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The baker’s map, invented by Eberhard Hopf in 1937, is an intuitively accesible, two-
dimensional chaos-generating discrete dynamical system. This map, which describes the
transformation of an idealized two-dimensional dough by stretching, cutting and piling,
is non-dissipative. Nevertheless the “x” variable is identical with the dissipative, one-
dimensional Bernoulli-shift-generating map. The generalization proposed here takes up
ideas of Yaacov Sinai in a modified form. It has a staircase-like shape, with every next
step half as high as the preceding one. Each pair of neighboring elements exchanges an
equal volume (area) during every iteration step in a scaled manner. Since the density of
iterated points is constant, the thin tail (to the right, say) is visited only exponentially
rarely. This observation already explains the map’s main qualitative behavior: The “x”
variable shows “flares”. The time series of this variable is closely analogous to that of a
flaring-type dissipative dynamical system — like those recently described in an abstract
economic model. An initial point starting its journey in the tale (or “antenna”, if we tilt
the map upwards by 90 degrees) is predictably attracted by the broad left hand (bottom)
part, in order to only very rarely venture out again to the tip. Yet whenever it does so, it
thereby creates, with the top of a flare, a new “far-from-equilibrium” initial condition,
in this reversible system. The system therefore qualifies as a discrete analogue to a far-
from-equilibrium multiparticle Hamiltonian system. The height of the flare hereby
corresponds to the momentary height of the H function of a gas. An observable which is
even more closely related to the momentary negative entropy was recently described.
Dependent on the numerical accuracy chosen, “Poincaré cycles” of two different types
(periodic and nonperiodic) can be observed for the first time.

Keywords: Flare attractors; Baker’s map; Multi-baker’s map; Poincaré cycles; Boltzmann H
function

1. INTRODUCTION what flaring-type behavior is like in dissipative

dynamical systems. Everybody knows what a sun
Can reversible systems flare? To show that the  flare is; also, economic systems can flare — when
answer is yes, it makes sense to first briefly recall ~ they show the typical rise and downfall of an
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entrepreneurial empire, for example [1-3]. A flare
in a dynamical system is characterized by a finite
time of autocatalytic growth, with a (during that
period) momentarily positive “Lyapunov-charac-
teristic exponent” (LCE), even though the same
variable asymptotically speaken is damped (has a
negative LCE) [4]. Flaring-type attractors are
generalized Milnor [5] attractors. Milnor attrac-
tors possess “riddled basins” in which arbitrarily
close initial conditions end up, with a finite
probablity, at a different attractor. While Milnor
attractors are structurally unstable, flare attractors
are generic and indeed prototypal. Flare attractors
arise, for example, in neural networks, as recent
work by Tsuda and Nicolis [6] suggests. They are
also useful in automatic pattern classification [4].

The time series shown in Figure 1 has been
generated by the perhaps simplest example of a
flare attractor, described by:

0 ifx, <

=

Xpi1 = 2x, modl = 2x, +

-1 if x, >

D=

Y1 = Yn + (Xn — 0.67)y, + 1072 — 10_3yi (1)

The system of Eq. (1) is a typical dissipative,
noninvertible nonlinear dynamical systems, writ-
ten in the form of a noninvertible 2D map. While
the first variable generates the random time
behavior of the Bernouilli-shift (‘“‘chaos’™), the
second variable is either negatively or positively

BT Wi TR ) ol W S

T T TRV SO PR O SOV U T iy

25000

FIGURE 1 Times series of a flare attractor. Numerical simulation of the Bernouilli-shift based flare attractor equation, Eq. (1),

second variable. 25 000 iterations are shown. Initial conditions: x¢=:0.1 -

\/i yo=0.1.
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damped, depending on the momentary value of x.
This is the secret of “flaring” [3].

