
Research Article
GenisteinExposure InterfereswithPharmacokineticsofCelecoxib
in SD Male Rats by UPLC-MS/MS

Xiang Zheng, Jian Wen, Teng-hui Liu, Qiu-Geng Ou-yang, Jian-ping Cai, and
Hong-yu Zhou

School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China

Correspondence should be addressed to Jian-ping Cai; caijp61@vip.sina.com and Hong-yu Zhou; zhouhy@wmu.edu.cn

Received 7 August 2017; Revised 13 October 2017; Accepted 25 October 2017; Published 4 December 2017

Academic Editor: Tzi Bun Ng

Copyright © 2017 Xiang Zheng et al. 0is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objective. To discuss the e4ects of genistein on the metabolism of celecoxib in vitro and in vivo. Method. In vitro, the e4ects of
genistein on the metabolism of celecoxib were studied using rat and human liver microsomes. In vivo, pharmacokinetics of
celecoxib was evaluated in rats with or without genistein. Fifteen Sprague-Dawley (SD) rats were randomized into three groups:
celecoxib (A group), celecoxib and 50mg/kg genistein (B group), and celecoxib and 100mg/kg genistein (C group). Single dose of
33.3mg/kg celecoxib was orally administered 30min after genistein ig. At 0.5, 1, 2, 3, 4, 6, 8, 10, 12, and 24 h after celecoxib
administration, 300–400 µl blood samples were collected and the concentration of celecoxib was analyzed by ultrahigh-
performance liquid chromatography-tandem mass spectrometry system. Result. Genistein showed notable inhibitory e4ects
on three microsomes. It a4ected pharmacokinetics of celecoxib in vivo experiments. Genistein had dramatically ability to suppress
CYP2C9∗1 and ∗3. After pretreatment with genistein, AUC and Cmax of the C group were higher than B group. CLz/F of C group
was lower than the B group. Conclusion. Genistein inhibits the conversion of celecoxib in vitro and in vivo. So, the dosage of
celecoxib should be adjusted if it was used associated with genistein.

1. Introduction

Celecoxib (Figure 1(a)), a selective cyclooxygenase-2 (COX-2)
inhibitor, has been widely used to treat arthritis for many years
[1, 2]. Recently, it was reported to be useful against breast
cancers as an adjuvant drug [3–6]. Being a second-generation
NSAID, celecoxib is potential to induce adverse e4ects: hepatic
and renal insuIciency [2, 7, 8]. According to DrugBank, the
half-time of celecoxib is 11h in healthy volunteers. Because of
its 11h half-time, the pharmacokinetic progress of celecoxib is
more likely to be a4ected by some food or herbal preparation
[9], which might be self-ingested by patients.

Genistein (Figure 1(b)), a kind of isoJavonoids, is mostly
derived from soy products and plants. In many reports, soy
production shows potential eIcacy to reduce the risk of
osteoporosis, cardiovascular disease, and cancer [10–12].
Most Asians like to eat soy products as a part of daily
necessary [13, 14]. Studies by Burnett et al. and Kopecna-
Zapletalova et al. showed that genistein noncompetitively

inhibited cytochrome P450 (CYP450) 2C9 and 3A4 [15, 16].
So, we deduce that genistein is a possible origin of many drug
interactions by interfering with CYP450.

As is known to all, CYP2C9 andCYP3A4 play an important
role in the drug metabolism. CYP2C9 is involved in 15–20% of
drug conversion [17]. 3A4 is most plentiful in human liver and
participates in 50% drug metabolism [18]. In vivo, celecoxib is
oxidized by CYP2C9 and CYP3A4 to the inactive metabolite
hydroxycelecoxib, and then hydroxycelecoxib is converted to
carboxycelecoxib and celecoxib glucuronide [19]. In this met-
abolic process, CYP2C9 plays a more important role than 3A4.
So, we speculated that mutation in the gene of CYP2C9 may
result in altered pharmacokinetics of celecoxib. As we all know,
CYP2C9 had gene polymorphism (http://www.cypalleles.ki.
se/cyp2c9.htm). CYP2C9∗3 was most frequently present in
the white with 15%, and in Han Chinese, this allele variant is
present in 3% [20].0e global population base was large even if
the proportion of gene mutation was less; this research has
a certain degree of meaning.
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Currently, the interaction between drug and isoJavones
causes a lot of attention. In this study, we want to determine
whether genistein inJuences conversion of celecoxib or not.
We hypothesized that genistein might inhibit CYP450 to in-
Juence the pharmacokinetics of celecoxib in vivo. Based on
this, two experiments were designed: (1) in vitro, the e4ects of
genistein on rat and human livermicrosomes (RLM andHLM)
and CYP2C9 recombinant enzyme were studied and (2) in
vivo, the e4ects of genistein on pharmacokinetics of celecoxib
in male SD rats were detected by ultrahigh-performance liquid
chromatography-mass spectrometry (UPLC-MS/MS) method.

