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We study the following generalized quasilinear Schrödinger equations with critical growth −div(𝑔2(𝑢)∇𝑢) + 𝑔(𝑢)𝑔󸀠(𝑢)|∇𝑢|2 +𝑉(𝑥)𝑢 = 𝜆𝑓(𝑥, 𝑢) + 𝑔(𝑢)|𝐺(𝑢)|2∗−2𝐺(𝑢), 𝑥 ∈ R𝑁, where 𝜆 > 0, 𝑁 ≥ 3, 𝑔(𝑠) : R → R+ is a 𝐶1 even function, 𝑔(0) = 1, and𝑔󸀠(𝑠) ≥ 0 for all 𝑠 ≥ 0, where 𝐺(𝑢) fl ∫𝑢
0
𝑔(𝑡)𝑑𝑡. Under some suitable conditions, we prove that the equation has a nontrivial

solution by variational method.

1. Introduction and Preliminaries

Consider the following generalized quasilinear Schrödinger
equations with critical growth:

− div (𝑔2 (𝑢) ∇𝑢) + 𝑔 (𝑢) 𝑔󸀠 (𝑢) |∇𝑢|2 + 𝑉 (𝑥) 𝑢
= 𝜆𝑓 (𝑥, 𝑢) + 𝑔 (𝑢) |𝐺 (𝑢)|2∗−2 𝐺 (𝑢) , 𝑥 ∈ R

𝑁, (1)

where 𝜆 > 0, 𝑁 ≥ 3, 𝑔(𝑠) : R → R+ is a 𝐶1 even function,𝑔(0) = 1, and 𝑔󸀠(𝑠) ≥ 0 for all 𝑠 ≥ 0.
The equations are related to the existence of solitary wave

solutions for quasilinear Schrödinger equations

𝑖𝑧𝑡 = −Δ𝑧 + 𝑊(𝑥) 𝑧 − 𝑘 (𝑥, |𝑧|) 𝑧
− Δ𝑙 (|𝑧|2) 𝑙󸀠 (|𝑧|2) 𝑧, (2)

where 𝑧 : R × R𝑁 → C, 𝑊 : R𝑁 → R is a given potential,𝑙 : R → R, and 𝑘 : R𝑁 × R → R are suitable functions.
The form of (2) has been derived as models of several
physical phenomena corresponding to various types of 𝑙(𝑠).
For instance, the case 𝑙(𝑠) = 𝑠 models the time evolution
of the condensate wave function in superfluid film [1, 2]
and is called the superfluid film equation in fluid mechanics

by Kurihara [1]. In the case 𝑙(𝑠) = (1 + 𝑠)1/2, problem (2)
models the self-channeling of a high-power ultra short laser
in matter, the propagation of a high-irradiance laser in a
plasma creates an optical index depending nonlinearly on
the light intensity, and this leads to interesting new nonlinear
wave equations; see [3–6]. Formore physical motivations and
more references dealing with applications, we can refer to [7–
14] and references therein.

Set 𝑧(𝑡, 𝑥) = exp(−𝑖𝐸𝑡)𝑢(𝑥), where 𝐸 ∈ R and 𝑢 is a
real function. Then (2) can be reduced to the corresponding
equation of elliptic type (see [15]):

− Δ𝑢 + 𝑉 (𝑥) 𝑢 − Δ𝑙 (𝑢2) 𝑙󸀠 (𝑢2) 𝑢 = 𝑓 (𝑥, 𝑢) ,
𝑥 ∈ R

𝑁, (3)

where 𝑓(𝑥, 𝑢) = 𝑘(𝑥, |𝑢|)𝑢. If we take

𝑔2 (𝑢) = 1 + [(𝑙 (𝑢2))󸀠]2
2 , (4)

then (1) turns into (3) (see [16]).
Moreover, problem (3) also arises in biological models

and propagation of laser beams when 𝑔(𝑢) is a positive
constant (see [17, 18]). In (3), if we set 𝑙(𝑢) = 𝑢, that is,
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𝑔2(𝑢) = 1 + 2𝑢2, then we get the superfluid film equation
in plasma physics:

−Δ𝑢 + 𝑉 (𝑥) 𝑢 − Δ (𝑢2) 𝑢 = 𝑓 (𝑥, 𝑢) , 𝑥 ∈ R
𝑁; (5)

if we set 𝑙(𝑢) = (1 + 𝑢)1/2, that is, 𝑔2(𝑢) = 1 + 𝑢2/2(1 + 𝑢2),
then we get the equation

− Δ𝑢 + 𝑉 (𝑥) 𝑢 − [Δ (1 + 𝑢2)1/2] 𝑢
2 (1 + 𝑢2)1/2

= 𝑓 (𝑥, 𝑢) , 𝑥 ∈ R
𝑁,

(6)

which models the self-channeling of a high-power ultrashort
laser in matter.