If one wants to have the same behavior in a
continuous invertible dynamical system, one needs
four variables at least instead of two [4]. Three
alone are needed for the chaos generator (which in
the case of Eq. (1) has been reduced to a non-
invertible 1D map, the Bernouilli-shift generator).
The fourth variable —in Eq. (1), the second
variable — is in the simplest case passively forced
by the signal coming from the forcing chaotic
subsystem. This is also the case with the second
variable in Eq. (1). Virtually the same right-hand
side can be used in a continuous system [4].

The conditions for flaring are somewhat critical:
The passively forced y-variable has to be lifted
beyond a threshold value of (zero) negative damp-
ing, before autonomous autocatalytic growth
(elicited by “‘supra-threshold” values of the chaotic
input) can set in. In Eq. (1), the threshold value of
x used is 0.67. Evidently, every gap-less chaotic
input contains, with a certain probability, subse-
quences of symbols (supra-threshold amplitudes of
x) of any length leading to sustained autocatalytic
growth over that length of time. The latter se-
quences then generate a flare of matching duration
each. The latter is accompanied by an exponen-
tially increasing (with the duration of the supra-
threshold input sequence) height. While this
behavior is robust, it is a somewhat non-trivial
task numerically to adjust the threshold in the re-
sponding variable (the subtracted constant inside
the bracket in the second line of Eq. (1) in such a
way that a “beautiful” sequence of flares results.

2. FLARING IN REVERSIBLE SYSTEMS

In an early paper, Carl-Friedrich von Weizsacker
[7] exposed the essence of the scandal of far-from-
equilibrium behavior in reversible dynamical
systems as it had been introduced by Ludwig
Boltzmann (¢f. [8]). He convincingly showed that,
whenever such a system finds itself in a far-from-
equilibrium state, the probability that it was

yesterday in an even more far-away state is
negligible compared to the assumption that it
momentarily peaks in its present (less far-away)
initial condition. In consequence, if we wake up in
the morning and believe that yesterday existed, the
probability of our only believing this on the basis
of our momentary, far-from-equilibrium brain
state is much greater than that we indeed got
enough food to eat yesterday to reach that brain
state legitimately from an even more improbable
initial condition the day before.

Hence Boltzmann’s idea of reversible systems
reaching far-from-equilibrium conditions sponta-
neously (if very rarely) in an almost infinite
available period of time, in order to from there
straightforwardly proceed to closer-to-equilibrium
states again, indeed borders on believing in a
miracle. In the following, an explicit equation
which illustrates this “‘miracle” allows one to
inspect and scrutinize it will be presented — in
the form a discrete reversible system with flaring-
type behaviour.

3. THE STAIRCASE BAKER’S MAP

The basic staircase map is shown in Figure 2. The
four-step version shown in the figure can be
elongated up to an arbitrary number of steps by
intercalating further middle elements (like the
second or the third). The principle behind the
design of the staircase baker’s map can be under-
stood by one’s having a look at the multiple
baker’s map of Figure 3, which was in similar form
first indicated by Hopf [9], in §17 of his chapter
four. The original baker’s map, in turn, which is
still simpler, is shown in Figure 4.

The original baker’s map (to start out from the
simplest case) was invented by Eberhard Hopf in
1937 [9]. A piece of dough is elongated by means
of the rolling-pin operator, to become half as high
and twice as long as before. Then, the knife
operator is used to cut the dough in two equal-
length halves, of which the right-hand portion is
then piled on (put on top of) the left-hand one.
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FIGURE 2 Staircase map.

The procedure is iterated. While Hopf [9] did not
mention the details of the two operators, he made
the revealing remark that this is how fluffy pastry
is made in a bakery. The name ‘“‘baker’s transfor-
mation” was given to the map by John von
Neumann in a talk at Princeton in 1949 (Eberhard
Hopf, personal communication 1977).

The baker’s map is a “mixing transformation”
[9]. It preserves phase-space volume and is ergodic.
The horizontal variable (x) doubles length at every
step in a “modulo” fashion; its behavior is
described by the Bernoulli-shift generator, already
put to good use in the first line of Eq. (1) above.
The vertical second variable (y) halves the height
of the dough with every step. The full equation of
the baker’s transformation thus reads:

Xpi1 = 2x, modl

1 0 if x, <
==Yn+
Yn+1 2yn % if x, >

ST ST

)

o-B BN ="

R

FIGURE 3 A Hopf-like map (cf. text).
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While this description is the most convenient one
to use, we note in passing that Hopf’s own
algebraic description of his map looked rather
different [9].

