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1 Introduction
In , the notion of coupled fixed point was introduced by Guo and Lakshmikantham
[]. Later, Bhaskar and Lakshmikantham [] introduced the concept of mixed monotone
property for contractive operators of the form F : X → X, where X is a partially ordered
metric space, and then established some coupled fixed point theorems. They also illus-
trated these results by proving the existence and uniqueness of the solution for a pe-
riodic boundary value problem. Recently, Lakshmikantham and Ćirić in [] defined a
g-monotone property and proved coupled coincidence and coupled common fixed point
results for nonlinear mappings satisfying certain contractive conditions in partially or-
deredmetric spaces. They also proved related fixed point theorems.Many authors focused
on coupled fixed point theory and proved remarkable results (see [–]).
Very recently, Berinde and Borcut [] introduced the concept of triple fixed point and

proved some tripled point theorems by virtue of mixed monotone mappings. Their con-
tributions generalize and extend Bhaskar and Lakshmikantham’s research for nonlinear
mappings. The notion of fixed point of order N ≥  was first introduced by Samet and
Vetro []. Karapinar used the concept of quadruple fixed point and proved some fixed
point theorems on the topic []. Following this study, a quadruple fixed point is devel-
oped and some related fixed point theorems are obtained in [–]. Recently, Karapinar
et al. [] have proved a number of quadruple fixed point theorems under φ-contractive
conditions for a mapping F : X → X in ordered metric spaces.
Let us recall some basic definitions from [].
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Definition . (See []) Let X be a nonempty set and let F : X → X be a given mapping.
An element (x, y, z,w) ∈ X ×X ×X ×X is called a quadruple fixed point of F if

F(x, y, z,w) = x, F(y, z,w,x) = y, F(z,w,x, y) = z and F(w,x, y, z) = w.

Let (X,d) be a metric space. The mapping d̄ : X → X, given by

d̄
(
(x, y, z,w), (u, v,h, l)

)
= d(x, y) + d(y, v) + d(z,h) + d(w, l),

defines a metric on X, which will be denoted for convenience by d.

Definition . (See []) Let (X,≤) be a partially ordered set and let F : X → X be amap-
ping. We say that F has the mixed monotone property if F(x, y, z,w) is monotone nonde-
creasing in x and z and ismonotone non-increasing in y andw; that is, for any x, y, z,w ∈ X,

x,x ∈ X, x ≤ x implies F(x, y, z,w) ≤ F(x, y, z,w),

y, y ∈ X, y ≤ y implies F(x, y, z,w) ≤ F(x, y, z,w),

z, z ∈ X, z ≤ z implies F(x, y, z,w) ≤ F(x, y, z,w) and

w,w ∈ X, w ≤ w implies F(x, y, z,w)≤ F(x, y, z,w).

In this article, we establish some quadruple coincidence and common fixed point theo-
rems for F : X → X and g : X → X satisfying nonlinear contractions in partially ordered
metric spaces. Also, some examples are given to support our results.

2 Preliminary
We start this section with the following definitions.

Definition . Let (X,≤) be a partially ordered set. Let F : X → X and g : X → X. The
mapping F is said to have the mixed g-monotone property if for any x, y, z,w ∈ X,

x,x ∈ X, gx ≤ gx ⇒ F(x, y, z,w) ≤ F(x, y, z,w),

y, y ∈ X, gy ≤ gy ⇒ F(x, y, z,w) ≥ F(x, y, z,w),

z, z ∈ X, gz ≤ gz ⇒ F(x, y, z,w) ≤ F(x, y, z,w) and

w,w ∈ X, gw ≤ gw ⇒ F(x, y, z,w) ≥ F(x, y, z,w).

Definition . Let F : X → X and g : X → X. An element (x, y, z,w) is called a quadruple
coincidence point of F and g if

F(x, y, z,w) = gx, F(y, z,w,x) = gy, F(z,w,x, y) = gz and F(w,x, y, z) = gw.

Definition . Let F : X → X and g : X → X. An element (x, y, z,w) is called a quadruple
common fixed point of F and g if

F(x, y, z,w) = gx = x, F(y, z,w,x) = gy = y,

F(z,w,x, y) = gz = z and F(w,x, y, z) = gw = w.
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Definition . Let X be a nonempty set. Then we say that the mappings F : X → X and
g : X → X are commutative if for all x, y, z,w ∈ X,

g
(
F(x, y, z,w)

)
= F(gx, gy, gz, gw).

Let � denote all the functions φ : [,∞) → [,∞) which satisfy that limt→r φ(t) >  for
all r >  and limt→+ φ(t) = .
Let � denote all the functions ψ : [,∞)→ [,∞) which satisfy
(i) ψ(t) =  if and only if t = ,
(ii) ψ is continuous and nondecreasing,
(iii) ψ(s + t) ≤ ψ(s) +ψ(t), ∀s, t ∈ [,∞).
Examples of typical functions φ and ψ are given in []. The aim of this paper is to prove

the following theorem.

3 Main results
Now, we present the main results of this paper.

Theorem . Let (X,≤) be a partially ordered set and suppose there is a metric d on X
such that (X,d) is a complete metric space. Suppose that F : X → X and g : X → X are
such that F is continuous and has the mixed g-monotone property. Assume also that there
exist φ ∈ � and ψ ∈ � such that

ψ
(
d
(
F(x, y, z,w),F(u, v,h, l)

)) ≤ 


ψ
(
d(gx, gu) + d(gy, gv) + d(gz, gh) + d(gw, gl)

)

– φ
(
d(gx, gu) + d(gy, gv) + d(gz, gh) + d(gw, gl)

)
()

for any x, y, z,w,u, v,h, l ∈ X, for which gx≤ gu, gv≥ gy, gz ≤ gh, and gl ≥ gw. Suppose that
F(X) ⊂ g(X), g is continuous and commutes with F . If there exist x, y, z,w ∈ X such
that

gx ≤ F(x, y, z,w), gy ≥ F(y, z,w,x),

gz ≤ F(z,w,x, y) and gw ≥ F(w,x, y, z),

then there exist x, y, z,w ∈ X such that

F(x, y, z,w) = gx, F(y, z,w,x) = gy, F(z,w,x, y) = gz and F(w,x, y, z) = gw,

that is, F and g have a quadruple coincidence point.

