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Abstract

In this article, we prove a regularity criterion for the local strong solutions to a
simplified hydrodynamic flow modeling the compressible, nematic liquid crystal
materials.
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1 Introduction
In this article, we consider the following simplified version of Ericksen-Leslie system

modeling the hydrodynamic flow of compressible, nematic liquid crystals (see: [1,2])

d:p +div(pu) =0, (1.1)
d:(pu) + div(pu ® u) + Vp(p) — pAu — (A + uVdivu = —Ad - Vd, (1.2)
dd+u-Vd=Ad+|Vd’d, (1.3)
(o, u, d)(x,0) = (po, tio, do)(x), |do| = 1,x € R>. (1.4)

Here p is the density, u is the fluid velocity and d represents the macroscopic aver-
age of the nematic liquid crystal orientation field, p(p) := ap? is the pressure with posi-
tive constants @ > 0 and ¥y 2 1. g and A4 are the shear viscosity and the bulk viscosity
coefficients of the fluid respectively, which are assumed to satisfy the following physical

condition:

mw>0, 31+2u>0.

(1.1) and (1.2) is the well-known compressible Navier-Stokes system with the exter-
nal force -Ad-Vd. (1.3) is the well-known heat flow of harmonic map when u = 0.

Very recently, Ericksen [3] proved the following local-in-time well-posedness:

Proposition 1.1. Let po € W n H' n L' for some q € (3, 6] and py = 0 in R?, Vu,
€ H',Vdye H* and |do| = 1 in R>. If, in additions, the following compatibility condi-
tion

— AUy — (A + ) Vdivug — Vp(po) — Ado - do = /pog for some g € L*(R?)(1.5)
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holds, then there exist Ty > 0 and a unique strong solution (p, u, d) to the problem
(1.1)-(1.4).
Based on the above Proposition 1.1, Huang et al. [4] proved the following regularity

criterion:

T
/ D), + IVdlf dt < oo, (1.6)
0

where D(u) := | (Vu+'Vu).
The aim of this note is to refine (1.6) as follows.
Theorem 1.2. Let the assumptions in Proposition 1.1 holds true. If

T
/ D], + IVd||3yodt < oo, (1.7)
0

then the solution (p,u,d) can be extended beyond T > 0.
Here BMO denotes the space of functions of bounded mean oscillations.
In this note, we will use the following inequality [5]:

q q
lullyy < Cllullgy lullfy (1<q<p < o0). (1.8)
For the standard nematic liquid crystal flows, we refer to recent studies in [6,7].
2 Proof of Theorem 1.2
Since (p,u,d) is the local strong solution, we only need to prove
Vd e L*(0, T; L™). (2.1)
By the same calculations as that in [4], it is easy to show that
ol 0,11y = €,
(2.2)

T
/p|u|2+|Vd|2dx+//|Vu|2+ |Ad + |Vd|d|*dxdt < C.

0

Using (1.8), we see that

T T
/ / Vdl*dxdt < C / IVdlZy0 IV dr
0 0

T
< max [Vl [ 1Vl 0t < C,
0

from which and (2.2), we get

T T T
//|Ad|2dxdt§ 2//|Ad+|Vd|2d|2dxdt+2//|vd|4dxdt§ C. (2.3)

0 0 0
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Applying V to (1.3), testing by 7|Vd|"*Vd (r > 2), using (1.8), we infer that

;tf|Vd|’dx+r[IVd\r_2|V2d|2+(r—2)|Vd|T_2|V|Vd||2dx

r/V(llezd)Wd\”ZVddx—r V(u - Vd)|Vd|"*Vddx

r/ |Vd\”2dx—r/ [Vd' 2Vl < Vid, Vi, d > dx—/u.vwdrdx

r/ |Vd|™*2dx — r/ IVd|™*>D(u) : Vd ® Vddx + / (div u)|Vd| dx
< C | Vdllgyo IVl + C| D) |, 1V, ,

which yields

T

sup ||Vd||, + / / |Vd|’*2|v2d\2dxdt <C. (2.4)
0=<t<T 0

Let
f =fi+u-Vf

denotes the material derivative of f.
Testing (1.2) by 11, we derive

2jt/p,IVu|2+()»+,u)|divu|2dx+/p\ulzdx

/ < (u-V)u, —pAu— (A +p)Vdivu > dx

— [ vu ptors— [ V(o) @5)

7/u~Vu-<Ad,Vd>dxffut<Ad,Vd>dx

111+12+[3+I4+I5.

