) if r is content-modifying and
affects m(r) markers. Consider a parsimonious
sequence of operations s corresponding to the
distance dp k

H
, . Denote by r r1

org
r
org, , the organiza-

tional operations and by r r1
cm

t
cm, , the content-

modifying operations in s. Observe that
d w w w w r p kmp k
H org

r
org cm

t
cm cm

, ( ) ( ) ( ) ( ) ( ( ))= + + + + + = + +r r r r r1 1 1  ++ + + = + + + + + = + + ( ( )) ( ( ) ( ) ( ))p km r tp k m m m r tp kut
cm cm cm

t
cmr r r r1 2 (( , )A B .

Since u(A, B) is constant for a pair of genomes A and
B, d A Bp k

H
, ( , ) is determined by choosing a sequence s

that minimizes the value r + tp – such a value is
exactly the distance d A Bp

H
, ( , )0 .

From an algorithmic point of view, the relation
established by Lemma 3 means that, when using this
framework, one may focus on distances of type
d A Bp
H
, ( , )0 – and the distance d A Bp k

H
, ( , ) can be easily

obtained with the application of a simple a posteriori
correction. In other words, the advantage of applying a
correction a posteriori is that it does not interfere with
the formula to compute the distance obtained without
considering the correction.
We can derive from the previous observations a simpler

inequality that can be used to determine the constant k:
Proposition 2 Given three genomes A , B and C

without duplicated markers, the inequal-
ity d A B d A C d B Cp k

H
p k
H

p k
H

, , ,( , ) ( , ) ( , )≤ + holds if, and only
if, d A B d A C d B C kp

H
p
H

p
H

, , ,( , ) ( , ) ( , ) | |0 0 0 2≤ + +  , where-
 is the set of markers common only to A and B.
Proof: Consider the disjoint sets from Figure 3. The

inequality d A B d A C d B Cp k
H

p k
H

p k
H

, , ,( , ) ( , ) ( , )≤ + is equiva-
lent to the inequality

d A B k d A C kp
H

p
H

, ,( , ) (| | | | | | | |) ( , ) (| | | | | | | |0 0+ + + + ≤ + + + +        ))

( , ) (| | | | | | | |),,

+

+ + + +d B C kp
H

0    

which can be re-written as
d A B d A C d B C kp
H

p
H

p
H

, , ,( , ) ( , ) ( , ) (| | | |)0 0 0 2≤ + + +  .

A B

C

A B

C

D

EF

G

Figure 3 The disjoint sets       , , , , ,  and for three
genomes A, B and C - each circle represents the markers that occur
in each one of the three genomes.
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Since  does not affect d A BDCJ id
1 0, ( , )− and increases

d A CDCJ id
1 0, ( , )− and d B CDCJ id

1 0, ( , )− , we can always assume

= ∅ .
Consider without loss of generality that

d A B d A Cp
H

p
H

, ,( , ) ( , )0 0≥ and d A B d B Cp
H

p
H

, ,( , ) ( , )0 0≥ . In
order to establish the triangular inequality for dp k

H
, , we

need to find a non-negative k such that the inequality
given by Proposition 2 holds. We can analyze first the
case in which we have = ∅ . In this case, the triangu-
lar inequality holds for dp

H
,0 , as we can obtain from a

generalization of a proposition proved in [10]:
Proposition 3 Given p > 0 and three genomes A, B

and C without duplicated markers, such that A and B
have no common marker that does not occur in C,
d A B d B Cp
H

p
H

, ,( , ) ( , )0 0≥ and d A B d B Cp
H

p
H

, ,( , ) ( , )0 0≥ ,
then d A B d A C d B Cp

H
p
H

p
H

, , ,( , ) ( , ) ( , )0 0 0≤ + .
Proof: Recall the disjoint sets from Figure 3. We

know that = ∅ and, w.l.o.g., we also assume that
= ∅ . Let s1 be an optimal sequence sorting A into
C. The sequence s1 has some content-modifying opera-
tions involving elements from  and  and some
organizational operations. In the same way, an optimal
sequence s2 sorting C into B has some content-modify-
ing operations involving elements from  and  and
also some organizational operations. Note that s1s2 is a
valid sequence sorting A into B (no content-modifying
operation is applied to common markers). Thus
w s s d A Bp