Proof Let x, y, z,w ∈ X such that

gx ≤ F(x, y, z,w), gy ≥ F(y, z,w,x),

gz ≤ F(z,w,x, y), gw ≥ F(w,x, y, z).

Since F(X) ⊂ g(X), then we can choose x, y, z,w ∈ X such that

gx = F(x, y, z,w), gy = F(y, z,w,x),

gz = F(z,w,x, y), gw = F(w,x, y, z).
()

http://www.fixedpointtheoryandapplications.com/content/2013/1/147
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Taking into account F(X) ⊂ g(X), by continuing this process, we can construct sequences
{xn}, {yn}, {zn}, and {wn} in X such that

gxn+ = F(xn, yn, zn,wn), gyn+ = F(yn, zn,wn,xn),

gzn+ = F(zn,wn,xn, yn), gwn+ = F(wn,xn, yn, zn).
()

We shall show that

gxn ≤ gxn+, gyn+ ≥ gyn,

gzn ≤ gzn+ and gwn+ ≥ gwn for n = , , , . . . . ()

For this purpose, we use the mathematical induction. Since gx ≤ F(x, y, z,w), gy ≥
F(y, z,w,x), gz ≤ F(z,w,x, y), and gw ≥ F(w,x, y, z), then by (), we get

gx ≤ gx, gy ≥ gy, gz ≤ gz and gw ≥ gw,

that is, () holds for n = . We presume that () holds for some n > . As F has the mixed
g-monotone property and gxn ≤ gxn+, gyn+ ≥ gyn, gzn ≤ gzn+, and gwn+ ≥ gwn, we obtain

gxn+ = F(xn, yn, zn,wn)≤ F(xn+, yn, zn,wn)

≤ F(xn+, yn, zn+,wn)≤ F(xn+, yn+, zn+,wn)

≤ F(xn+, yn+, zn+,wn+) = gxn+,

gyn+ = F(yn+, zn+,wn+,xn+) ≤ F(yn+, zn,wn+,xn+)

≤ F(yn, zn,wn+,xn+) ≤ F(yn, zn,wn,xn+)

≤ F(yn, zn,wn,xn) = gyn+,

gzn+ = F(zn,wn,xn, yn) ≤ F(zn+,wn,xn, yn)

≤ F(zn+,wn,xn, yn+) ≤ F(zn+,wn,xn+, yn+)

≤ F(zn+,wn+,xn+, yn+) = gzn+,

gwn+ = F(wn+,xn+, yn+, zn+) ≤ F(wn+,xn, yn+, zn+)

≤ F(wn,xn, yn+, zn+) ≤ F(wn,xn, yn, zn+)

≤ F(wn,xn, yn, zn) = gwn+.

Thus, () holds for any n ∈N . Assume, for some n ∈N , that

gxn = gxn+, gyn = gyn+, gzn = gzn+ and gwn = gwn+,

then, by (), (xn, yn, zn,wn) is a quadruple coincidence point of F and g . From now on,
assume for any n ∈ N that at least gxn 
= gxn+ or gyn 
= gyn+, or gzn 
= gzn+, or gwn 
= gwn+.
Due to ()-(), we have

ψ
(
d(gxn+, gxn+)

)
= ψ

(
d
(
F(xn, yn, zn,wn),F(xn+, yn+, zn+,wn+)

))

≤ 


ψ
(
d(gxn, gxn+) + d(gyn, gyn+) + d(gzn, gzn+) + d(gwn, gwn+)

)
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– φ
(
d(gxn, gxn+) + d(gyn, gyn+) + d(gzn, gzn+)

+ d(gwn, gwn+)
)
, ()

ψ
(
d(gyn+, gyn+)

)
= ψ

(
d
(
F(yn, zn,wn,xn),F(yn+, zn+,wn+,xn+)

))

≤ 


ψ
(
d(gyn, gyn+) + d(gzn, gzn+) + d(gwn, gwn+) + d(gxn, gxn+)

)

– φ
(
d(gyn, gyn+) + d(gzn, gzn+) + d(gwn, gwn+)

+ d(gxn, gxn+)
)
, ()

ψ
(
d(gzn+, gzn+)

)
= ψ

(
d
(
F(zn,wn,xn, yn),F(zn+,wn+,xn+, yn+)

))

≤ 


ψ
(
d(gzn, gzn+) + d(gwn, gwn+) + d(gxn, gxn+) + d(gyn, gyn+)

)

– φ
(
d(gzn, gzn+) + d(gwn, gwn+) + d(gxn, gxn+)

+ d(gyn, gyn+)
)
, ()

ψ
(
d(gwn+, gwn+)

)
= ψ

(
d
(
F(wn,xn, yn, zn),F(wn+,xn+, yn+, zn+)

))

≤ 


ψ
(
d(gwn, gwn+) + d(gxn, gxn+) + d(gyn, gyn+) + d(gzn, gzn+)

)

– φ
(
d(gwn, gwn+) + d(gxn, gxn+) + d(gyn, gyn+)

+ d(gzn, gzn+)
)
. ()

Due to ()-(), we conclude that

ψ
(
d(gxn+, gxn+)

)
+ψ

(
d(gyn+, gyn+)

)
+ψ

(
d(gzn+, gzn+)

)
+ψ

(
d(wn+,wn+)

)
≤ ψ

(
d(gzn, gzn+) + d(gwn, gwn+) + d(gxn, gxn+) + d(gyn, gyn+)

)
– φ

(
d(gzn, gzn+) + d(gwn, gwn+) + d(gxn, gxn+) + d(gyn, gyn+)

)
. ()

From the property (iii) of ψ , we have

ψ
(
d(gxn+, gxn+)