2. Materials and Methods

2.1. Chemicals and Reagents. Celecoxib was purchased from
Perfermker (Shanghai, China); genistein and carbamazepine
(IS) were purchased from J&KChemical (Beijing, China); and
carboxy methylcellulose sodium salt (CMC), acetonitrile
(ACN), formic acid, and other MS-using chemicals were
purchased from Sigma-Aldrich Company (Shanghai, China).
0e primary standard stock solution of celecoxib (1mg/ml)
and IS (500 ng/ml) used in in vitro experiments were prepared
by dissolving inmethanol. Celecoxib and genistein used in the
in vivo experiment were dissolved by 5% CMC.

0e male Sprague-Dawley (SD) rats (240± 30 g) were
purchased from Shanghai Laboratory Animal Center (SLAC).
Before starting experiments, they were raised for three weeks
in laboratory to minimize the inJuence of transportation
process.

2.2. In Vitro Experiments. 1.6 µl genistein was added into
incubation system which contained 3.81 µl celecoxib
(50 µM), 10 µl RLM, HLM, or CYP2C9 allele with b5, 10 µl
NADPH, and 174.59 µl 1M PBS. In the Prst step for de-
termining the inhibitory e4ect of genistein on celecoxib in
HLM and RLM, the experiment was designed to use 100 µM
genistein to inhibit celecoxib. 0e second step was aimed to
get IC50, so the concentration of genistein was designed as
0.01, 0.1, 5, 10, 20, 50, and 100 µM. 0e sample was trans-
ported to a −80°C freezer after 1 h incubation.

2.3. In Vivo Experiments. 15 male SD rats were randomly
divided into 3 groups (n� 5): celecoxib (A group), celecoxib
and single dose of 50mg/kg genistein (B group), celecoxib
and single dose of 100mg/kg genistein (C group). Single
dose of 33.3mg/kg celecoxib was orally administered 30min
after genistein ig. At 0.5, 1, 2, 3, 4, 6, 8, 10, 12, and 24 h after
celecoxib administration, 300–400 µl blood samples were
collected into a heparin-treated tube from the tail vein. Samples
were immediately centrifuged at 13,000 rpm for 10min, and
then the plasma was transferred to another clean 0.5ml tube
and kept at −80°C in a freezer.

2.4. Sample Preparation. 100 µl plasma was added into
a 1.5ml tube with 20 µl IS (500 ng/ml) and 300 µl ACN. After
vortex mixing for 2min, samples were centrifuged at
13,000 rpm for 10min. Supernatant was 1 : 1 diluted into
a clean tube with water. 2 µl mixture was injected into
UPLC-MS/MS for analysis.

2.5. UPLC-MS/MS Method. 0e concentration of celecoxib
was measured by UPLC-MS/MS. 0e UPLC system com-
prised a binary solvent manager (BSM) and a sample
manager with Jow-through needle (SM-FTN) using
UPLC®BEH C18 column (2.1×50mm, 1.7 μm; Waters,
USA). Mass spectrometer comprised Waters XEVO TQD
triple-quadrupole (Waters Corp.) with an electrospray
ionization source. Data acquisition and control of the in-
strument were performed by Masslynx 4.1 software (Waters
Corp., Milford, MA, USA).0emethod selected 0.1% formic
acid (a) and ACN (b) as the mobile phase. 0e proportion of
the mobile phase was 40% (a) : 60% (b) during 0–0.5min.
b was linearly increased to 95% at 1.5min, and b was de-
creased to 60% again at 2.0min. 0e Jow rate was
0.4ml/min. 0e total run time was 2.5min. Celecoxib and IS
were analyzed using the MRM method. 0e mode of MRM
was the positive ion mode. In the MRM method, cone
voltages were set at 60V for celecoxib and 40V for IS. 0e
collision voltage of celecoxib and IS was set at 40V and 20V,
respectively. Ion mass spectrometric analysis of celecoxib
and IS was m/z 381.7–362.2 and 237.1–194.2, respectively.
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Figure 1: Chemical structures of three substances: (a) genisten, (b) celecoxib, and (c) IS.
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Figure 2: UPLC-MS/MS chromatograph of celecoxib and IS. (a) Blank plasma sample. (b) Genistein-treated rat plasma sample at 10 h after
celecoxib.
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2.6. Statistical Analysis. 0e pharmaceutics parameters were
analyzed by DAS 3.0. 0e enzyme model was made by
Graphpad Prism v5.0. Statistical evaluation of data was counted
as mean±SD using one-way ANOVA by Dunnett’s multiple
range test (SPSS 18.0). P< 0.05 was mean signiPcant.

