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Alparslan University, Muş, Turkey
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Abstract
In this paper, we introduce the concepts of pointwise and uniform statistical
convergence of order α for sequences of real-valued functions. Furthermore, we give
the concept of an α-statistically Cauchy sequence for sequences of real-valued
functions and prove that it is equivalent to pointwise statistical convergence of order
α for sequences of real-valued functions. Also, some relations between
Sα (f )-statistical convergence and strong wβ

p (f )-summability are given.
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1 Introduction
The idea of statistical convergence was given by Zygmund [] in the first edition of his
monograph published in Warsaw in . The concept of statistical convergence was in-
troduced by Steinhaus [] and Fast [] and later reintroduced by Schoenberg [] indepen-
dently. Over the years and under different names, statistical convergence has been dis-
cussed in the theory of Fourier analysis, ergodic theory, number theory, measure theory,
trigonometric series, turnpike theory and Banach spaces. Later on it was further investi-
gated from the sequence space point of view and linked with summability theory by Başar
[], Connor [], Et et al. [–], Fridy [], Güngör et al. [], Işık [, ], Kolk [], Mo-
hiuddine et al. [–], Miller and Orhan [], Mursaleen [], Rath and Tripathy [],
Salat [], Savaş [] and many others. In recent years, generalizations of statistical con-
vergence have appeared in the study of strong integral summability and the structure of
ideals of bounded continuous functions on locally compact spaces. Statistical convergence
and its generalizations are also connectedwith subsets of the Stone-Čech compactification
of the natural numbers. Moreover, statistical convergence is closely related to the concept
of convergence in probability.
The definitions of pointwise and uniform statistical convergence of sequences of real-

valued functions were given by Gökhan et al. [, ] and independently by Duman and
Orhan []. In the present paper, we introduce and examine the concepts of pointwise
and uniform statistical convergence of order α for sequences of real-valued functions.
In Section  we give a brief overview of statistical convergence of order α and strong p-
Cesàro summability. In Section  we give the concepts of pointwise and uniform statistical
convergence of order α, and the concept α-statistically Cauchy sequence for sequences of
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real-valued functions and prove that it is equivalent to pointwise statistical convergence of
order α for sequences of real-valued functions. We also establish some inclusion relations
between wβ

p (f ) and Sα(f ) and between Sα(f ) and S(f ).

2 Definition and preliminaries
The definitions of statistical convergence and strong p-Cesàro convergence of a sequence
of real numbers were introduced in the literature independently of one another and have
followed different lines of development since their first appearance. It turns out, however,
that the two definitions can be simply related to one another in general and are equiva-
lent for bounded sequences. The idea of statistical convergence depends on the density of
subsets of the set N of natural numbers. The density of a subset E of N is defined by

δ(E) = lim
n→∞


n

n∑
k=

χE(k) provided the limit exists,

where χE is the characteristic function of E. It is clear that any finite subset of N has zero
natural density and δ(Ec) =  – δ(E).
The α-density of a subset E of N was defined by Çolak []. Let α be a real number such

that  < α ≤ . The α-density of a subset E of N is defined by

δα(E) = lim
n


nα

∣∣{k ≤ n : k ∈ E}∣∣ provided the limit exists,

where |{k ≤ n : k ∈ E}| denotes the number of elements of E not exceeding n.
If x = (xk) is a sequence such that xk satisfies property P(k) for almost all k except a set

of α-density zero, then we say that xk satisfies property P(k) for ‘almost all k according to
α’ and we abbreviate this by ‘a.a.k (α)’.
It is clear that any finite subset of N has zero α density and δα(Ec) =  – δα(E) does not

hold for  < α <  in general, the equality holds only if α = . Note that the α-density of any
set reduces to the natural density of the set in case α = .
The order of statistical convergence of a sequence of numbers was given by Gadjiev

and Orhan in [], and after then statistical convergence of order α and strong p-Cesàro
summability of order α were studied by Çolak [].
The statistical convergence of order α is defined as follows. Let  < α ≤  be given. The

sequence (xk) is said to be statistically convergent of order α if there is a real number �

such that

lim
n→∞


nα

∣∣{k ≤ n : |xk – �| ≥ ε
}∣∣ = ,

for every ε > , in which case we say that x is statistically convergent of order α to �. In
this case, we write Sα – limxk = �. The set of all statistically convergent sequences of order
α will be denoted by Sα . We write Sα

 to denote the set of all statistically null sequences of
order α. It is clear that Sα