)
+ d(gyn+, gyn+) + d(gzn+, gzn+) + d(gwn+, gwn+)

≤ ψ
(
d(gxn+, gxn+)

)
+ψ

(
d(gyn+, gyn+)

)
+ψ

(
d(gzn+, gzn+)

)
+ψ

(
d(gwn+, gwn+)

)
. ()

Combining with () and (), we get that

ψ
(
d(gxn+, gxn+)

)
+ d(gyn+, gyn+) + d(gzn+, gzn+) + d(gwn+, gwn+)

≤ ψ
(
d(gzn, gzn+) + d(gwn, gwn+) + d(gxn, gxn+) + d(gyn, gyn+)

)
– φ

(
d(gzn, gzn+) + d(gwn, gwn+) + d(gxn, gxn+) + d(gyn, gyn+)

)
. ()

Set δn = d(gxn, gxn–) + d(gyn, gyn–) + d(gzn, gzn–) + d(gwn, gwn–). Then we have

ψ(δn+) ≤ ψ(δn+) – φ(δn+) for all n, ()

which yields that ψ(δn+) ≤ ψ(δn+) for all n.

http://www.fixedpointtheoryandapplications.com/content/2013/1/147
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Sinceψ is nondecreasing, we get that δn+ ≤ δn+ for all n. Hence {δn} is a non-increasing
sequence. Since it is bounded below from , there is some δ ≥  such that

lim
n→∞ δn = δ. ()

We shall show that δ = . Suppose, on the contrary, that δ > .
Letting n → ∞ in () and having in mind that we suppose that limt→r φ(t) >  for all

r >  and limt→+ φ(t) = , we have

ψ(δ)≤ ψ(δ) – φ(δ) <ψ(δ), ()

which is a contraction. Thus, δ = , that is,

lim
n→∞ δn = lim

n→∞
[
d(gxn, gxn–) + d(gyn, gyn–) + d(gzn, gzn–) + d(gwn, gwn–)

]
= . ()

Now, we shall show that {gxn}, {gyn}, {gzn}, and {gwn} are Cauchy sequences in the metric
space (X,d). Assume the contrary, that is, one of the sequences {gxn}, {gyn}, {gzn} or {gwn}
is not a Cauchy sequence, that is,

lim
n,m→∞d(gxm, gxn) 
=  or lim

n,m→∞d(gym, gyn) 
= , or

lim
n,m→∞d(gzm, gzn) 
= , or lim

n,m→∞d(gwm, gwn) 
= .

This means that there exists ε > , for which we can find subsequences {xn(k)}, {xm(k)} of
xn and {yn(k)}, {ym(k)} of yn and {zn(k)}, {zm(k)} of zn and {wn(k)}, {wm(k)} of wn with n(k) ≥
m(k)≥ k such that

d(gxm(k), gxn(k)) + d(gym(k), gyn(k)) + d(gzm(k), gzn(k)) + d(gwm(k), gwn(k)) ≥ ε. ()

In addition, by virtue of m(k), we can choose n(k) in such a way that it is the smallest
integer with n(k) >m(k)≥ k and satisfying (). It follows that

d(gxm(k), gxn(k)–) + d(gym(k), gyn(k)–)

+ d(gzm(k), gzn(k)–) + d(gwm(k), gwn(k)–) < ε. ()

By use of the triangle inequality, we have

d(gxm(k), gxn(k)) ≤ d(gxm(k), gxn(k)–) + d(gxn(k)–, gxn(k)). ()

Similarly, we get that

d(gym(k), gyn(k)) ≤ d(gym(k), gyn(k)–) + d(gyn(k)–, gyn(k)), ()

d(gzm(k), gzn(k))≤ d(gzm(k), gzn(k)–) + d(gzn(k)–, gzn(k)), ()

d(gwm(k), gwn(k)) ≤ d(gwm(k), gwn(k)–) + d(gwn(k)–, gwn(k)). ()
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Adding both sides to (), (), (), () and using () and (), we have that

ε ≤ d(gxm(k), gxn(k)) + d(gym(k), gyn(k)) + d(gzm(k), gzn(k)) + d(gwm(k), gwn(k))

≤ d(gxm(k), gxn(k)–) + d(gxn(k)–, gxn(k)) + d(gym(k), gyn(k)–) + d(gyn(k)–, gyn(k))

+ d(gzm(k), gzn(k)–) + d(gzn(k)–, gzn(k)) + d(gwm(k), gwn(k)–) + d(gwn(k)–, gwn(k))

≤ ε + d(gxn(k)–, gxn(k)) + d(gyn(k)–, gyn(k)) + d(gzn(k)–, gzn(k)) + d(gwn(k)–, gwn(k)).

Letting k → ∞ and by use of (), we get

lim
k→∞

λk = lim
k→∞

[
d(gxm(k), gxn(k)) + d(gym(k), gyn(k)) + d(gzm(k), gzn(k)) + d(gwm(k), gwn(k))

]
= ε.

Again, by the triangle inequality, we have

λk = d(gxm(k), gxn(k)) + d(gym(k), gyn(k)) + d(gzm(k), gzn(k)) + d(gwm(k), gwn(k))

≤ d(gxm(k), gxm(k)+) + d(gxm(k)+, gxn(k)+) + d(gxn(k)+, gxn(k))

+ d(gym(k), gym(k)+) + d(gym(k)+, gyn(k)+) + d(gyn(k)+, gyn(k))

+ d(gzm(k), gzm(k)+) + d(gzm(k)+, gzn(k)+) + d(gzn(k)+, gzn(k))

+ d(gwm(k), gwm(k)+) + d(gwm(k)+, gwn(k)+) + d(gwn(k)+, gwn(k))

≤ δm(k)+ + δn(k)+ + d(gxm(k)+, gxn(k)+)

+ d(gym(k)+, gyn(k)+) + d(gzm(k)+, gzn(k)+) + d(gwm(k)+, gwn(k)+). ()