H( ) ( , ),1 2 0≥ , otherwise there would be a valid
sequence with weight smaller than d A Bp

H
, ( , )0 sorting

A into B, which is a contradiction. Since
w s d A Cp

H( ) ( , ),1 0= and w s d B Cp
H( ) ( , ),2 0= , we have

d A C d B C d A Bp
H

p
H

p
H

, , ,( , ) ( , ) ( , )0 0 0+ ≥
Observe that, if the inequality holds for dp

H
,0 , it holds

for dp k
H
, for k ≥ 0. More generally:

Lemma 4 Given a positive constant p and a non-negative
constant k, if the triangular inequality holds for dp k

H
, , then

the triangular inequality holds for dp k
H
, ′ , for any k′ ≥ k.

The minimum value of k to guarantee the triangular
inequality depends on the value of p and on the specific
model that we consider. In the following we will determine
the minimum k for the DCJ-indel and the DCJ-substitution
distances, considering p = 1.

The triangular inequality in the DCJ-indel
and DCJ-substitution distances
We can estimate the maximum values for both the DCJ-
indel and DCJ-substitution distances with the help of
Table 1, in which we give the DCJ-distance, number of
runs and potentials per component of the adjacency
graph. Remark that all values in this table depend only
on the number of vertices in the respective component.
Furthermore, Lemma 5 shows that the number of

vertices in AG(A, B) depends on the number of com-
mon markers and chromosomes in genomes A and B.
Lemma 5 The number of vertices in AG(A, B) is given by
|AG(A, B)| = 2n + LA + SA + LB + SB,
where n is the number of common markers of A and B,

and LA, SA, LB and SB are, respectively, the number of
linear chromosomes and circular singletons in genomes A
and B.
Proof: Recall that, except for the circular singletons,

each vertex in AG(A, B) is defined by a pair of symbols
{g1, g2}, where each gi is the head or the tail of a mar-
ker, or a telomere. The head gh of each common mar-
ker g appears in two vertices of AG(A, B) as well as
the tail gt of g appears in two vertices of AG(A, B).
Moreover, for each linear chromosome, two telomeres
appear in vertices of AG(A, B). Hence, the total num-
ber of symbols due to chromosomes that are not circu-
lar singletons - i.e. linear chromosomes and
chromosomes that contain common markers – is (4n
+ 2LA + 2LB )/2 = 2n + LA + LB. This added to the
number SA + SB of circular singletons gives the final
number of 2n + LA + SA + LB + SB.
We can now find the minimum k for the DCJ-indel

and DCJ-substitution distances, considering p = 1.
The DCJ-indel distance
We first observe that d dDCJ id DCJ id− −= 1 0, . Furthermore,
the a posteriori correction that we proposed in [10] is a
particular case of the framework above: for any k ≥ 3/2,
d A B d A B k u A Bk
DCJ id DCJ id
1 1 0, ,( , ) ( , ) ( , )− −= + ⋅ . The lower

bound of 3/2 was obtained by overestimating the maxi-
mum DCJ-indel distance. In the present section we
show that the DCJ-indel distance d k

DCJ id
1,

− satisfies the
triangular inequality if and only if k ≥ 1. Such result
solves an open conjecture mentioned in [10].
Lemma 6 determines a tight upper bound for the

DCJ-indel distance between two genomes.
Lemma 6 If A and B are genomes with n common

markers, then

Table 1 For each possible component P in an adjacency
graph we give the number of vertices, the DCJ distance
(that can be obtained in [4]) and the maximum values
for Λ(P), l(P) and s(P).
|P| dDCJ(P) max Λ(P) max l(P) max s(P)