 ⊂ Sα for each  < α ≤ . The statistical convergence of order α

is same with the statistical convergence for α = .
A sequence x = (xk) is said to be strongly Cesàro summable to a number � if limn


n ×∑n

k= |xk – �| = . The set of strongly Cesàro summable sequences is denoted by [C, ] and
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defined as

[C, ] =

{
x = (xk) : limn


n

n∑
k=

|xk – �| =  for some �

}
.

There is a natural relationship between statistical convergence and strong p-Cesàro
summability.

3 Main result
In this section we give the main results of this article. We give relations between the sta-
tistical convergence of order α and the statistical convergence of order β for sequences
of functions, the relations between the strong p-Cesàro summability of order α and the
strong p-Cesàro summability of order β and the relations between the strong p-Cesàro
summability of order α and the statistical convergence of order β for sequences of real-
valued functions, where α ≤ β .

Definition . Let  < α ≤  be given. A sequence of functions {fk} is said to be pointwise
statistically convergent of order α (or pointwise α-statistically convergent sequence) to
the function f on a set A if, for every ε > ,

lim
n


nα

∣∣{k ≤ n :
∣∣fk(x) – f (x)

∣∣ ≥ ε for every x ∈ A
}∣∣ = 

i.e., for every x ∈ A,

∣∣fk(x) – f (x)
∣∣ < ε a.a.k (α). ()

In this case, we write Sα – lim fk(x) = f (x) on A. Sα – lim fk(x) = f (x) means that for every
δ >  and  < α ≤ , there is an integer N such that


nα

∣∣{k ≤ n :
∣∣fk(x) – f (x)

∣∣ ≥ ε for every x ∈ A
}∣∣ < δ

for all n >N (=N(ε, δ,x)) and for each ε > . The set of all pointwise statistically convergent
sequences of functions orderαwill be denoted by Sα(f ). Forα = ,wewill write S(f ) instead
of Sα(f ) and in the special case f = , we will write Sα

 (f ) instead of Sα(f ).
The statistical convergence of order α for a sequence of functions is well defined for

 < α ≤ . But it is not well defined for α > . For this, let {fk} be defined as follows:

fk(x) =

⎧⎨
⎩, k = n,

xk , k �= n,
n = , , , . . . ,x ∈

[
,




]
.

Then both

lim
n→∞


nα

∣∣{k ≤ n :
∣∣fk(x) – 

∣∣ ≥ ε for every x ∈ A
}∣∣ = lim

n→∞
n
nα

= 

and

lim
n→∞


nα

∣∣{k ≤ n :
∣∣fk(x) – 

∣∣ ≥ ε for every x ∈ A
}∣∣ = lim

n→∞
n
nα

= 
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for α > , so that {fk} statistically converges of order α both to  and , i.e., Sα – lim fk(x) = 
and Sα – lim fk(x) = , which is impossible.

Theorem . Let  < α ≤  and {fk}, {gk} be sequences of real-valued functions defined in
a set A.

(i) If Sα – lim fk(x) = f (x) and c ∈ R, then Sα – lim cfk(x) = cf (x).
(ii) If Sα – lim fk(x) = f (x) and Sα – lim gk(x) = g(x), then

Sα – lim(fk(x) + gk(x)) = f (x) + g(x).

Proof (i) The proof is clear in case c = . Suppose that c �=  and Sα – lim fk(x) = f (x), then
there exists ε >  such that

∣∣fk(x) – f (x)
∣∣ < ε

|c| a.a.k (α),

and hence

∣∣cfk(x) – cf (x)
∣∣ < ε a.a.k (α).