Since n(k)≥ m(k), then

gxm(k) ≤ gxn(k), gym(k) ≥ gyn(k),

gzm(k) ≤ gzn(k), gwm(k) ≥ gwn(k).
()

Hence from (), (), and (), we get that

ψ
(
d(gxm(k)+, gxn(k)+)

)
= ψ

(
d
(
F(xm(k), ym(k), zm(k),wm(k)),F(xn(k), yn(k), zn(k),wn(k))

))

≤ 


ψ
(
d(gxm(k), gxn(k)) + d(gym(k), gyn(k)) + d(gzm(k), gzn(k))

+ d(gwm(k), gwn(k))
)
– φ

(
d(gxm(k), gxn(k)) + d(gym(k), gyn(k))

+ d(gzm(k), gzn(k)) + d(gwm(k), gwn(k))
)
, ()

ψ
(
d(gym(k)+, gyn(k)+)

)
= ψ

(
d
(
F(ym(k), zm(k),wm(k),xm(k)),F(yn(k), zn(k),wn(k),xn(k))

))

≤ 


ψ
(
d(gym(k), gyn(k)) + d(gzm(k), gzn(k)) + d(gwm(k), gwn(k))

)

+ d(gxm(k), gxn(k)) – φ
(
+d(gym(k), gyn(k)) + d(gzm(k), gzn(k))

+ d(gwm(k), gwn(k)) + d(gxm(k), gxn(k))
)
, ()
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ψ
(
d(gzm(k)+, gzn(k)+)

)
= ψ

(
d
(
F(zm(k),wm(k),xm(k), ym(k)),F(zn(k),wn(k),xn(k), yn(k))

))

≤ 


ψ
(
d(gzm(k), gzn(k)) + d(gwm(k), gwn(k)) + d(gxm(k), gxn(k))

+ d(gym(k), gyn(k))
)
– φ

(
d(gzm(k), gzn(k)) + d(gwm(k), gwn(k))

+ d(gxm(k), gxn(k)) + d(gym(k), gyn(k))
)
, ()

ψ
(
d(gwm(k)+, gwn(k)+)

)
= ψ

(
d
(
F(wm(k),xm(k), ym(k), zm(k)),F(wn(k),xn(k), yn(k), zn(k))

))

≤ 


ψ
(
d(gwm(k), gwn(k)) + d(gxm(k), gxn(k)) + d(gym(k), gyn(k))

+ d(gzm(k), gzn(k))
)
– φ

(
d(gwm(k), gwn(k)) + d(gxm(k), gxn(k))

+ d(gym(k), gyn(k)) + d(gzm(k), gzn(k))
)
. ()

Combining () and ()-(), we have that

ψ(λk) ≤ ψ
(
δm(k)+ + δn(k)+ + d(gxm(k)+, gxn(k)+) + d(gym(k)+, gyn(k)+)

+ d(gzm(k)+, gzn(k)+) + d(gwm(k)+, gwn(k)+)
)

≤ ψ(δm(k)+ + δn(k)+) +ψ
(
d(gxm(k)+, gxn(k)+) + d(gym(k)+, gyn(k)+)

+ d(gzm(k)+, gzn(k)+) + d(gwm(k)+, gwn(k)+)
)

≤ ψ(δm(k)+) +ψ(δn(k)+) +ψ
(
d(gxm(k)+, gxn(k)+)

)
+ψ

(
d(gym(k)+, gyn(k)+)

)
+ψ

(
d(gzm(k)+, gzn(k)+)

)
+ψ

(
d(gwm(k)+, gwn(k)+)

)
≤ ψ(δm(k)+) +ψ(δn(k)+) +ψ(λk) – φ(λk).

Letting k → ∞, we get a contradiction. This shows that {gxn}, {gyn}, {gzn}, and {gwn} are
Cauchy sequences in themetric space (X,d). Since (X,d) is complete, there exist x, y, z,w ∈
X such that

lim
n→∞ gxn = x, lim

n→∞ gyn = y, lim
n→∞ gzn = z and lim

n→∞ gwn = w. ()

From () and the continuity of g , we have

lim
n→∞ g(gxn) = gx, lim

n→∞ g(gyn) = gy,

lim
n→∞ g(gzn) = gz and lim

n→∞ g(gwn) = gw.
()

It follows from () and the commutativity of F and g that

g(gxn+) = g
(
F(xn, yn, zn,wn)

)
= F(gxn, gyn, gzn, gwn), ()

g(gyn+) = g
(
F(yn, zn,wn,xn)

)
= F(gyn, gzn, gwn, gxn), ()

g(gzn+) = g
(
F(zn,wn,xn, yn)

)
= F(gzn, gwn, gxn, gyn), ()

g(gwn+) = g
(
F(wn,xn, yn, zn)

)
= F(gwn, gxn, gyn, gzn). ()

Nowwe shall show that gx = F(x, y, z,w), gy = F(y, z,w,x), gz = F(z,w,x, y), gw = F(w,x, y, z).
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By letting n→ ∞ in ()-(), by (), (), and the continuity of F , we obtain

gx = lim
n→∞ g(gxn+) = lim

n→∞F(gxn, gyn, gzn, gwn)

= F
(
lim
n→∞ gxn, limn→∞ gyn, limn→∞ gzn, limn→∞ gwn

)

= F(x, y, z,w), ()

gy = lim
n→∞ g(gyn+) = lim

n→∞F(gyn, gzn, gwn, gxn)

= F
(
lim
n→∞ gyn, limn→∞ gzn, limn→∞ gwn, limn→∞ gxn

)

= F(y, z,w,x), ()

gz = lim
n→∞ g(gzn+) = lim

n→∞F(gzn, gwn, gxn, gyn)

= F
(
lim
n→∞ gzn, limn→∞ gwn, limn→∞ gxn, limn→∞ gyn

)

= F(z,w,x, y), ()

gw = lim
n→∞ g(gwn+) = lim

n→∞F(gwn, gxn, gyn, gzn)

= F
(
lim
n→∞ gwn, limn→∞ gxn, limn→∞ gyn, limn→∞ gzn

)

= F(w,x, y, z). ()

We have shown that F and g have a quadruple coincidence point. �

In the following theorem, the continuity of F is removed. We state the following defini-
tion.