To understand the map of Figure 2, we work
our way backwards starting from Figure 4. Note
that in Figure 4, the left-hand volume (area 4 +
B), interpreted as “dough”, is first “rolled out”
(with a rolling pin) to reach half its former
height and twice its former length, and then
“cut” in the middle (with a knife) so that the
right-hand half portion (B) comes to lie on the top
of the left-hand portion (A4); then the whole
procedure is repeated [10]. Next, we come to the
four-piece map of Figure 3. If pieces 4 and D
occupied the places of o and d, in the middle
portion of the first iterate of the map (lower part of
Fig. 3), a four-piece version of the original Hopf
baker’s map of Figure 4 would pertain. Thus, the
full multi-baker’s map is nothing else but an

[if 0<x,<1]]

if 1<x,<m:]

ordinary four-piece baker’s map put beside ifself
arbitrarily many times — yet with each pair of
neighboring elements exchanging an equal-size
piece of “dough” at every step.

We now equipped to proceed to the explicit
description of the staircase baker’s map of Figure 2
itself. The only difference to the “Hopf-like” map
of Figure 3 is the reduction in height by a constant
factor, from each submap to the next. One sees
that the width of a rightmost element (for example,
D in Fig. 2) and the width of a leftmost element
(for example, «) differ by a constant factor (two in
the figure), to allow for equal volumes (areas) of
the two exchanged pieces. In consequence, again
an equal amount of “dough” is exchanged
between neighboring elements per iteration step
— just as this was the case in the constant-height
map of Figure 3.

The following explicit equation can be used for
the map of Figure 2 with n steps:

: 50
if 0<x, < 550

e 50 94
if 55 <% < 155

94
if 155 <xn <1

190 (X — kn) + ki — 1 if kn < xn < (kn + 1)
Xna1 = 5% (on = (kn +155)) + ke if (kn + 165) < Xn < (kn + 15p)
W (ot ) e (o ) < (ha 20)
1 (xn — (ki + 755)) +hen + 1 (K + 755) <%0 < (ki + 1)
ifm<x,<(m+1)]
19 (xp —m) +m—1 it m<x,<(m+3%)
5% G = (m+ 1)) +m if (m +{g5) <xn < (m + 15p)

=1

5 (%0 = (m+155)) +m

if (m+75) <xa<(m+1)
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100yn + 100 100

44 6
1007 t 100

. 50
if 0 <x, < 555

i 30 94
if 355 <X < 1g0

100y" + 700 100 if & 100 <xp <1
|88 1
00n F i 3k — oo ae Af Kn < < (Kn o+ 5p)
38 50 1
10027 700 " 2% if (kn +150) <%0 < (kn + 13p)
Ynt+1 =
6 1
100y" + 100 2% (k + 100) <xp < (k + 100)
o5V + 15 - if (kn +1p5) <xn < (ko +1)
88 1 _ 88 |1 . 12
60Yn T 100 3 — 100 7 if m<xa < (m+155)
38 50 1 -
00Yn T 100 " 27 if (m +1g5) < xn < (m+ )
[0y, if (m+22) <x,<(m+1) 3)
B
A B —_—
A

FIGURE 4 The baker’s map of Eberhard Hopf.

Hereby the convention k,, = trunc(x,) = x, —(x,
—modl) has been used, which keeps track of
the momentarily valid (visited) box at the nth
time step. A numerical simulation of Eq. (3)
is presented in Figure 5.