By the same calculations as that in [4], we have

1
I = u/ D(u) : curl u ® curl u — 2div u(curl u)?dx
1
- (2u+ A)/ (Vu'vu)divu — 2(div u)3dx
= C|P@)], IVuli:
I = /p(p)(Vu:”Vu — (div u)*)dx — /u div u - Vp(p)dx
<ClIVulf + C/ [V llull div u dx
< ClIVullZ, + Cllulls Vol | div ul 5
1 2
< CIIVullg. + CIVull: Vol [P@)] & [P | 5

2 4
< ClIVulld + ClIVuly 1VpllZ + C [ D) 2 [ D) 2
< ClIVullf, + ClIVull? Vol + C(1+ | D) | ) VUl

I - jt / p(p)div udx — / div udyp(p)dx

d .
< it fp(p)dlv udx+C+C(1+|D(u) ”m) IVull?,
+CIVul IVl
Iy < llullge I Vull sl Adll 2 VAl s
< ClIVull2 [[Aull2 [|Adll2 (by (2.4) for r = 6)
<ellauld + ClIVull? [Ad:,
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for any € > 0.

We denote M(d) := Vd ® Vd — ;|Vd|213, I5 is estimated as follows, which is slightly

different from that in [4]:

Is = jt f M(d) : Vudx — / 9M(d) : Vudx

Substituting the above estimates into (2.5), we deduce that

< jt /M(d) : Vudx + C/ |Vd, |Vd| Vu| dx

d
< / M(d) : Vudx + C| V|l ¢ [ Vull 5] V] 12

< ;t /M(d) : Vudx + C||Vul| s

Va2 (by (2.4) for r = 6)

d
< dt/M(d) : Vudx + & [V |12 + & | AullZ + ClIVull?, .

2dt

d /;L+|Vu|2(k+u)|div u|2dx+/,o|u|2dx

< CIVulL IVellf. + C (1 + | D) ,~) IVulf

+C+ jt /p(p)div u+M(d) : Vudx

+ClIVull}, 1AdI: + 28 (IVA T + | Aull?,)

forany 0 < € < 1.

By the same calculations as that in [4], we write

d
dt

Testing (1.3) by Ad,, using (2.4), we obtain

=
=

=

Vol <C(1+|DW)],~) IVelf: + el Aullf, .

;:tflAdlzdx+/|Vd[|2dx=/(u~Vd— |Vd|*d) Ad,dx

- f V (u-vd—|Vd*d) - Vdidx

(IVull 1V dllgs + lulips | Adlls + 1Vdllgs + 1Vl sl Adll ) 11Vl 2
CVullys + IVull2lAdll s + 1 + | Adll:) 1Vl 2

12

1/2

2
C (Ivuls 1 aul!

= C(Ivul 1aul,l + 1 Vul,: |Vd)

1/2

L6

2+ IVullz IVAd]

IVAdIS + 1+ VAl VAl
Lt v ad v )

< e|IVdl3: +ellAulZ + ClIVullZ + ClIVullh, + C+ e [VAd| L .

Here we have used the Gagliardo-Nirenberg inequality

IAd|I7: < CIVAllIVAdIl L.

Using (1.3), (2.4), and (2.9), we have

IVAdlp: < ||Vd, +V(u-Vd) -V (IVd|*d

)ie

= ClIVdlrz + Cllullgs | Adlls + CllVull s [ Vdll o
+ ClIVdle + ClIVdl s || Adll s

< ClIVdlz + ClIVull 2 |V Ad]|

+C+C|VAd|

1/2
LZ ’

1/2
L3

+ C||Vul|

12
L2

lAul

12
LZ

1/2
LZ

1Vil;»)

(2.6)

(2.7)

(2.9)
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whence

1/2

it Zic (2.10)

Aull;2

IVAdI> < ClIVdyll2 + ClIVullE. + ClIVull

On the other hand, it follows from (1.2), (2.4), and (2.10) that

IAullz < Clipitl2 + C[Vp(p)] . + CllAd - V|2
< Clipitllz + ClIVpll2 + ClI VAl o]l Adl s
< Cllpitll2 + ClIVpll 2 + Cll Adll 3
< Cllpitll;2 + ClIVpl2 + ClAdI 2 + CIVAd] 2
< Cllpitll;2 + ClIVpl 2 + ClAdI 2 + ClI Ve 2

1
+ ClIVullf, + ClI Vull2 + HlAullz +C,

which implies
IAull2 < Clipitl2 + ClIV ol + CllAdI L2 + ClIVdll 2 + ClIVullf2 + C. (2.11)

Combining (2.6), (2.7), (2.8), (2.10), and (2.11), taking ¢ small enough, using the
Gron-wall inequality, we arrive at

vd e L*(0, T; H?),

whence (2.1) holds true.
This completes the proof.
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