Definition . Let (X,≤) be a partially ordered metric space and d be a metric on X. We
say that (X,d,≤) is regular if the following conditions hold:

(i) if a nondecreasing sequence an → a, then an ≤ a for all n,
(ii) if a non-increasing sequence bn → b, then b ≤ bn for all n.

Theorem . Let (X,≤) be a partially ordered set and suppose there is a metric d on X
such that (X,d,≤) is regular. Suppose that F : X → X and g : X → X are such that F has
the mixed g-monotone property. Assume also that there exist φ ∈ � and ψ ∈ � such that

ψ
(
d
(
F(x, y, z,w),F(u, v,h, l)

)) ≤ 


ψ
(
d(gx, gu) + d(gy, gv) + d(gz, gh) + d(gw, gl)

)

– φ
(
d(gx, gu) + d(gy, gv) + d(gz, gh) + d(gw, gl)

)

for any x, y, z,w,u, v,h, l ∈ X, for which gx≤ gu, gv≥ gy, gz ≤ gh, and gl ≥ gw. Suppose that
F(X) ⊂ g(X), (g(X),d) is a complete metric space. If there exist x, y, z,w ∈ X such that

gx ≤ F(x, y, z,w), gy ≥ F(y, z,w,x),

gz ≤ F(z,w,x, y), gw ≥ F(w,x, y, z),

http://www.fixedpointtheoryandapplications.com/content/2013/1/147
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then there exist x, y, z,w ∈ X such that

F(x, y, z,w) = gx, F(y, z,w,x) = gy, F(z,w,x, y) = gz and F(w,x, y, z) = gw,

that is, F and g have a quadruple coincidence point.

Proof Proceeding exactly as in Theorem ., we have that {gxn}, {gyn}, {gzn}, and {gwn} are
Cauchy sequences in the complete metric space (g(X),d). Then there exist x, y, z,w ∈ X
such that

gxn → gx, gyn → gy, gzn → gz and gwn → gw. ()

Since {gxn}, {gzn} are nondecreasing and {gyn}, {gwn} are non-increasing, then since
(X,d,≤) is regular, we get that

gxn ≤ gx, gyn ≥ gy, gzn ≤ gz and gwn ≥ gw

for all n. If gxn = gx, gyn = gy, gzn = gz, and gwn = gw for some n > , then gx = gxn ≤ gxn+ ≤
gx = gxn, gy ≤ gyn+ ≤ gyn = gy, gz = gzn ≤ gzn+ ≤ gz = gzn, and gw ≤ gwn+ ≤ gwn = gw,
which implies that

gxn = gxn+ = F(xn, yn, zn,wn), gyn = gyn+ = F(yn, zn,wn,xn) and

gzn = gzn+ = F(zn,wn,xn, yn), gwn = gwn+ = F(wn,xn, yn, zn),

that is, (xn, yn, zn,wn) is a quadruple coincidence point of F and g . Then, we suppose that
(gxn, gyn, gzn, gwn) 
= (gx, gy, gz, gw) for all n > . By use of (), consider now

ψ
(
d
(
gx,F(x, y, z,w)

)) ≤ ψ
(
d(gx, gxn+) + d

(
gxn+,F(x, y, z,w)

))
= ψ

(
d(gx, gxn+)

)
+ψ

(
d
(
F(xn, yn, zn,wn),F(x, y, z,w)

))

≤ ψ
(
d(gx, gxn+)

)
+



ψ
(
d(gxn, gx) + d(gyn, gy)

+ d(gzn, gz) + d(gwn, gw)
)

– φ
(
d(gxn, gx) + d(gyn, gy) + d(gzn, gz) + d(gwn, gw)

)
. ()

Letting n → ∞ and by (), then the right-hand side of () tends to , thusψ(d(gx,F(x, y,
z,w))) = . By the property (i) of ψ , we have d(gx,F(x, y, z,w)) = . It follows that gx =
F(x, y, z,w). Similarly, we can show that

gy = F(y, z,w,x), gz = F(z,w,x, y), gw = F(w,x, y, z).

Therefore, we have proved that F and g have a quadruple coincidence point. �

Corollary . Let (X,≤) be a partially ordered set and suppose there is a metric d on X
such that (X,d) is a complete metric space. Suppose that F : X → X and g : X → X are

http://www.fixedpointtheoryandapplications.com/content/2013/1/147
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such that F is continuous and has the mixed g-monotone property. Assume also that there
exist φ ∈ � and ψ ∈ � such that

ψ
(
d
(
F(x, y, z,w),F(u, v, ,h, l)

)) ≤ 


ψ
(
max

{
d(gx, gu),d(gy, gv),d(gz, gh),d(gw, gl)

})

– φ
(
d(gx, gu) + d(gy, gv) + d(gz, gh) + d(gw, gl)

)

for any x, y, z,w,u, v,h, l ∈ X, for which gx≤ gu, gv≥ gy, gz ≤ gh, and gl ≥ gw. Suppose that
F(X) ⊂ g(X), g is continuous and commutes with F . If there exist x, y, z,w ∈ X such
that

gx ≤ F(x, y, z,w), gy ≥ F(y, z,w,x),

gz ≤ F(z,w,x, y), gw ≥ F(w,x, y, z),

then there exist x, y, z,w ∈ X such that

F(x, y, z,w) = gx, F(y, z,w,x) = gy, F(z,w,x, y) = gz and F(w,x, y, z) = gw,

that is, F and g have a quadruple coincidence point.

Proof Since

max
{
d(gx, gu),d(gy, gv),d(gz, gh),d(gw, gl)

} ≤ d(gx, gu)+d(gy, gv)+d(gz, gh)+d(gw, gl),

then we apply Theorem ., since ψ is assumed to be nondecreasing. �

Similarly, as an easy consequence of Theorem ., we have the following corollary.