3. Result

3.1. UPLC-MS/MS. Chromatogram of celecoxib and IS is
shown in Figure 2. Figure 2(a) shows the blank plasma
sample. B showed genistein-treated rat plasma sample at 10 h
after celecoxib. Retention time was 1.03min for celecoxib
and 0.45min for IS. 0e calibration curve of concentration
of celecoxib ranged from 2 to 10,000 ng/ml. From this curve,
the calculated correlation coeIcient was 0.99.

3.2. E0ects of Genistein on Celecoxib Conversion Mediated by
CYP2C9, RLM, andHLM In Vitro. Figure 3 shows the e4ects
of 100µM genistein on converting celecoxib by RLM
(3.44mg/ml) and HLM (12.65mg/ml). Genistein showed
notable inhibitory e4ects on human (34%) and rat liver mi-
crosomes (38%) in vitro. Figure 4 shows IC50 of genistein on
celecoxib in 2C9∗1, 2C9∗3, and RLM. Human recombinant
CYP2C9 was gained as a gift from Beijing Hospital and Beijing

Institute of Geriatrics. 0e dose-dependent inhibition of gen-
istein on RLM, CYP2C9∗1, and CYP2C9∗3 was 89.94 µM,
11.52 µM, and 0.78 µM, respectively.

3.3. E0ects ofGenistein onCelecoxibPharmacokinetics inMale
SD Rats. 0e mean plasma concentration-time curves of
celecoxib are presented in Figure 5, and their main pharma-
cokinetic parameters are presented in Table 1. Pretreated by single
dose of genistein, CLz/F signiPcantly decreased in the B and C
groups (2.03± 0.52 and 1.64± 0.20 versus 3.49± 1.37 l/kg·h;
B and C groups versus A group). Correspondingly, AUC(0–t),
AUC(0–∞), and Cmax in the B and C groups increased dose-
dependently (AUC(0–t): 25.68± 7.19 and 30.58± 3.59 versus
10.8± 5.56mg/l·h; AUC(0–∞): 26.10± 7.19 and 30.84± 3.71
versus 10.8± 5.56mg/l·h; Cmax: 3.24± 0.61 and 3.76± 0.26
versus 1.38± 0.77mg/l; B and C groups versus A group).

4. Discussion

According to the literature, celecoxib might cause hepato-
toxicity by inJuencing CYP2C9 [7, 21]. Celecoxib had three
metabolites. CYP2C9 and CYP3A4 were responsible for Prst
steps. In Paulson et al.’s research, they showed that the
metabolism of celecoxib in humans is similar to that in rats
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Figure 3: E4ects of 100 µM genistein on converting celecoxib.
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Figure 4: IC50 of genistein on celecoxib in 2C9∗1, 2C9∗3, and RLM.
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occurring primarily through a single metabolic pathway
with the formation of the methylhydroxy (M3) and car-
boxylic (M2) acid metabolites [22, 23]. 0e pharmacoki-
netic of celecoxib could be inJuenced by drugs or food.
Toxicity of celecoxib was increased when the CYP2C9
inhibitor gePtinib was combined [24]. 0e possibility of
vomiting the celecoxib adjunct with medicine was in-
creased (paracetamol and endone) [25]. 0ese literatures
indicated that the adverse e4ect of celecoxib increased by
drug interaction.

0eJavone structure of genistein (4′,5,7-trihydroxyisoJavone)
suppressed CYP2C9 by connecting with the active site of
2C9 [26]. Genistein had inhibition in vitro and in vivo
was veriPed by many literatures. Given 25 µM genistein,
CYP2C9 activity was relatively small (13%) [15]. Genistein
could decrease the ability of Jurbiprofen being converted
to 4′-hydroxylation in vitro [26]. Metabolism of chole-
calciferol was decreased by genistein in women [15]. In
further research, it was found that genistein had noncompetitive
inhibition on CYP2C9 and CYP3A4 [16]. Knowledge on the
contribution of genistein with celecoxib in metabolic progress
is urgent, and it may lead to dose adjustment aimed at ef-
fective therapeutic depth.