In the past, the research on the existence of solitary wave
solutions of Schrödinger equations (2) is for some given
special function 𝑙(𝑠). In this paper, we will use a unified new
variable replacement to study (2), constructed by Shen and
Wang in [16]. Define the energy functional associated with
(1) by

𝐼𝜆 (𝑢) = 12 ∫
R𝑁

𝑔2 (𝑢) |∇𝑢|2 𝑑𝑥 + 12 ∫
R𝑁

𝑉 (𝑥) 𝑢2𝑑𝑥
− 𝜆∫

R𝑁
𝐹 (𝑥, 𝑢) 𝑑𝑥 − 12∗ ∫

R𝑁
|𝐺 (𝑢)|2∗ 𝑑𝑥,

(7)

where 𝐹(𝑥, 𝑢) fl ∫𝑢
0
𝑓(𝑥, 𝑡)𝑑𝑡. However, 𝐼𝜆 is not well

defined in 𝐻1(R𝑁) because of the term ∫
R𝑁

𝑔2(𝑢)|∇𝑢|2𝑑𝑥.
To overcome this difficulty, we make a change of variable
constructed by Shen andWang in [16]: V fl 𝐺(𝑢) fl ∫𝑢

0
𝑔(𝑡)𝑑𝑡.

Then we obtain

𝐽𝜆 (V) = 12 ∫
R𝑁

|∇V|2 𝑑𝑥 + 12 ∫
R𝑁

𝑉 (𝑥)𝐺−1 (V)2 𝑑𝑥
− 𝜆∫

R𝑁
𝐹 (𝑥, 𝐺−1 (V)) 𝑑𝑥 − 12∗ ∫

R𝑁
|V|2∗ 𝑑𝑥.

(8)

If 𝑢 is a nontrivial solution of (1), then

⟨𝐼󸀠𝜆 (𝑢) , 𝜑⟩ = ∫
R𝑁

[𝑔2 (𝑢) ∇𝑢∇𝜑 + 𝑔 (𝑢) 𝑔󸀠 (𝑢) |∇𝑢|2 𝜑
+ 𝑉 (𝑥) 𝑢𝜑 − 𝜆𝑓 (𝑥, 𝑢) 𝜑
− 𝑔 (𝑢) |𝐺 (𝑢)|2∗−2 𝐺 (𝑢) 𝜑] 𝑑𝑥 = 0

(9)

for all 𝜑 ∈ 𝐶∞0 (R𝑁). Let 𝜑 = (1/𝑔(𝑢))𝜓. By [16] we know that
(9) is equivalent to

⟨𝐽󸀠𝜆 (V) , 𝜓⟩ = ∫
R𝑁

[∇V∇𝜓 + 𝑉 (𝑥) 𝐺−1 (V)𝑔 (𝐺−1 (V))𝜓

− 𝜆𝑓 (𝑥, 𝐺−1 (V))
𝑔 (𝐺−1 (V)) 𝜓 − |V|2∗−2 V𝜓]𝑑𝑥 = 0

(10)

for all 𝜓 ∈ 𝐶∞0 (R𝑁). Therefore, in order to find the nontriv-
ial solution of (1), it suffices to study the existence of the
nontrivial solutions of the following equations:

− ΔV + 𝑉 (𝑥) 𝐺−1 (V)𝑔 (𝐺−1 (V)) − 𝜆𝑓 (𝑥, 𝐺−1 (V))
𝑔 (𝐺−1 (V)) − |V|2∗−2 V

= 0.
(11)

Recently, the authors studied generalized quasilinear
Schrödinger equations with subcritical growth [19, 20],
critical growth [21], and supercritical growth [22].

In order to reduce the statements for main results, we list
the assumptions as follows:

(𝑉1) 𝑉(𝑥) ≥ 𝑉0 fl inf𝑥∈R𝑁𝑉(𝑥) > 0 for all 𝑥 ∈ R𝑁.
(𝑉2) lim|𝑥|→∞𝑉(𝑥) = 𝑉∞ < +∞ and 𝑉(𝑥) ≤ 𝑉∞ for all𝑥 ∈ R𝑁.
(𝑓1) 𝑓 ∈ 𝐶(R𝑁 × R,R) and there exists 2 < 𝑝 < 2∗ such

that
󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑡)󵄨󵄨󵄨󵄨 ≤ 𝐶 (1 + 𝑔 (𝑡) |𝐺 (𝑡)|𝑝−1) (12)