Corollary . Let (X,≤) be a partially ordered set and suppose there is a metric d on X
such that (X,d,≤) is regular. Suppose that F : X → X and g : X → X are such that F has
the mixed g-monotone property. Assume also that there exist φ ∈ � and ψ ∈ � such that

ψ
(
d
(
F(x, y, z,w),F(u, v,h, l)

)) ≤ 


ψ
(
max

{
d(gx, gu),d(gy, gv),d(gz, gh),d(gw, gl)

})

– φ
(
d(gx, gu) + d(gy, gv) + d(gz, gh) + d(gw, gl)

)

for any x, y, z,w,u, v,h, l ∈ X, for which gx≤ gu, gv≥ gy, gz ≤ gh, and gl ≥ gw. Suppose that
F(X) ⊂ g(X), (g(X),d) is a complete metric space. If there exist x, y, z,w ∈ X such that

gx ≤ F(x, y, z,w), gy ≥ F(y, z,w,x),

gz ≤ F(z,w,x, y), gw ≥ F(w,x, y, z),

then there exist x, y, z,w ∈ X such that

F(x, y, z,w) = gx, F(y, z,w,x) = gy, F(z,w,x, y) = gz and F(w,x, y, z) = gw,

that is, F and g have a quadruple coincidence point.

http://www.fixedpointtheoryandapplications.com/content/2013/1/147
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Corollary . Let (X,≤) be a partially ordered set and suppose there is a metric d on X
such that (X,d) is a complete metric space. Suppose that F : X → X and g : X → X are
such that F is continuous and has the mixed g-monotone property. Assume also that there
exists k ∈ [, ) such that

d
(
F(x, y, z,w),F(u, v,h, l)

) ≤ k


(
d(gx, gu) + d(gy, gv) + d(gz, gh) + d(gw, gl)

)

for any x, y, z,w,u, v,h, l ∈ X, for which gx≤ gu, gv≥ gy, gz ≤ gh, and gl ≥ gw. Suppose that
F(X) ⊂ g(X), g is continuous and commutes with F . If there exist x, y, z,w ∈ X such
that

gx ≤ F(x, y, z,w), gy ≥ F(y, z,w,x),

gz ≤ F(z,w,x, y), gw ≥ F(w,x, y, z),

then there exist x, y, z,w ∈ X such that

F(x, y, z,w) = gx, F(y, z,w,x) = gy, F(z,w,x, y) = gz and F(w,x, y, z) = gw,

that is, F and g have a quadruple coincidence point.

Proof It is sufficient to set ψ(t) = t and φ(t) = –k
 t in Theorem .. �

Corollary . Let (X,≤) be a partially ordered set and suppose there is a metric d on X
such that (X,d,≤) is regular. Suppose that F : X → X and g : X → X are such that F has
the mixed g-monotone property. Assume also that there exists k ∈ [, ) such that

d
(
F(x, y, z,w),F(u, v,h, l)

) ≤ k


(
d(gx, gu) + d(gy, gv) + d(gz, gh) + d(gw, gl)

)

for any x, y, z,w,u, v,h, l ∈ X, for which gx≤ gu, gv≥ gy, gz ≤ gh, and gl ≥ gw. Suppose that
F(X) ⊂ g(X), (g(X),d) is a complete metric space. If there exist x, y, z,w ∈ X such that

gx ≤ F(x, y, z,w), gy ≥ F(y, z,w,x),

gz ≤ F(z,w,x, y), gw ≥ F(w,x, y, z),

then there exist x, y, z,w ∈ X such that

F(x, y, z,w) = gx, F(y, z,w,x) = gy, F(z,w,x, y) = gz and F(w,x, y, z) = gw,

that is, F and g have a quadruple coincidence point.

Proof It is sufficient to set ψ(t) = t and φ(t) = –k
 t in Theorem .. �

Corollary . Let (X,≤) be a partially ordered set and suppose there is a metric d on X
such that (X,d) is a complete metric space. Suppose that F : X → X and g : X → X are

http://www.fixedpointtheoryandapplications.com/content/2013/1/147
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such that F is continuous and has the mixed g-monotone property. Assume also that there
exists k ∈ [, ) such that

d
(
F(x, y, z,w),F(u, v,h, l)

) ≤ k


(
max

{
d(gx, gu),d(gy, gv),d(gz, gh),d(gw, gl)

})

for any x, y, z,w,u, v,h, l ∈ X, for which gx≤ gu, gv≥ gy, gz ≤ gh, and gl ≥ gw. Suppose that
F(X) ⊂ g(X), g is continuous and commutes with F . If there exist x, y, z,w ∈ X such
that

gx ≤ F(x, y, z,w), gy ≥ F(y, z,w,x),

gz ≤ F(z,w,x, y), gw ≥ F(w,x, y, z),

then there exist x, y, z,w ∈ X such that

F(x, y, z,w) = gx, F(y, z,w,x) = gy, F(z,w,x, y) = gz and F(w,x, y, z) = gw,

that is, F and g have a quadruple coincidence point.

Proof It suffices to remark that

max
{
d(gx, gu),d(gy, gv),d(gz, gh),d(gw, gl)

}
≤ d(gx, gu) + d(gy, gv) + d(gz, gh) + d(gw, gl).

Then we apply Corollary .. �

Corollary . Let (X,≤) be a partially ordered set and suppose there is a metric d on X
such that (X,d,≤) is regular. Suppose that F : X → X and g : X → X are such that F has
the mixed g-monotone property. Assume also that there exists k ∈ [, ) such that

d
(
F(x, y, z,w),F(u, v,h, l)

) ≤ k


(
max

{
d(gx, gu),d(gy, gv),d(gz, gh),d(gw, gl)

})

for any x, y, z,w,u, v,h, l ∈ X, for which gx≤ gu, gv≥ gy, gz ≤ gh, and gl ≥ gw. Suppose that
F(X) ⊂ g(X), (g(X),d) is a complete metric space. If there exist x, y, z,w ∈ X such that

gx ≤ F(x, y, z,w), gy ≥ F(y, z,w,x),

gz ≤ F(z,w,x, y), gw ≥ F(w,x, y, z),

then there exist x, y, z,w ∈ X such that

F(x, y, z,w) = gx, F(y, z,w,x) = gy, F(z,w,x, y) = gz and F(w,x, y, z) = gw,

that is, F and g have a quadruple coincidence point.

