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Abstract
The main purpose of this paper is to introduce a new class of Jungck-type contraction
and to present some common fixed point theorems for this mapping. Several
examples are given to show that our result is a proper extension of many known
results.
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1 Introduction
Probabilistic metric space has been introduced and studied in  byMenger in USA [],
and since then the theory of probabilistic metric spaces has developed in many directions
[–]. The idea of Menger was to use distribution functions instead of nonnegative real
numbers as values of the metric. The notion of a probabilistic metric space corresponds
to the situation when we do not know exactly the distance between two points, we know
only probabilities of possible values of this distance. Such a probabilistic generalization of
metric spaces appears to be well adapted for the investigation of physiological thresholds
and physical quantities, particularly in connection with both string and E-infinity which
were introduced and studied by a well-known scientific hero El Naschie [–].
It is observed by many authors that the contraction condition in a metric space may

be exactly translated into a probabilistic metric space endowed with min norms. Sehgal
and Bharucha-Reid [] obtained a generalization of the Banach contraction principle on
a complete Menger space, which is a milestone in developing fixed point theorems in a
Menger space.
Jungck’s fixed point theorem [] has many applications in nonlinear analysis. This the-

orem is extended by several authors; see [–] and the references therein.
In this paper, we introduce a new class of Jungck-type contraction and present some

common fixed point theorems for this mapping. Several examples are given to show that
our result is a proper extension of many known results.

2 Preliminaries
Throughout this paper we denote by N the set of all positive integers, by Q the set of all
rational numbers, by Z+ the set of all nonnegative integers, by R the set of all real numbers
and by R+ the set of all nonnegative real numbers. We shall recall some definitions and
lemmas related to a Menger space.
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Definition . A mapping F : R → R+ is called a distribution if it is nondecreasing left
continuous with inf{F(t) : t ∈ R} =  and sup{F(t) : t ∈ R} = . We shall denote by L the set
of all distribution functions. The specific distribution function H : R → R+ is defined by

H(t) =

⎧⎨
⎩, t ≤ ,

, t > .

Definition . ([]) Probabilistic metric space (PM-space) is an ordered pair (X,F),
where X is an abstract set of elements and F : X×X → L is defined by (p,q) → Fp,q, where
{Fp,q : p,q ∈ X} ⊆ L, where the functions Fp,q satisfy the following:
(a) Fp,q(x) =  for all x >  if and only if p = q;
(b) Fp,q() = ;
(c) Fp,q = Fq,p;
(d) Fp,q(x) =  and Fq,r(y) = , then Fp,r(x + y) = .

Definition . A mapping t : [, ]× [, ] → [, ] is called a t-norm if
(e) t(, ) =  and t(a, ) = a for all a ∈ [, ];
(f ) t(a,b) = t(b,a) for all a,b ∈ [, ];
(g) t(a,b)≤ t(c,d) for all a,b, c,d ∈ [, ] with a≤ c and b ≤ d;
(h) t(t(a,b), c) = t(a, t(b, c)) for all a,b, c ∈ [, ].

Definition . A Menger space is a triplet (X,F , t), where (X,F) is a PM-space and t is a
t-norm such that for all p,q, r ∈ X and all x, y≥ ,

Fp,r(x + y) ≥ t
(
Fp,q(x),Fq,r(y)

)
.

Definition . ([]) Let (X,F , t) be a Menger space and f : X → X.
() A sequence {pn} in X is said to converge to a point p in X (written as pn → p) if for

every ε >  and λ > , there exists a positive integerM(ε,λ) such that Fpn ,p(ε) >  – λ

for all n≥ M(ε,λ).
() A sequence {pn} in X is said to be Cauchy if for each ε >  and λ > , there is a

positive integerM(ε,λ) such that Fpn ,pm (ε) ≥  – λ for all n,m ∈N with
n,m ≥ M(ε,λ).

() A Menger space (X,F , t) is said to be complete if every Cauchy sequence in X
converges to a point of it.

() f is said to be continuous at a point p in X if for every sequence {pn} in X , which
converges to p, the sequence {f (pn)} in X converges to f (p).

() f is said to be continuous on X if f is continuous at every point in X .

Definition . ([]) A t-norm t is said to be ofH-type if a family of functions {tn(a)}∞n= is
equicontinuous at a = , that is, for any ε ∈ (, ), there exists δ ∈ (, ) such that a >  – δ

and n≥  imply tn(a) > –ε. The t-norm t =min is a trivial example of a t-norm ofH-type,
but there are t-norms of H-type with t-norm �=min (see, e.g., Hadzic []).

From Definition .-Definition ., we can prove easily the following lemmas.