1 0 1 1 1

2 0 2 2 1

3 1 3 2 1

4 1 4 3 2

5 2 5 3 2

6 2 6 4 2

7
⋮
|P|

3
⋮

⌊(|P| – 1)/2⌋

7
⋮
|P|

4
⋮

⌈(|P| + 1)/2⌉

2
⋮

⌈(|P| + 1)/4⌉
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d A B n L S L SDCJ id
A A B B1 0 2, ( , ) ,− ≤ + + + +

where LA, SA, LB and SB are, respectively, the number
of linear chromosomes and circular singletons in genomes
A and B.
Proof: Recall from [10] that

d A B d PDCJ id DCJ id

P AG A B
1 0 1 0, ,

( , )
( , ) ( )− −

∈
≤ ∑ . Now, we study

the maximum dDCJ id
1 0,

− per component, with the

help of Table 1. If |P| is even, then P can be sorted
with |P|/2 – 1 DCJs and at most l(P) ≤ |P|/2 + 1
indels, which gives

d P P P PDCJ id
1 0 2 1 2 1, ( ) (| | / ) (| | / ) | |− ≤ − + + = . If |P| is

odd, then P can be sorted with (|P| – 1)/2 DCJs and at
most l(P) ≤ (|P| + 1)/2 indels, which gives

d P P P PDCJ id
1 0 1 2 1 2, ( ) (| | ) / (| | ) / | |− ≤ − + + = . Summing

dDCJ id
1 0,

− per component gives:

d A B d P P AG A BDCJ id DCJ id

P AG A B

1 0 1 0 2, ,

( , )

( , ) ( ) | | | ( , ) |− −

∈

≤ ≤∑  = = nn L S L SA A B B

P AG A B

+ + + +
∈
∑ .

( , )

We can then reduce to 1 the lower-bound to the con-
stant k, also proving that it is the best possible.
Theorem 2 The distance d k

DCJ id
1,

− satisfies the triangu-
lar inequality if and only if k ≥ 1.
Proof: Let A , B and C be three genomes,

with d A B d A CDCJ id DCJ id
1 0 1 0, ,( , ) ( , )− −≥ and

d A B d B CDCJ id DCJ id
1 0 1 0, ,( , ) ( , )− −≥ . Consider again the

disjoint sets from Figure 3 and recall that, to
prove the triangular inequality for d k

DCJ id
1,

− , we only
need to find a k such that
d A B d A C d B C kDCJ id DCJ id DCJ id

1 0 1 0 1 0 2, , ,( , ) ( , ) ( , ) | |− − −≤ + + 
holds (Proposition 2). The case in which = ∅ is
covered by Proposition 3. It remains to examine the
case in which = ∅ .
We need to characterize the worst configuration of

genomes A, B and C so that we can find the smallest
value for k. We know that genomes A and B are non-
empty. Suppose that C is also non-empty (but remem-
ber that = ∅ ). Observe that, in order to minimize
dDCJ–id(A,C), the elements of  must be “together” in a
single chromosome (in both genomes), not “intercalat-
ing” elements from   ,  and (the distance dDCJ–id(A,
B) can be maximized “intercalating” only   ,  and ).
In this case, we can assume that the contibution of 
in dDCJ–id(A, C) is zero, while the number of indels
given by  in dDCJ–id(B, C) is equal to 1. We can then
simply “move” all markers of   to , “removing” them
from genome C, so that = ∅ , the number of indels
between A and B is preserved, dDCJ–id(A, C) increases by
1 (one indel) and dDCJ–id(B,C) decreases by 1.