This implies that Sα – lim cfk(x) = cf (x).
The proof of (ii) follows from the following inequalities:


nα

∣∣{k ≤ n :
∣∣fk(x) + gk(x) –

(
f (x) + g(x)

)∣∣ ≥ ε for every x ∈ A
}∣∣

≤ 
nα

∣∣∣∣
{
k ≤ n :

∣∣fk(x) – f (x)
∣∣ ≥ ε


for every x ∈ A

}∣∣∣∣
+


nα

∣∣∣∣
{
k ≤ n :

∣∣gk(x) – g(x)
∣∣ ≥ ε


for every x ∈ A

}∣∣∣∣.
It is easy to see that every convergent sequence of functions is statistically convergent

of order α, that is, c(f ) ⊂ Sα(f ) for each  < α ≤ . But the converse of this does not hold.
For example, the sequence {fk} defined by

fk(x) =

⎧⎨
⎩, k = n,

kx
+kx , k �= n

is statistically convergent of order α with Sα – lim fk(x) =  for α > 
 , but it is not conver-

gent. �

Definition . Let α be any real number such that  < α ≤  and let {fk} be a sequence of
functions on a set A. The sequence {fk} is a statistically Cauchy sequence of order α (or
α-statistically Cauchy sequence) provided that for every ε > , there exists a number N
(=N(ε,x)) such that

∣∣fk(x) – fN (x)
∣∣ < ε a.a.k (α),

i.e.,

lim
n


nα

∣∣{k ≤ n :
∣∣fk(x) – fN (x)

∣∣ ≥ ε for every x ∈ A
}∣∣ = .
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Theorem . Let {fk} be a sequence of functions defined on a set A. The following state-
ments are equivalent:

(i) {fk} is a pointwise α-statistically convergent sequence on A;
(ii) {fk} is a α-statistically Cauchy sequence on A;
(iii) {fk} is a sequence of functions for which there is a pointwise convergent sequence of

order α, a sequence of functions {gk} such that fk(x) = gk(x) a.a.k (α) for every x ∈ A.

Proof (i) ⇒ (ii) Suppose that Sα – lim fk(x) = f (x) on A and let ε > . Then |fk(x) – f (x)| < ε


a.a.k (α) and if N is chosen so that |fN (x) – f (x)| < ε
 , then we have

∣∣fk(x) – fN (x)
∣∣ ≤ ∣∣fk(x) – f (x)

∣∣ + ∣∣fN (x) – f (x)
∣∣ < ε


+

ε


a.a.k (α)

for every x ∈ A. Hence {fk} is an α-statistically Cauchy sequence.
Next, assume (ii) is true and choose N so that the band I = [fN (x) – , fN (x) + ] contains

fk(x) a.a.k (α) for every x ∈ A. Also, apply (ii) to chooseM so that I ′ = [fM(x) – 
 , fM(x) + 

 ]
contains fk(x) a.a.k (α) for every x ∈ A. We assert that

I = I ∩ I ′ contains fk(x) a.a.k (α) for every x ∈ A;

for

{
k ≤ n : fk(x) /∈ I ∩ I ′ for every x ∈ A

}
=

{
k ≤ n : fk(x) /∈ I for every x ∈ A

} ∪ {
k ≤ n : fk(x) /∈ I ′ for every x ∈ A

}
so

lim
n→∞


nα

∣∣{k ≤ n : fk(x) /∈ I ∩ I ′ for every x ∈ A
}∣∣

≤ lim
n→∞


nα

∣∣{k ≤ n : fk(x) /∈ I for every x ∈ A
}∣∣

+ lim
n→∞


nα

∣∣{k ≤ n : fk(x) /∈ I ′ for every x ∈ A
}∣∣ = .

Therefore, I is a closed band of height less than or equal to  that contains fk(x) a.a.k (α)
for every x ∈ A. Now we proceed by choosing N() so that I ′′ = [fN()(x) – 

 , fN()(x) + 
 ]

contains fk(x) a.a.k (α), and by the preceding argument, I = I ∩ I ′′ contains fk(x) a.a.k
(α) for every x ∈ A and I has height less than or equal to 

 . Continuing inductively, we
construct a sequence {Im}∞m= of closed band such that for each m, Im ⊇ Im+, the height
of Im is not greater than –mand fk(x) ∈ Im a.a.k (α) for every x ∈ A. Thus there exists
a function f (x), defined on A, such that {f (x)} is equal to

⋂∞
m= Im. Using the fact that

fk(x) ∈ Im a.a.k (α) for every x ∈ A, we choose an increasing positive integer sequence
{Tm}∞m= such that


nα

∣∣{k ≤ n : fk(x) /∈ Im for every x ∈ A
}∣∣ < 

m
if n > Tm. ()