Asians have a habit of taking soy products as a daily
necessary. Messina et al. summed that the daily per capita
intake of soy protein of China, Japan, and Democratic People’s
Republic of Korea was 2.7 g, 8.7 g, and 9.6 g, which was
equivalent to the daily intake of 270, 870, and 960mg/kg of rats
[27]. In contemporary times, the incidence of arthritis was
prevalent. Celecoxib, an e4ective therapeutic medicine, was
more and more used as a new channel for the treatment of
cancer and depression [28]. Opportunities for combining
genistein and celecoxib have also increased. Based on the in
vitro experiment, genistein inhibited the metabolic progress of
celecoxib on RLM and HLM. From previous research, the
IC50 on CYP2C9∗1 was ∼30µM [16]. It was di4erent with
∼11µM. 0is di4erence was due to inconsistent enzyme and
substrate selection. As we know, celecoxib had three metab-
olites, and CYP2C9 and CYP3A4 were responsible for the Prst
step. 0en, hydroxycelecoxib was metabolized by other en-
zymes. 0e research supposed that genistein inhibited the
suppression of celecoxib. Moreover, CYP2C9∗3 (1075A>C)
decreased the enzymatic activity to warfarin [29]. Sandberg
et al. and Tang et al. founded that the Vmax/Km ratio for
hydroxycelecoxib was decreased by 34% (CYP2C9∗2) and
90% (CYP2C9∗3) in vitro. 0e AUC of celecoxib in
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Figure 5: 0e mean plasma concentration-time curves of celecoxib.

Table 1: Main pharmacokinetics of celecoxib in three groups (n� 5).

Parameters A B C
Cmax (μg/l) 1380.55± 765.91 3240.00± 610.52∗∗∗ 3756.71± 264.99∗∗∗

t1/2 (h) 4.34± 2.62 3.77± 0.76 2.93± 0.75
Tmax (h) 2.60± 0.89 3.40± 0.89 3.40± 0.89
CLz/F (l/kg·h) 3.49± 1.37 2.03± 0.52∗ 1.64± 0.20∗∗

AUC(0–t) (μg/l·h) 10,821.66± 5555.93 25,675.06± 7187.40∗∗ 30,576.35± 3593.70∗∗∗

AUC(0–∞) (μg/l·h) 11,455.84± 6449.11 26,103.55± 7186.70∗∗ 30,835.89± 3714.18∗∗∗

MRT(0–t) (h) 6.70± 0.52 6.92± 0.60 6.46± 0.32
MRT(0–∞) (h) 7.77± 1.70 7.32± 0.68 6.64± 0.42
Compared to group A (ANOVA), ∗P< 0.05; ∗∗P< 0.01; ∗∗∗P< 0.001.
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CYP2C9∗1/∗3 and CYP2C9∗3/∗3 subjects was increased
[30, 31]. 0us, many researches showed that gene poly-
morphism inJuenced the conversion of celecoxib. In the case
of lower enzymatic activity, weak metabolism may exhibit
toxicity at normal doses in combination of genistein and
celecoxib. In our experiment of IC50 on 100 µM genistein-
involved, CYP2C9∗3 was the most powerful suppression by
the inhibitor (15%). According to CYP2C9 allele nomencla-
ture, CYP2C9∗3 was changed in amino acid sequence that
resulted Ile359 to Leu in substrate recognition site 5 [32].
CYP2C9∗3-induced allosteric protein showed defective
ability in many clinical drugs including celecoxib [33, 34].0e
individual who carried on that genemutation would paymore
attention on celecoxib administration with genistein.0e data
in Table 1 imply that the inhibitory e4ect of genistein was
obvious to increasing dosage in vivo. When paclitaxel
combinated with genistein, CLz/F decreased following the
increase in AUC and Cmax. 0e pharmacokinetics changes
of paclitaxel were consistent with our experiment [35]. CLz/F
of celecoxib with 100mg/kg genistein was signiPcantly lower
than 50mg/kg with dose-dependent increasing Cmax. Cele-
coxib was accumulated too much in body because of
genistein-inJuenced clearance of celecoxib. And suppression
of genistein was dose dependent.

When normal metabolic process is suppressed, progress
of pharmacokinetics will be inJuenced and homeostatic
balance will be thrown o4. In conclusion, genistein was an
inhibitor of celecoxib both in vivo and in vitro. Genistein
could inhibit the activity of liver microsomes, and celecoxib
plasma levels were increased by decrement onmetabolism of
celecoxib with genistein. It is important to adjust the dosage
of celecoxib to mitigate the adverse reaction which was
induced by drug interaction. In the case of lower enzymatic
activity, poor metabolic process may exhibit toxicity of
celecoxib at normal doses when genistein is used in com-
bination with celecoxib.
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