Analogously, we can also consider that = ∅ . With a
similar analysis, we observe that the elements of 
must be “together” in a single chromosome (in each of
the three genomes), not “intercalating” elements from
  ,  and . Again, we can simply “move” all markers
of   to , “removing” them from genome C, so that
= ∅ and both dDCJ–id(A, C) + dDCJ–id (B, C) and
dDCJ–id(A, B) are preserved. Thus, the worst case would
be to have an empty genome C.
Let XA, XB be the number of chromosomes in A

and B, LA, LB be the number of linear chromosomes in
A and B, and SA, SB be the number of circular
singletons in A and B. Since C is empty, we
know that d A C X d B C XDCJ id

A
DCJ id

B1 0 1 0, ,( , ) ( , )− −≤ ≤ and .
From Lemma 6, we have
d A B L S L SDCJ id

A A B B1 0 2, ( , ) | |− ≤ + + + + . This gives
2 2| | | | + + + + ≤ + +L S L S X X kA A B B A B . Since
XA ≥ LA + SA and XB ≥ LB + SB, we have 2 2| | | | ≤ k ,
that holds for any k ≥ 1.
To show that the lower bound of 1 is tight, we take k

= 1 – ε. Let C be the empty genome and let A and B be
two unichromosomal circular genomes such that: (1)
| |=| |=| |=   n ; and (2) AG(A, B) has only one cycle, in
which all vertices are labeled. Remark that
d A B nDCJ id

1 0 2, ( , )− = and d A B n nkk
DCJ id
1 2 2, ( , )− = + .

Moreover,
d A C d B C d A C dDCJ id DCJ id

k
DCJ id

k1 0 1 0 1 11, , , ,( , ) ( , ) ( , )− − −= = = and DDCJ id B C nk− = +( , ) 1 .
Thus, if n > 1/ε, we have n(1 – k) > 1 which is equiva-
lent to 2n + 2nk > 2 + 4nk and also to
d dDCJ sb DCJ sb− −= 1 0, , disrupting the inequality.
The DCJ-substitution distance
In the case of the DCJ-substitution distance, we also
have d dDCJ sb DCJ sb− −= 1 0, . We find a lower bound to the
constant k with the help of Lemma 7, that determines
the maximum dDCJ sb

1 0,
− between two genomes.

Lemma 7 If A and B are genomes with n common
markers, then

d A B
n

L S L SDCJ sb
A A B B1 0

3
2, ( , ) ,− ≤ + + + +

where LA, SA, LB and SB are, respectively, the number
of linear chromosomes and circular singletons in genomes
A and B.
Proof: Recall from [11] that

d A B d PDCJ sb DCJ sb

P AG A B
1 0 1 0, ,

( , )
( , ) ( )− −

∈
≤ ∑ . Now, we study

dDCJ sb
1 0,

− per component, with the help of Table 1, con-

sidering an integer x ≥ 0.
If |P| is even, then P can be DCJ-sorted with |P|/2 –

1 DCJs. We have to analyze two cases: (i) if |P| = 4x +
4, then s(P) ≤ |P|/4 + 1 and
d P P P PDCJ sb

1 0 2 1 4 1 3 4, ( ) (| | / ) (| | / ) | | /− ≤ − + + = ; (ii)
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if |P| = 4x + 2, then s(P) ≤ (|P| – 2)/4 + 1 and
d P P P PDCJ sb

1 0 2 1 2 4 1 3 4 1 2, ( ) (| | / ) (| | ) / | | / /− ≤ − + − + = − .
If |P| is odd, then P is an AA- or a BB-path and
can be DCJ-sorted with (|P| – 1)/2 DCJs. Again,
we have to analyze two cases: (i) if |P| = 4x + 3,
then s(P) ≤ (|P| + 1)/4 and
d P P P P PDCJ sb

1 0 1 2 1 4 3 1 4 3 4 1 4, ( ) (| | ) / (| | ) / ( | | ) / | | / /− ≤ − + + = − = − ;
(ii) if |P| = 4x + 1, then s(P) ≤ (|P| + 3)/4 and
d P P P PDCJ sb

1 0 1 2 3 4 3 4 1 4, ( ) (| | ) / (| | ) / | | / /− ≤ − + + = + . In this last case we could
have dDCJ–sb(P) > 3|P|/4. Observe however that the
numbers of AA- and BB-paths are bounded, respec-
tively, by LA and LB. Summing dDCJ sb