Remark . (i) Theorem  of Karapinar and Luong [] is a particular case of Theo-
rem . and Theorem . by taking g = IX , respectively. Corollary  of Karapinar and
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Luong [] is a particular case of Theorem . and Theorem . by taking g = IX , ψ(t) = t,
φ(t) = –k

 t.
(ii) Theorem . of Karapinar [] is a particular case of Theorem . and Theorem .

by taking g = IX and ψ(t) = t, respectively. Corollary . of Karapinar [] is a particular
case of Theorem . and Theorem . by taking g = IX , ψ(t) = t, φ(t) = –k

 t.

Now, we shall prove the existence and uniqueness of a quadruple common fixed point.
For a productX of a partial ordered set (X,≤), we define a partial ordering in the following
way: For all (x, y, z,w), (u, v, r,h) ∈ X,

(x, y, z,w) ≤ (u, v, r,h) ⇒ x ≤ u, y≥ v, z ≤ r and w ≥ l. ()

We say that (x, y, z,w) and (u, v, r, l) are comparable if

(x, y, z,w) ≤ (u, v, r, l) or (u, v, r, l)≥ (x, y, z,w).

Also, we say that (x, y, z,w) is equal to (u, v, r, l) if and only if x = u, y = v, z = r and w = l.

Theorem . In addition to the hypotheses of Theorem ., suppose that for all (x, y, z,w),
(u, v, r, l) ∈ X, there exists (a,b, c,d) ∈ X such that

(
F(a,b, c,d),F(b, c,d,a),F(c,d,a,b),F(d,a,b, c)

)

is comparable to

(
F(x, y, z,w),F(y, z,w,x),F(z,w,x, y),F(w,x, y, z)

)

and

(
F(u, v, r, l),F(v, r, l,u),F(r, l,u, v),F(l,u, v, r)

)
.

Then F and g have a unique quadruple common fixed point (x, y, z,w) such that

x = gx = F(x, y, z,w), y = gy = F(y, z,w,x),

z = gz = F(z,w,x, y), w = gw = F(w,x, y, z).

Proof The set of quadruple coincidence points of F and g is not empty due to Theorem..
Assume now that (x, y, z,w) and (u, v, r, l) are two quadruple coincidence points of F and
g , i.e.,

F(x, y, z,w) = gx, F(u, v, r, l) = gu,

F(y, z,w,x) = gy, F(v, r, l,u) = gv,

F(z,w,x, y) = gz, F(r, l,u, v) = gr,

F(w,x, y, z) = gw, F(l,u, v, r) = gl.

We shall show that (gx, gy, gz, gw) and (gu, gv, gr, gl) are equal. By assumption, there ex-
ists (a,b, c,d) ∈ X such that (F(a,b, c,d),F(b, c,d,a),F(c,d,a,b),F(d,a,b, c)) is comparable
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to (F(x, y, z,w),F(y, z,w,x),F(z,w,x, y),F(w,x, y, z)) and (F(u, v, r, l),F(v, r, l,u),F(r, l,u, v),
F(l,u, v, r)). Define sequences {gan}, {gbn}, {gcn}, and {gdn} such that a = a, b = b, c = c,
d = d, and for any n≥ ,

gan = F(an–,bn–, cn–,dn–), gbn = F(bn–, cn–,dn–,an–),

gcn = F(cn–,dn–,an–,bn–), gdn = F(dn–,an–,bn–, cn–)
()

for all n. Further, set x = x, y = y, z = z, w = w and u = u, v = v, r = r, l = l, and in
the same way define the sequences {gxn}, {gyn}, {gzn}, {gwn} and {gun}, {gvn}, {grn}, {gln}.
Then it is easy to see that

gxn = F(xn–, yn–, zn–,wn–), gun = F(un–, vn–, rn–, ln–),

gyn = F(yn–, zn–,wn–,xn–), gvn = F(vn–, rn–, ln–,un–),

gzn = F(zn–,wn–,xn–, yn–), grn = F(rn–, ln–,un–, vn–),

gwn = F(wn–,xn–, yn–, zn–), gln = F(ln–,un–, vn–, rn–)

()

for all n ≥ .
Since (F(x, y, z,w),F(y, z,w,x),F(z,w,x, y),F(w,x, y, z)) = (gx, gy, gz, gw) = (gx, gy, gz,

gw) is comparable to

(
F(a,b, c,d),F(b, c,d,a),F(c,d,a,b),F(d,a,b, c)

)
= (ga, gb, gc, gd),

then it is easy to show (gx, gy, gz, gw) ≥ (ga, gb, gc, gd). Recursively, we get that

(gan, gbn, gcn, gdn) ≤ (gx, gy, gz, gw) for all n, ()

ψ
(
d(gan+, gx)

)
=



ψ
(
d
(
F(an,bn, cn,dn),F(x, y, z,w)

))

≤ ψ
(
d(gan, gx) + d(gbn, gy) + d(gcn, gz) + d(gdn, gw)

)
– φ

(
d(gan, gx) + d(gbn, gy) + d(gcn, gz) + d(gdn, gw)

)
, ()

ψ
(
d(gy, gbn+)

)
=



ψ
(
d
(
F(y, z,w,x),F(bn, cn,dn,an)

))

≤ ψ
(
d(gy, gbn) + d(gz, gcn) + d(gw, gdn) + d(gx, gan)

)
– φ

(
d(gy, gbn) + d(gz, gcn) + d(gw, gdn) + d(gx, gan)

)
, ()