Equation (3) can be transformed into a numer-
ical code that is exact, up to a given arbitrary finite
number of digits, by means of the GNU Multiple
Precision Library (GMP) using the C program-
ming language, for example. As a sample, we show
here the transformation that has to be applied to
the straightforward C programming code of an
explicit short part of Eq. (3), quoted explicitly in

the upper part.:
e original C-code:

if (x< =0.50) {
X =2.0%X;
y=05%xy+0.5;

}
e (C-code using the GMP-library:

if(mpf_cmp(xx,05) < =0) {
mpf_mul(xx, two0, xx);
mpf_mul(du,o5,yy);
mpf_add(yy,du,05);



BAKER’S MAP GENERATES FLARING 113

10

FIGURE 5 Staircase baker’s map, with the vertical height blown up tenfold. Numerical simulation of Eq. (3) using a 16-decimal-
digits accuracy (“double precision’). 100 000 iterations; m =40. Only 10 stairs are shown.

One sees that the names of the variables were
chosen in such a way as to be easily memorizable.

4. NUMERICAL PICTURES: THE TOWER
OF BABEL

Figure 5 above already showed a fourty-piece
version of the map of Figure 2 as described by Eq.
(3). With a resolution of the plot of about 100 000

pixels per abscissa, an almost totally gray “stair-
case-in-concrete’’ resulted.

We now turn the picture around of Figure 5 by
90 degrees so that the right-hand “‘tail” becomes
a vertical “antenna”. We also augment it by a
second copy on the right that has been flipped
around for convenience of inspection to obtain
Figure 6. The two half pictures, combined, give the
impression of a tower with a very thin vertical
needle in the middle as its crowning tip (or
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FIGURE 6 “Tower of Babel” (a turnedup- plus -mirrored version of Fig. 5). 500 000 iterations. Cf. text.

1] 2500

FIGURE 7 Time behavior of the first (x) variable of the staircase baker’s map of Eq. (3). The numerical simulation starts out from
a point in the antenna: Intial conditions: xy=39.9, y,=0.0. 2500 iterations.
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antenna). With the resolution shown in Figure 6,
the “basis” of the tower extends 500-fold to the
right — to about 10 more meters to the right of this
page, say. Thus, the present “tower” (if this word
is an allowed description) is a rather broad and flat
construction indeed.

The width of the antenna — the uppermost
segment — is about one pixel in Figure 6. More
precisely, we used 40 segments in the simulation,
but only 20 of them are filled by any points at the
simulation length presented. The antenna in the
picture is the 20th segment. If the horizontal width
is unity, the width of the antenna is 2~ %°. that is,
10763 (or, if the basis is 10 meters, about 3
micrometers).

40 | 1 1 1

One sees that the smooth “snow-like texture™ of
the “concrete” in Figure 5 has in Figure 6 (with its
lesser resolution and longer simulation time) been
turned into pitch-black. Thus, the property of
volume conservation of the original baker’s map
is visibly heeded by a floating-point numerical
calculation of Eq. (3).

5. FLARES IN THE STAIRCASE
BAKER’S MAP

So far, we looked at both variables of Eq. (3)
simultaneously that is, at the whole phase space.
Next, we have a look at a single variable only,

A T

FIGURE 8 Ten times longer simulation than in Figure 7.
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namely, at the time behavior of the vertical (x)
variable in Figure 6.

Figure 7 shows a short piece of the time-
behavior of the ‘“height” of the state point (x
variable) in the “tower” of Figure 6. The simula-
tion starts out from an initial position in the
antenna. One sees that height is very rapidly lost
and that eventually, fluctuations around the
“equilibrium” near the bottom occur. Qualita-
tively the same picture, but more ‘“smoothly”
(despite persitent peaks) will apply if the staircase
is made smoother (10 percent rather ten 50 percent
height per step).

Next, Figure 8 gives a ten-times longer render-
ing of the same time series. The next following
picture, Figure 9, again gives a ten times longer
simulation. One sees that eventually, at first lower,
and after a while also higher, recapturings of more

a0 1 1 L 1

far-from-the-bottom initial positions occur. One
thereby gets the impression that this example of a
conservative two-dimensional map functions a bit
analogously to the behavior of a multi-particle-gas
(see Discussion).