Lemma . ([]) If (X,d) is a metric, then the metric induces a mapping X × X → L,
defined by Fp,q(x) = H(x – d(p,q)), p,q ∈ X and x ∈ R. Further, if the t-norm t : [, ] ×
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[, ] → [, ] is defined by t(a,b) = min{a,b} for all a,b ∈ [, ], then (X,F , t) is a Menger
space. It is complete if (X,d) is complete.

Lemma. In aMenger space (X,F , t), if t(x,x)≥ x for all x ∈ [, ], then t(a,b) =min{a,b}
for all a,b ∈ [, ].

3 Jungck-type fixed point theorems
In , Jungck proved the following theorem.

TheoremA (Jungck [], ) Let f be a continuous mapping of a complete metric space
(X,d) into itself and let g : X → X be a map that satisfies the following conditions:

(a) g(X) ⊆ f (X);

(b) g commutes with f ;

(c) d
(
g(x), g(y)

) ≤ kd
(
f (x), f (y)

) (∗)

for all x, y ∈ X and for some  < k < . Then f and g have a unique common fixed point.

Definition . Let (X,F , t) be a Menger space with t(x,x)≥ x for all x ∈ [, ] and let f , g :
X → X be two self-mappings of X. We will say that f and g are Jungck-type generalized
contraction if

Fg(p),g(q)
(
ϕ(x)

) ≥ Ff (p),f (q)(x) (∗)

for all p,q ∈ X and x > , where ϕ : [,∞) → [,∞) is a mapping such that ϕ(x) < x for all
x > , and for all p,q ∈ X and x ∈ R, Fp,q(x) is the same as in Definition ..

Remark .
() It is clear that (∗) implies (∗) if Fp,q(x) =H(x – d(p,q)) for all p,q ∈ X , x ∈ R, and

ϕ(x) = kx for all x ∈ R+, where  < k < .
() In Example ., we shall show that the condition (∗) is satisfied, but the condition

(∗) is not satisfied.

Definition . Let ϕ : [,∞) → [,∞) be a mapping such that ϕ(x) < x for all x > . We
say that ϕ is the U-generalized contraction if

ϕ

((
x – ϕ(x)

)(ϕ(x)
x

)r)
≤ (

x – ϕ(x)
)(ϕ(x)

x

)r+

(∗)

for all x >  and r ∈ Z+.

Lemma . Let k ∈ (, ) be as in (c) of Theorem A and let ϕ : [,∞) → [,∞) be defined
by

ϕ(x) =

⎧⎨
⎩( +k )x + ( –k )x,  ≤ x ≤ k,

(  + k – k
 )x, k < x.

Then ϕ is an U-generalized contraction.
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Proof It follows from hypotheses that for all x > ,

ϕ(x) < x. (∗)

Now we shall show that condition (∗) is satisfied. Since

(
x – ϕ(x)

)(ϕ(x)
x

)r

≤ k for all x ∈ (,k] and r ∈ Z+,

there are three cases which need to be considered.
Case . Let x ∈ (,k] and r ∈ Z+. Then, since

(
 –

ϕ(x)
x

)(
ϕ(x)
x

)r

≤ ,

(∗) is satisfied.
Case . Let x ∈ (k,∞) and r ∈ Z+ with (x – ϕ(x))( ϕ(x)

x )r ≤ k. Then, since

(
 + k


)
+

(
 – k


)(
x – ϕ(x)

)(ϕ(x)
x

)r

≤ 

+ k –

k


,

(∗) is satisfied.
Case . Let x ∈ (k,∞) and r ∈ Z+ with k < (x – ϕ(x))( ϕ(x)

x )r . Then, since



+ k –

k


=

ϕ(x)
x

,

(∗) is satisfied. From (∗), Case , Case  and Case , ϕ is U-generalized contraction.
�

The following example shows that f and g do not have a common fixed point even
though f , g and ϕ satisfy (∗) and (∗).

Example . Let k ∈ (, ) and ϕ : [,∞) → [,∞) be as in Lemma .. Let f , g : R → R
be defined by f (x) = x +  and g(x) = k

x. Define Fp,q : R → R+ by

Fp,q(x) =H
(
x – |p – q|) for all p,q ∈ R and x ∈ R,

where Fp,g andH are the same as inDefinition . andDefinition .. Let t : [, ]× [, ] →
[, ] be defined by t(a,b) =min{a,b} for all a,b ∈ [, ]. Then, by Lemma . and simple
calculations, (∗) and (∗) are satisfied. But f and g do not have a common fixed point.

Remark . It follows from Example . that f and g must satisfy (∗) and (∗), and other
conditions additionally in order to have a common fixed point of f and g .