Now define a subsequence (zk(x)) of (fk(x)) consisting of all terms fk(x) such that k > T

and if Tm < k ≤ Tm+ then fk(x) /∈ Im for every x ∈ A. Next, define the sequence of functions

http://www.fixedpointtheoryandapplications.com/content/2013/1/33
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(gk(x)) by

gk(x) =

⎧⎨
⎩f (x) if fk(x) is a term of zk(x),

fk(x) otherwise

for every x ∈ A. Then limk→∞ gk(x) = f (x) on A; for if ε > 
m >  and k > Tm, then either

fk(x) is a term of (zk(x)) or gk(x) = fk(x) ∈ Im on A and |gk(x) – fk(x)| ≤ height of Im ≤ –m

for every x ∈ A. We also assert that gk(x) = fk(x) a.a.k (α) for every x ∈ A. To verify this, we
observe that if Tm < n≤ Tm+, then

{
k ≤ n : fk(x) �= gk(x) for every x ∈ A

}
⊆ {

k ≤ n : fk(x) /∈ Im for every x ∈ A
}
.

So, by ()


nα

∣∣{k ≤ n : fk(x) �= gk(x) for every x ∈ A
}∣∣

≤ 
nα

∣∣{k ≤ n : fk(x) /∈ Im for every x ∈ A
}∣∣ < 

m
.

Hence, the limit is  as n → ∞ and fk(x) = gk(x) a.a.k (α) for every x ∈ A. Therefore,
(ii) implies (iii).
Finally, assume that (iii) holds, say fk(x) = gk(x) a.a.k (α) for every x ∈ A and

limk→∞ gk(x) = f (x) on A. Let ε > . Then for each n,

{
k ≤ n :

∣∣fk(x) – f (x)
∣∣ ≥ ε for every x ∈ A

}
⊆ {

k ≤ n : fk(x) �= gk(x) for every x ∈ A
}

∪{
k ≤ n :

∣∣gk(x) – f (x)
∣∣ ≥ ε for every x ∈ A

}

since limk→∞ gk(x) = f (x) on A, the latter set contains a fixed number of integers, say l =
l(ε,x). Therefore,

lim
n→∞


nα

∣∣{k ≤ n :
∣∣fk(x) – f (x)

∣∣ ≥ ε for every x ∈ A
}∣∣

≤ lim
n→∞


nα

∣∣{k ≤ n : fk(x) �= gk(x) for every x ∈ A
}∣∣ + lim

n→∞
l
nα

= 

because fk(x) = gk(x) a.a.k (α) for every x ∈ A. Hence |fk(x) – f (x)| < ε a.a.k (α) for every
x ∈ A, so (i) holds and the proof is complete. �

Corollary . If {fk} is a sequence of functions such that Sα – lim fk(x) = f (x) on A, then {fk}
has a subsequence {fk(n)(x)} such that limn→∞ fk(n)(x) = f (x) on A.

Theorem . Let  < α ≤ β ≤ . Then Sα(f ) ⊆ Sβ (f ) and the inclusion is strict for some α

and β such that α < β .

http://www.fixedpointtheoryandapplications.com/content/2013/1/33
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Proof If  < α ≤ β ≤ , then


nβ

∣∣{k ≤ n :
∣∣fk(x) – f (x)

∣∣ ≥ ε for every x ∈ A
}∣∣

≤ 
nα

∣∣{k ≤ n :
∣∣fk(x) – f (x)

∣∣ ≥ ε for every x ∈ A
}∣∣

for every ε >  and this gives that Sα(f ) ⊆ Sβ (f ). To show that the inclusion is strict, con-
sider the sequence {fk} defined by

fk(x) =

⎧⎨
⎩, k = n,

kx
+kx , k �= n,

n = , , , . . . ,x ∈ [, ].

Hence we can write for 
 < α ≤ 


nα

∣∣{k ≤ n :
∣∣fk(x) – 

∣∣ ≥ ε for every x ∈ [, ]
}∣∣

=

nα

∣∣{k ≤ n :
∣∣fk(x)∣∣ ≥ ε for every x ∈ [, ]

}∣∣ ≤
√
n

nα
→ .