We finish our presentation of numerical results
with two much longer time series: Figures 10 and
11. While Figure 10 only continues the preceeding
series, Figure 11 is different. The first part again
shows a simulation of Eq. (3), but this time with
the numerical code of Eq. (4) incorporated. Similar
(but shorter in time) simulations were performed
with up to 2'® binary digits (260 000 decimal digits
accuracy). One has the impression that with
sufficient accuracy and simulation length, even-
tually “recurrences” of up to fourty steps altitude
will be achievable. Note that this would require 2*°
iteration steps on average or some 10'* time steps.

250000

FIGURE 9 Ten times longer simulation than in Figure 8. 250 000 iterations.
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[}

10000000

FIGURE 10 Forty times longer simulation than in Figure 9 (10 million iterations).

In the whole present series of pictures, from
Figure 7 to Figure 11, first part (with its increased
accuracy), one sees a field of ‘“‘Hopfenstangen”
(hop poles) as it were, with larger and larger poles
interspersed as the simulation time is increased.

Figure 11, right-hand part, finally, is different. It
represents a direct 100-times longer continuation
of Figure 10. One sees a periodic recurrence.

In other words, if one continues the time series
of Figure 7 on at double percision accuracy one
finally ends up in a periodic regime, whose
recurrence amplitudes are severely cut off. The
same type of result is, by the way, also found
with the potentially high-accuracy algorithm of
Eq. (4) (if the accuracy has comparably low value).
Each time, a different “periodic recurrence” is
found.

6. ON THE HISTORY OF MULTI-BAKER’S
MAPS

The invention of the map, which is today called a
‘multi-baker’s map’, is due to Eberhard Hopf, as
mentioned. He not only introduced a semi-infinite
baker’s map, but also proved mixing for this
dynamical system. Further ergodic properties of
the bi-infinite chain of baker’s maps were proved
by Goldstein and Leibowitz [11] in 1974 in con-
nection with investigations of the Lorentz gas.
Renewed interest was triggered by the work of
Gaspard [12] and the observation of fractal eigen-
states by Hasegawa [13] and Tasaki [14]. Later,
inhomogeneous versions of baker’s maps (where
the cell size varies as a function of the extended
coordinate) were apparently first considered
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a0 L 1 [l L

1]

1000000000

FIGURE 11 A hundred times longer calculation then in Figure 10, in two potions. The first portion occupies the first ten percent of
the picture and contains 100 million timesteps, ten times more than Figure 10. The second, longer portion has the same resulation
and hence is an hundred times longer version of Figure 10. One sees on closer inspection that a periodically recurring pattern has set
in, with a period of about 100 million time steps. The series of pictures beginning with Figure 7 thus ends up in periodicy. The first
portion here, in contrast, was calculated at 8192 binary digits accuracy (corresponding to 2600 decimal digits), using the algorhithm

of Eq. (4). Note the single, much higher peak there.

in [15,16] in connection with disordered chaotic
maps [17], and independently in [18] for expon-
entially decaying cell sizes.

7. DISCUSSION

We have presented a very simple 2D map and
looked at it numerically. The map is “mixing” in
the sense of Hopf [9]—chaotic with an equal den-
sity everywhere. The qualitative behavior is just
as it was expected to be: very rarely, a pre-as-
signed, very thin region is visited (the ““antenna”).
An exponential distribution is thereby gen-
erated as far as height is concerned, P=2"".

More exactly, the cell-to-cell dynamics can be
mimicked as a one-dimensional discrete random
walk with partially reflecting boundary conditions
and otherwise spatially constant transition prob-
abilities. Such models were studied in depth by
Mark Kac [19] (and more recently within the
thermodynamic formalism in [20]). The connec-
tion with random walks, as presented, e.g., in [16],
implies that the first return times for this model
can be calculated exactly with the methods of [19].
This connection also explains why the mean times
of first return increase much slower with the
distance from the origin here, than is the case in
urn models (which were also treated in [19]).
Basically this reflects the differences between
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Brownian motions in triangular respectively para-
bolic potentials.