The following is Jungck-type common fixed point theorem which is a generalization of
Jungck’s common fixed point theorem [].

http://www.fixedpointtheoryandapplications.com/content/2013/1/166
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Theorem . Let (X,F , t) be a complete Menger space with continuous t-norm and
t(x,x) ≥ x for all x ∈ [, ], let f be a continuous self-mapping on X and let ϕ : R+ → R+

be a mapping that satisfies the following conditions:
(i) g(X)⊆ f (X);
(ii) g commutes with f ;
(iii) f , g and ϕ satisfy (∗) and (∗);
(iv) ϕ is a strictly increasing and bijective;
(v) limn→∞ ϕ–n(x) = ∞ for each x > , where ϕ–n is n-times repeated composition of ϕ–

with itself.
Then f and g have a unique common fixed point.

Proof

It is easy to see that the self-mapping g on X in Theorem . is

continuous on X.
(.)

Let x ∈ X. By (i), there exists a sequence {xn}∞n= in X such that

f (xn) = g(xn–) for all n ∈N . (.)

From (iii) and (.), we have

Fg(xn–),g(xn)
(
ϕ(x)

) ≥ Ff (xn–),f (xn)(x) for all n ∈N and x > . (.)

By virtue of (iv), (.) and (.), we obtain

Ff (xn),f (xn+)(x) = Fg(xn–),g(xn)(x)≥ Ff (xn–),f (xn)
(
ϕ–(x)

)
(.)

for all n ∈N and x > . In view of (.), we have

Ff (xn),f (xn–)(x)≥ Ff (x),f (x)
(
ϕ–n(x)

)
(.)

for all n ∈N and x > . By repeated application of (.), we have

Ff (xn+j),f (xn++j)(x)≥ Ff (xn),f (xn+)
(
ϕ–j(x)

)
(.)

for all n, j ∈N and x > . From (iii), we have

 <
ϕ(x)
x

<  for all x > . (.)

On account of (.), we obtain that

∞∑
k=

[
ϕ(x)
x

]k

=


 – ( ϕ(x)
x )

for all x > . (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/166
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In terms of (.), we get that

x =
(
x – ϕ(x)

) ∞∑
k=o

(
ϕ(x)
x

)k

for all x > . (.)

Now we shall show that {f (xn)} is a Cauchy sequence.

Let n,m ∈N be such that n <m. (.)

From (iii), (iv), (.)-(.) and Definition ., we deduce that

Ff (xn),f (xm)(x)

= Ff (xn),f (xm)

((
x – ϕ(x)

) ∞∑
k=

(
ϕ(x)
x

)k
)

≥ Ff (xn),f (xm)

((
x – ϕ(x)

)m–n–∑
k=

(
ϕ(x)
x

)k
)

≥ min

{
Ff (xn),f (xn+)

((
x – ϕ(x)

))
,

Ff (xn+),f (xn+)
((

x – ϕ(x)
)(ϕ(x)

x

))
, . . . ,

Ff (xm–),f (xm)

((
x – ϕ(x)

)(ϕ(x)
x

)m–n–)}

≥ min

{
Ff (xn),f (xn+)

((
x – ϕ(x)

))
,

Ff (xn),f (xn+)
(

ϕ–
((

x – ϕ(x)
)(ϕ(x)

x

)))
, . . . ,

Ff (xn),f (xn+)
(

ϕ–(m–n–)
((

x – ϕ(x)
)(ϕ(x)

x

)m–n–))}

≥ Ff (xn),f (xn+)
((
x – ϕ(x)

))
≥ Ff (x),f (x)

(
ϕ–n(x – ϕ(x)

))
(.)

for all x >  and n,m ∈N with n <m. In terms of (iii), (v) and Definition ., we have

lim
n→∞Ff (x),f (x)

(
ϕ–n(x – ϕ(x)

))
=  for all x > . (.)

By (.), (.) and Definition ., {f (xn)} is a Cauchy sequence in X. Since X is complete
and {f (xn)} is a Cauchy sequence in X, there exists z ∈ X such that

lim
n→∞ f (xn) = z. (.)

On account of (.) and (.), we have

lim
n→∞ g(xn) = z. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/166
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By (ii), (.), (.), (.) and hypotheses,

f
(
g(xn)

)
= g

(
f (xn)

)
for all n ∈N , (.)

lim
n→∞ f

(
g(xn)

)
= f (z)

and

lim
n→∞ g

(
f (xn)

)
= g(z).

From (.), we get that

f (z) = g(z). (.)