for all (𝑥, 𝑡) ∈ R𝑁 × R.
(𝑓2) 𝑓(𝑥, 𝑡) = 𝑜(|𝑡|) uniformly in 𝑥 ∈ R𝑁 as |𝑡| → 0.
(𝑓3) (𝑓(𝑥, 𝐺−1(𝑡))/𝑔(𝐺−1(𝑡)))𝑡 − 2𝐹(𝑥, 𝐺−1(𝑡)) ≥(𝑓(𝑥, 𝐺−1(𝑠𝑡))/𝑔(𝐺−1(𝑠𝑡)))𝑠𝑡 − 2𝐹(𝑥, 𝐺−1(𝑠𝑡)) for

all 𝑡 ∈ R and 𝑠 ∈ [0, 1].
(𝑓4) 𝑓(𝑥, 𝑡)𝑡 > 0 for all (𝑥, 𝑡) ∈ R𝑁 × R\{0}.
(𝑓5) lim|𝑡|→+∞(𝐹(𝑥, 𝐺−1(𝑡))/𝑡2) = +∞ uniformly in 𝑥 ∈

R𝑁.

Set 𝐸 = 𝐻1(R𝑁) with the norm

‖𝑢‖𝐸 = [∫
R𝑁

(|∇𝑢|2 + 𝑢2) 𝑑𝑥]1/2 . (13)

It is easy to prove that 𝐽𝜆 is well defined on 𝐸 and 𝐽𝜆 ∈𝐶1(𝐸,R) under our assumptions and its Gateaux derivative
is given by

⟨𝐽󸀠𝜆 (V) , 𝜑⟩ = ∫
R𝑁

[∇V∇𝜑 + 𝑉 (𝑥) 𝐺−1 (V)𝑔 (𝐺−1 (V))𝜑

− 𝜆𝑓 (𝑥, 𝐺−1 (V))
𝑔 (𝐺−1 (V)) 𝜑 − |V|2∗−2 V𝜑]𝑑𝑥

(14)

for all V, 𝜑 ∈ 𝐸.
Our main result of this paper is as follows.

Theorem 1. Suppose that (𝑉1), (𝑉2), and (𝑓1)–(𝑓5) are satis-
fied. Then if 𝑁 ≥ 5, (1) admits a nontrivial solution for all𝜆 > 0; if 𝑁 = 3, 4, (1) admits a nontrivial solution for large𝜆.
Remark 2. Condition (𝑓3) is weaker than the following
condition (𝑓6).
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(𝑓6) 𝑓(𝑥, 𝐺−1(𝑡))/𝑔(𝐺−1(𝑡))𝑡 is nonincreasing on (−∞, 0)
and nondecreasing on (0, +∞).

Indeed, set 𝑙(𝑠) = 𝑠2𝑡(𝑓(𝑥, 𝐺−1(𝑡))/𝑔(𝐺−1(𝑡))) −2𝐹(𝑥, 𝐺−1(𝑠𝑡)), ∀𝑠 ∈ [0, 1]. Then

𝑙󸀠 (𝑠) = 2𝑠𝑡𝑓 (𝑥, 𝐺−1 (𝑡))
𝑔 (𝐺−1 (𝑡)) − 2𝑓 (𝑥, 𝐺−1 (𝑠𝑡))

𝑔 (𝐺−1 (𝑠𝑡)) 𝑡

= 2𝑠𝑡𝑓 (𝑥, 𝐺−1 (𝑡))
𝑔 (𝐺−1 (𝑡)) − 2𝑡𝑓 (𝑥, 𝐺−1 (𝑠𝑡))

𝑔 (𝐺−1 (𝑠𝑡)) 𝑠𝑡 (𝑠𝑡) .
(15)

If (𝑓6) holds, then
𝑙󸀠 (𝑠) ≥ 2𝑠𝑡𝑓 (𝑥, 𝐺−1 (𝑡))

𝑔 (𝐺−1 (𝑡)) − 2𝑡𝑓 (𝑥, 𝐺−1 (𝑡))
𝑔 (𝐺−1 (𝑡)) 𝑡 (𝑠𝑡) = 0 (16)

whenever 𝑡 > 0 or 𝑡 < 0. Hence 𝑙(𝑠) is nondecreasing on[0, 1], and hence 𝑙(1) ≥ 𝑙(𝑠) for all 𝑠 ∈ [0, 1]. Consequently,(𝑓6) implies that

𝑡𝑓 (𝑥, 𝐺−1 (𝑡))
𝑔 (𝐺−1 (𝑡)) − 2𝐹 (𝑥, 𝐺−1 (𝑡))

≥ 𝑠2𝑡𝑓 (𝑥, 𝐺−1 (𝑡))
𝑔 (𝐺−1 (𝑡)) − 2𝐹 (𝑥, 𝐺−1 (𝑠𝑡))