Thus, statistically speaking, everything appears
trivial in a sense. Nevertheless, the present system
has an interest not only from as statistical point
of view. This is because the “flaring behavior”
interpretation gives one a new ‘‘feel” for the
deterministic Boltzmann-type dynamics that is at
work here.

Recently, a continuous molecular-dynamics
simulation of a Boltzmann gas of repulsive
particles in two dimensions for the first time
allowed the description of a ‘““deterministic en-
tropy”’ based on the momentarily occupied phase-
space volume [21]. This finding triggered the
present investigation into a hypothetically analo-
gous deterministic system of discrete type. The
existence of a connection between the baker’s
transformation on the one hand and continuous
billiard systems of the Sinai type on the other is,
of course, a well-known fact in its own right (see,
e.g. [22]).

It appears to us that the qualitatitve insights first
gained by Boltzmann with his famous H function
and recently confirmed in the above mentioned
molecular-dynamics simulation by means of an
“improved H-function” [21], are in qualitative
agreement with the “flaring-type interpretation’ of
the present system. While many “Poincaré cycles”
cannot usually be inspected in a gas since the
recurrence times are forbidding even for small
particle numbers as is well known, with the present
simple analogue, such cycles can be studied
numerically for the first time in a determinisitc
reversible system. Note that this is what Figures
7—11 really show. Never before to our knowledge
have Poincaré cycles been observed explicitly as a
far-from-equilibrium deterministic phenomenon.

At this point the connection between the present
baker’s map and the random multibaker’s map
[15] deserves to be discussed. We do this best in a
stepwise manner. Note that in the present baker’s
map, nothing prevents us from using two (or
more) antennas instead of one. Flares of different
identities (“‘colors’’) could then be observed in our

system. The idea that a physical system that
approaches equilibrium may still bear the “birth-
marks” of several alternative, far-from-equili-
brium initial states (“flares” of different colours)
is somewhat counterintuitive at first sight and
appears to be new. Nevertheless the number of
peaks can (a) be increased and (b) be ‘“rear-
ranged”. Indeed the whole ordered map can be
rearranged in a disorderly fashion. This limiting
other extremal case was described in [17] as an
example of a system which shows ““localization” in
a transport process. The consequence was an
unexpected “trapping” of the state point in mid-
voyage for exponentially long waiting times. The
transition between the present “idealized” version
(which was found independently [18] as men-
tioned) and the “disorded” alternative appears to
be highly nontrivial: Does there exist a short
bifurcation separating multi-colour Poincaré re-
currences from ““glassy” localization?

At last, we turn to the numerical finding in the
right-hand part of Figure 11. Tom Rogers [23] in
1981 described the existence of numerically gener-
ated periodic cycles in one-dimensional maps as a
function of bin size, that is, as a function of digital
accuracy. A similar phenomenon has now been
found in numerical calculations of the present
reversible discrete chaotic and potentially far-
from-equilibrium systems. While it is not surpris-
ing that manifest periodic cycles are generated as
numerical artifacts, it is somewhat unexpected that
so extremely long recurrences are generated in the
presence of moderate bin size. This numerical
finding is perhaps not very important. Never-
theless it suggests the following conclusion when a
translation back into nature is attempted : Very
far-from-equilibrium initial conditions cannot be
realized spontaneously in reversible systems by
nature unless the accuracy of its calculations is
very high indeed. Thus, if nature belongs into the
ballpark of reversible systems, as Boltzmann
thought, its accuracy of calculation must be
awe-inspiring. This result possibly carries over
to quantum mechanics (Hans Primas, personal
communication).
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To conclude, a simple map of a possibly new
type has been presented and investigated numeri-
cally. The behavior of deterministic, far-from-
equilibrium continuous Hamiltonian systems,
studied previously, could thereby be mimicked
in a qualitative fashion it appears. The behavior
of staircase baker’s maps is a “toy model” for
the study of Poincaré recurrences in reversible
systems.
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