Then Sβ – lim fk(x) = , i.e., x ∈ Sβ (f ) for 
 < β ≤ , but x /∈ Sα(f ) for  < α ≤ 

 . �

If we take β =  in Theorem ., then we obtain the following result.

Corollary . If a sequence of functions {fk} is statistically convergent of order α, to the
function f for some  < α ≤ , then it is statistically convergent to the function f .

Definition . Let α be any real number such that  < α ≤  and let p be a positive real
number. A sequence of functions {fk} is said to be strongly p-Cesàro summable of order α

if there is a function f such that

lim
n→∞


nα

n∑
k=

∣∣fk(x) – f (x)
∣∣p = .

In this case, we write wα
p – lim fk(x) = f (x) on A. The strong p-Cesàro summability of order

α reduces to the strong p-Cesàro summability for α = . The set of all strongly p-Cesàro
summable sequences of functions of order α will be denoted by wα

p (f ). We write wα
o,p(f ) in

case f (x) = .

Theorem . Let  < α ≤ β ≤  and p be a positive real number. Then wα
p (f )⊆ wβ

p (f ) and
the inclusion is strict for some α and β such that α < β .

Proof Let the sequence {fk} be strongly p-Cesàro summable of order α. Then, given α and
β such that  < α ≤ β ≤  and a positive real number p, we may write


nβ

n∑
k=

∣∣fk(x) – f (x)
∣∣p ≤ 

nα

n∑
k=

∣∣fk(x) – f (x)
∣∣p,

and this gives that wα
p (f )⊆ wβ

p (f ).

http://www.fixedpointtheoryandapplications.com/content/2013/1/33
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To show that the inclusion is strict, consider the sequence {fk} defined by

fk(x) =

⎧⎨
⎩


+kx , k = n,

, k �= n,
x ∈

[
,


k

]
.

Then


nβ

n∑
k=

∣∣fk(x) – 
∣∣p ≤

√
n

nβ
=


nβ– 



since /(nβ– 
 ) →  as n → ∞, then wβ

p – lim fk(x) = , i.e., the sequence {fk} is strongly
p-Cesàro summable of order α for 

 < β ≤ , but since

√
n

nα
≤ 

nα

n∑
k=

∣∣fk(x) – 
∣∣p

and
√
n/nα → ∞, n→ ∞, the sequence {fk} is not strongly p-Cesàro summable of order

α for  < α < 
 . �

Corollary . Let  < α ≤ β ≤  and p be a positive real number. Then
(i) if α = β , then wα

p (f ) = wβ
p (f );

(ii) wα
p (f ) ⊆ wp(f ) for each α ∈ (, ] and  < p < ∞.

Theorem . Let  < α ≤  and  < p < q <∞. Then wα
q (f ) ⊆ wα

p (f ).

Proof Omitted. �

Theorem . Let α and β be fixed real numbers such that  < α ≤ β ≤  and  < p < ∞.
If a sequence of functions {fk} is strongly p-Cesàro summable of order α to the function f ,
then it is statistically convergent of order β to the function f .

Proof For any sequence of functions {fk} defined on A, we can write

n∑
k=

∣∣fk(x) – f (x)
∣∣p ≥ ∣∣{k ≤ n :

∣∣fk(x) – f (x)
∣∣ ≥ ε for every x ∈ A

}∣∣ · εp

and so that


nα

n∑
k=

∣∣fk(x) – f (x)
∣∣p ≥ 

nα

∣∣{k ≤ n :
∣∣fk(x) – f (x)

∣∣ ≥ ε for every x ∈ A
}∣∣ · εp

≥ 
nβ

∣∣{k ≤ n :
∣∣fk(x) – f (x)

∣∣ ≥ ε for every x ∈ A
}∣∣ · εp. �

Corollary . Let α be a fixed real number such that  < α ≤  and  < p < ∞. If a se-
quence of functions {fk} is strongly p-Cesàro summable of order α to the function f , then it
is statistically convergent of order α to the function f .

http://www.fixedpointtheoryandapplications.com/content/2013/1/33
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Definition . Let α be any real number such that  < α ≤ . A sequence of functions
{fk} is said to be uniformly statistically convergent of order α or uniformly ( α-statistically
convergent sequence) to the function f on a set A if, for every ε > ,

lim
n→∞


nα

∣∣{k ≤ n :
∣∣fk(x) – f (x)

∣∣ ≥ ε for all x ∈ A
}∣∣ = ,

i.e., for all x ∈ A,

∣∣fk(x) – f (x)
∣∣ < ε a.a.k (α). ()

In this case, we write

Sα – lim fk(x) = f (x) uniformly on A or Sα
u – lim fk(x) = f (x) on A.