ψ
(
d(gcn+, gz)

)
=



ψ
(
d
(
F(cn,dn,an,bn),F(z,w,x, y)

))

≤ ψ
(
d(gcn, gz) + d(gdn, gw) + d(gan, gx) + d(gbn, gy)

)
– φ

(
d(gcn, gz) + d(gdn, gw) + d(gan, gx) + d(gbn, gy)

)
()

and

ψ
(
d(gw, gdn+)

)
=


d
(
F(w,x, y, z),F(dn,an,bn, cn)

)

≤ ψ
(
d(gw, gdn) + d(gx, gan) + d(gy, gbn) + d(gz, gcn)

)
– φ

(
d(gw, gdn) + d(gx, gan) + d(gy, gbn) + d(gz, gcn)

)
. ()
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From ()-(), it follows that

ψ
(
d(gan+, gx)

)
+ψ

(
d(gy, gbn+)

)
+ψ

(
d(gcn+, gz)

)
+ψ

(
d(gw, gdn+)

)
≤ ψ

(
d(gw, gdn) + d(gx, gan) + d(gy, gbn) + d(gz, gcn)

)
– φ

(
d(gw, gdn) + d(gx, gan) + d(gy, gbn) + d(gz, gcn)

)
.

By the property (iii) of ψ , we obtain that

ψ
(
d(gan+, gx) + d(gy, gbn+) + d(gcn+, gz) + d(gw, gdn+)

)
≤ ψ

(
d(gan+, gx)

)
+ψ

(
d(gy, gbn+)

)
+ψ

(
d(gcn+, gz)

)
+ψ

(
d(gw, gdn+)

)
≤ ψ

(
d(gw, gdn) + d(gx, gan) + d(gy, gbn) + d(gz, gcn)

)
– φ

(
d(gw, gdn) + d(gx, gan) + d(gy, gbn) + d(gz, gcn)

)
. ()

Set σn = d(gan, gx) + d(gy, gbn) + d(gcn, gz) + d(gw, gdn). Then due to (), we have

ψ(σn+) ≤ ψ(σn) – φ(σn) for all n, ()

which implies that ψ(σn+) ≤ ψ(σn). By the property of ψ , we obtain that σn+ ≤ σn. Thus,
the sequence {σn} is decreasing and bounded below from . Therefore, there exists σ ≥ 
such that

lim
n→∞σn = σ .

Now, we shall show that σ = . Suppose to the contrary that σ > . Letting n→ ∞ in (),
we obtain that

ψ(σ )≤ ψ(σ ) –  lim
n→∞φ(σn) <ψ(σ ),

which is a contradiction. It yields that σ = . That is, limn→∞ σn = .
Consequently, we have

lim
n→∞d(gan, gx) = , lim

n→∞d(gy, gbn) = ,

lim
n→∞d(gcn, gz) = , lim

n→∞d(gw, gdn) = .
()

Similarly, we can prove that

lim
n→∞d(gan, gu) = , lim

n→∞d(gv, gbn) = ,

lim
n→∞d(gcn, gr) = , lim

n→∞d(gl, gdn) = .
()

Combining () and () yields that (gx, gy, gz, gw) and (gu, gv, gr, gl) are equal.
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Since gx = F(x, y, z,w), gy = F(y, z,w,x), gz = F(z,w,x, y), and gw = F(w,x, y, z), by the com-
mutativity of F and g , we obtain that

gx′ = g(gx) = g
(
F(x, y, z,w)

)
= F(gx, gy, gw, gz) = F

(
x′, y′, z′,w′),

gy′ = g(gy) = g
(
F(y, z,w,x)

)
= F(gy, gz, gw, gx) = F

(
y′, z′,w′,x′),

gz′ = g(gz) = g
(
F(z,w,x, y)

)
= F(gz, gw, gx, gy) = F

(
z′,w′,x′, y′),

gw′ = g(gz) = g
(
F(w,x, y, z)

)
= F(gw, gx, gy, gz) = F

(
w′,x′, y′, z′),

where gx = x′, gy = y′, gz = z′, and gw = w′. Thus, (x′, y′, z′,w′) is a quadruple coincidence
point of F and g . Therefore, (gx′, gy′, gz′, gw′) and (gx, gy, gz, gw) are equal. We obtain that

gx′ = gx = x′, gy′ = gy = y′, gz′ = gz = z′, gw′ = gw = w′.

Thus, (x′, y′, z′,w′) is a quadruple common fixed point of F and g . Its uniqueness follows
from contraction (). �

Example . Let X = R with the metric d(x, y) = |x – y| for all x, y ∈ X and the usual or-
dering. Let F : X → X and g : X → X be given by

g(x) =


x, F(x, y, z,w) =

x – y + z –w


for all x, y, z,w ∈ X.

Let ψ ,φ : [,∞)→ [,∞) be given by

ψ(t) =


t and φ(t) =

t


for all t ∈ [,∞).

We will check that the condition () is satisfied for all x, y, z,w,u, v,h, l ∈ X satisfying gx ≤
gu, gv≤ gy, gz ≤ gh, gl ≤ gw. In this case, we have

ψ
(
d
(
F(x, y, z,w),F(u, v,h, l)

))
=




[
u – x


+
y – v


+
h – z


+
w – l


]

=



{



[
(u – x)


+
(y – v)


+
(h – z)


+
(w – l)



]}

–



[
(u – x)


+
(y – v)


+
(h – z)


+
(w – l)



]

≤ 


{



[
(u – x)


+
(y – v)


+
(h – z)


+
(w – l)



]}

–



[
(u – x)


+
(y – v)


+
(h – z)


+
(w – l)



]

=



ψ
[
d(gx, gu) + d(gy, gv) + d(gz, gh) + d(gw, gl)

]

– φ
[
d(gx, gu) + d(gy, gv) + d(gz, gh) + d(gw, gl)

]
.

It is easy to check that all the conditions of Theorem . are satisfied and (, , , ) is the
unique quadruple fixed point of F and g .
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