1 0,
− per component

gives:

d A B d P
P

L LDCJ sb DCJ sb

P AG A B

A B

P A

1 0 1 0
3

4
1
4, ,

( , )

( , ) ( )
| |

( )− −

∈ ∈

≤ ≤ + +∑
GG A B

A B A A B B AAG A B L L n L S L S L L

( , )

| ( , ) |

∑
= + + = + + + + + +3

4 4 4
3
2

3
4

3
4

3
4

3
4 4

BB

A A B B
n

L S L S

4
3
2

≤ + + + + .

We can then establish a lower bound of 3/4 to the
constant k, that is the best possible.
Theorem 3 The distance d k

DCJ sb
1,

− satisfies the triangu-
lar inequality if and only if k ≥ 3/4.
Proof: The value of 3/4 is obtained by a procedure

similar to the one in the proof of Theorem 2, except
that here the maximum distance between two genomes
is estimated as 3n/2 + LA + LB + SA + SB (Lemma 7).
Supposing that k = (3 – ε)/4, we also show that the
lower bound of 3/4 is tight.

Discussion
Although the weights applied to content-modifying
operations were motivated by the inequality
disruption, we observe that they also lead to
distances that are biologically more plausible. Consider
again the example with genomes
A abcde B acdbe C ae= = ={ }, { } { }       and and the
DCJ-indel distance. In this case we have the inequality
disruption for dDCJ id

1 0,
− with d A BDCJ id

1 0 3, ( , )− = and
d A C d B CDCJ id DCJ id

1 0 1 0 1, ,( , ) ( , )− −= = . Using the ghost-DCJ
model [12], that avoids the inequality disruption, the
distances are d(A, B) = 3 and d(A, C) = d(B, C) = 2.
Indeed, here the inequality holds, but these distances
suggest that the phylogenetic relation between A and B
is weaker than those between A and C or B and C,
which would not be expected, since genomes A and B
have the same content. We will now see what happens
when we use dDCJ id

1 1,
− , that gives d A BDCJ id

1 1 3, ( , )− = and
d A C d B CDCJ id DCJ id

1 1 1 1 4, ,( , ) ( , )− −= = . Observe that, with
this correction, not only the inequality is established,
but also the resulting distances suggest that the phylo-
genetic relation between A and B is stronger than
those between A and C or B and C.

Conclusions
When computing the distance between genomes with
unequal content, the triangular inequality can be dis-
rupted, so that the resulting distance does not constitute
a metric. We show that we can correct this problem by
selecting consistent weights for those genomic opera-
tions that change the content and those operations that
change the organization of a genome. We describe a
general framework for the correction of genomic dis-
tances that use both types of operations. Furthermore,
we apply this framework to our DCJ-indel and DCJ-sub-
stitution distances, so that they satisfy the triangular
inequality. This correction can be applied a posteriori,
without interfering with the already available formulas
to compute the distances under these models. We claim
that this correction leads to distances that are biologi-
cally more plausible, regarding the phylogenetic relations
between species.

Future work
A natural extension of the present study is to apply the
proposed framework to establish the triangular inequal-
ity in the inversion-indel distance.
Furthermore, the results of the present paper point to

two clear avenues of research. The first one is to deeply
investigate the distances dp k

DCJ id
,

− and dp k
DCJ sb
,

− when p ≠
1. In this case, it is not yet clear how to compute the
distances and, consequently, it is not known which are
the lowest values for k such that dp k

DCJ id
,

− and dp k
DCJ sb
,

−

satisfy the triangular inequality. The second avenue of
research is to investigate weight functions different from
km(r) + p, but this seems to be even more complicate.
In fact, if the weight function is non-linear, even the
correspondence between the a priori and a posteriori
models is lost. In the near future, we also intend to eval-
uate the performance of the distances corrected by our
framework in phylogenetic reconstructions.
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