In view of (ii), (.) and (∗), we have

Fg(z),g(g(z))
(
ϕ(x)

) ≥ Ff (z),f (g(z))(x)≥ Fg(z),g(f (z))(x)

≥ Fg(z),g(g(z))(x) (.)

for all x > .
By (iv) and (.),

Fg(z),g(g(z))(x)≥ Fg(z),g(g(z))
(
ϕ–n(x)

)
(.)

for all n ∈N and x > . Due to (v), (.), Definition . and Definition ., we get that

g(z) = g
(
g(z)

)
. (.)

From (ii), (.) and (.), we have

g(z) = g
(
g(z)

)
= g

(
f (z)

)
= f

(
g(z)

)
. (.)

By (.), g(z) is a common fixed point of f and g . To prove the uniqueness of a common
fixed point of f and g , let u and w be common fixed points of f and g . Then f (u) = g(u) = u
and f (w) = g(w) = w. Putting p = u and q = w in (∗), we get

Fg(u),g(w)
(
ϕ(x)

)
= Fu,w

(
ϕ(x)

) ≥ Ff (u),f (w)(x) = Fu,w(x) (.)

for all x > , which gives u = w. Thus g(z) is a unique common fixed point of f and g . �

Now we give an example to support Theorem ..

Example . Let X = R be the set of reals with the usual metric and let f , g : X → X and
ϕ : R+ → R+ be mappings defined as follows:

f (x) = x, g(x) = x and ϕ(x) =

⎧⎨
⎩


x +


x

,  ≤ x ≤ 
 ,


x,


 < x.

(.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/166
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Let the mappings Fp,q, H and t be as in Example .. Then from Lemma ., (X,F , t) is a
complete Menger space. By the same method as in Lemma . and simple calculations,
the conditions of Theorem . are satisfied. Thus f and g have a unique common fixed
point .

From Theorem ., we have the following corollary.

Corollary . Let (X,F , t) be a complete Menger space with continuous t-norm and
t(x,x)≥ x for all x ∈ [, ]. Let f , g : ‘X → X be maps that satisfy the following conditions:
(a) g(X) ⊆ f (X);
(b) f is continuous;
(c) g commutes with f ;
(d) Fg(p),g(q)(kx) ≥ Ff (p),f (q)(x) for all p,q ∈ X , x >  and for some  < k < . Then f and g

have a unique common fixed point.

Proof Let ϕ : R+ → R+ be defined by

ϕ(x) = kx,  < k < . (.)

From (b) and (d), we deduce that g is continuous. Thus, by (.), the same method as in
Lemma . and simple calculations, the conditions of Theorem . are satisfied. Therefore
f and g have a unique common fixed point.
In the next example, we shall show that all the conditions of Theorem . are satisfied,

but condition (d) in Corollary . and condition (∗) in Theorem A are not satisfied. �

Example . Let k ∈ (, ) be as in (c) of TheoremA and let X = R be the set of reals with
usual metric. Suppose that f , g : X → X and ϕ : R+ → R+ are mappings defined as follows:

f (x) = kx, g(x) =
(
k + k



)
x

and

ϕ(x) =

⎧⎨
⎩( +k )x + ( –k )x,  ≤ x ≤ k,

(  + k – k
 )x, k < x.

Let the mappings Fp,q, H and t be the same as in Example .. Then, from Lemma .
and Lemma ., (X,F , t) is a complete Menger space and ϕ satisfies (∗). Since

∣∣g(p) – g(g)
∣∣ ≤ ϕ

(∣∣f (p) – f (g)
∣∣)

for all p,q ∈ X, we deduce that

Fg(p),g(q)
(
ϕ(x)

) ≥ Ff (p),f (q)(x)

for all p,q ∈ X and x > , which implies (∗). By simple calculations, conditions (i), (ii), (iv)
and (v) of Theorem . are satisfied. Thus all the conditions of Theorem . are satisfied.

http://www.fixedpointtheoryandapplications.com/content/2013/1/166
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Hence f and g have a unique commonfixed point . By hypotheses, there exist p = –k ∈ R,
q =  ∈ R and x = 

k
 + 

k >  such that

Fg(p),g(q)(kx) < Ff (p),f (q)(x),

which implies that condition (d) of Corollary . is not satisfied. By hypotheses, there exist
p = –k ∈ R and q =  ∈ R such that

∣∣g(p) – g(q)
∣∣ > k

∣∣f (p) – f (q)
∣∣,

which implies that condition (∗) in Theorem A is not satisfied. Therefore Theorem . is
a proper extension of Theorem A and Corollary ..

A natural question arises from Example ..

Question Would Theorem . remain true if (i)-(v) in Theorem . were substituted by
some suitable conditions?
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