The set of all uniformly α-statistically convergent sequences will be denoted by Sα
u (f ).

Theorem . Let f and fk , for all k ∈ N, be continuous functions on A = [a,b] ⊂ R and
 < α ≤ . Then Sα – lim fk(x) = f (x) uniformly on A if and only if Sα – lim ck = , where
ck =maxx∈A |fk(x) – f (x)|.

Proof Suppose that Sα – lim fk(x) = f (x) uniformly on A. Since |fk(x) – f (x)| is continuous
on A for each k ∈ N, it has absolute maximum value at some point xk ∈ A, i.e., there exist
x,x, . . . ∈ A such that c = |f(x) – f (x)|, c = |f(x) – f (x)|, . . . , etc. Thus we may write
ck = |fk(xk) – f (xk)|, k = , , . . . . From the definition of uniform α-statistical convergence,
we may write, for every ε > ,

∣∣fk(xk) – f (xk)
∣∣ < ε a.a.k (α).

Hence, Sα – lim ck = .
The necessity is trivial. �

It follows from () that if lim fk(x) = f (x) uniformly on A, then Sα – lim fk(x) = f (x) uni-
formly on A. But the converse is not true, for this consider the sequence defined by

fk(x) =

⎧⎨
⎩, k = n,

k
k+kx otherwise,

k = , , , . . . ,x ∈ [, ].

Then if x ∈ [, ] and α ∈ [  , ], then {fk} is uniformly α-statistically convergent to f (x) =
 on [, ] since Sα – lim ck = , where

ck = max
x∈[,]

∣∣fk(x) – 
∣∣ =

⎧⎨
⎩, k = n,


k otherwise,

but (fk(x)) is not uniformly convergent on [, ] since limk→∞ ck does not exist.
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Corollary .
(i) lim fk(x) = f (x) uniformly on A⇒ lim fk(x) = f (x) on A⇒ Sα – lim fk(x) = f (x)

pointwise on A.
(ii) Sα – lim fk(x) = f (x) uniformly on A ⇒ Sα – lim fk(x) = f (x) pointwise on A.
(iii) If  < α ≤ β ≤ , then Sα

u (f ) ⊆ Sβ
u (f ).

Definition . Let α be any real number such that  < α ≤  and let {fk} be a sequence
of functions on a set A. The sequence {fk} is a uniformly statistically Cauchy sequence of
order α (or uniformly α-statistically Cauchy sequence) provided that for every ε > , there
exists a number N (=N(ε)) such that

∣∣fk(x) – fN (x)
∣∣ < ε a.a.k (α) for all x ∈ A,

i.e.,

lim
n→∞


nα

∣∣{k ≤ n :
∣∣fk(x) – fN (x)

∣∣ ≥ ε for all x ∈ A
}∣∣ = .

The proofs of the following two theorems are similar to those of Theorem . and The-
orem ., therefore we give them without proof.

Theorem . Let  < α ≤  and {fk}, {gk} be sequences of real-valued functions defined
on a set A.

(i) If Sα
u – lim fk(x) = f (x) and c ∈ R, then Sα

u – lim cfk(x) = cf (x).
(ii) If Sα

u – lim fk(x) = f (x) and Sα
u – lim gk(x) = g(x), then

Sα
u – lim(fk(x) + gk(x)) = f (x) + g(x).

Theorem . Let α be any real number such that  < α ≤  and let {fk} be a sequence of
functions on a set A. The following statements are equivalent:

(i) {fk} is a uniformly α-statistically convergent sequence on A;
(ii) {fk} is a uniformly α-statistically Cauchy sequence on A;
(iii) {fk} is a sequence of functions for which there is a uniformly convergent sequence of

order α, a sequence of functions {gk} such that fk(x) = gk(x) a.a.k (α) for all x ∈ A.
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