= 𝑠2𝑡 |𝑡| 𝑓 (𝑥, 𝐺−1 (𝑡))
𝑔 (𝐺−1 (𝑡)) |𝑡| − 2𝐹 (𝑥, 𝐺−1 (𝑠𝑡))

≥ 𝑠2𝑡 |𝑡| 𝑓 (𝑥, 𝐺−1 (𝑠𝑡))
𝑔 (𝐺−1 (𝑠𝑡)) |𝑠𝑡| − 2𝐹 (𝑥, 𝐺−1 (𝑠𝑡))

= 𝑠𝑡𝑓 (𝑥, 𝐺−1 (𝑠𝑡))
𝑔 (𝐺−1 (𝑠𝑡)) − 2𝐹 (𝑥, 𝐺−1 (𝑠𝑡))

(17)

for all 𝑠 ∈ [0, 1]; that is, the condition (𝑓3) holds.
From Remark 2 we obtain Corollary 3.

Corollary 3. Suppose that (𝑉1), (𝑉2), (𝑓1)-(𝑓2), (𝑓4)-(𝑓5), and(𝑓6) are satisfied.Then if𝑁 ≥ 5, (1) admits a nontrivial solution
for all 𝜆 > 0; if 𝑁 = 3, 4, (1) admits a nontrivial solution for
large 𝜆.
Remark 4. In [16], Shen and Wang studied the existence of
nontrivial solutions for generalized quasilinear Schrödinger
equations

− div (𝑔2 (𝑢) ∇𝑢) + 𝑔 (𝑢) 𝑔󸀠 (𝑢) |∇𝑢|2 + 𝑉 (𝑥) 𝑢
= ℎ (𝑢) , 𝑥 ∈ R

𝑁, (18)

where ℎ is a subcritical nonlinearity satisfying the following
conditions:

(ℎ0) ℎ(𝑡) = 0 if 𝑡 ≤ 0.
(ℎ1) ℎ(𝑡) = 𝑜(𝑡) as 𝑡 → 0+.

(ℎ2) There exists 2 < 𝑝 < 2∗ such that

|ℎ (𝑡)| ≤ 𝐶 (1 + 𝑔 (𝑡) |𝐺 (𝑡)|𝑝−1) (19)

for all 𝑡 > 0.
(ℎ3) There exists 𝜇 > 2 such that, for any 𝑡 > 0, there holds

0 < 𝜇𝑔 (𝐺−1 (𝑡))𝐻 (𝐺−1 (𝑡)) ≤ ℎ (𝐺−1 (𝑡)) 𝑡. (20)

As mentioned above, if we set 𝑔2(𝑢) = 1 + 2𝑢2, then we get
the superfluid film equation in plasma physics

−Δ𝑢 + 𝑉 (𝑥) 𝑢 − Δ (𝑢2) 𝑢 = ℎ (𝑢) , 𝑥 ∈ R
𝑁, (21)

whose nontrivial solutionswere studied in [23]. But our prob-
lem (1) is elliptic problem involving the critical exponent, so
our result extends the results of the work [16, 23] to a critical
setting. Moreover, the assumptions about the nonlinearity
in this paper are different from the assumptions about the
nonlinearity in [16, 23].

Remark 5. In [24], Deng et al. studied problem (1) and their
result based on more harsh conditions:

(𝑓1)∗ 𝑓(𝑥, 𝑡) ≥ 0 is differentiable with respect to 𝑡 ∈[0, +∞) for all 𝑥 ∈ R𝑁 and continuous with respect
to 𝑥 ∈ R𝑁 for all 𝑡 ∈ [0, +∞). Moreover, 𝑓(𝑥, 𝑡) ≡ 0
for all (𝑥, 𝑡) ∈ R𝑁 × R−.

(𝑓3)∗ There exists 𝛿 ∈ (0, 2∗ − 2) such that, for any 𝑡 >0, there holds (1 + 𝛿)𝑓(𝑥, 𝑡) ≤ 𝐺(𝑡)[𝑓(𝑥, 𝑡)/𝑔(𝑡)]󸀠,
which implies that there exists 𝜇 ∈ (2, 2∗) such that𝑓(𝑥, 𝑡)𝐺(𝑡) ≥ 𝜇𝑔(𝑡)𝐹(𝑥, 𝑡) for all (𝑥, 𝑡) ∈ R𝑁 × R.

In this paper, we just assume that 𝑓 is a continuous
function. Moreover, there are functionals 𝑓(𝑥, 𝑡) satisfying(𝑓3) but not satisfying the above Ambrosetti-Rabinowitz type
condition (see Remark 1.2 in [25]). Hence, our result is
different from the result there.

2. Proof of Theorem 1

To begin with, we give some lemmas.

Lemma 6. For the functions 𝑔, 𝐺, and 𝐺−1, the following
properties hold:

(1) the functions𝐺(⋅) and𝐺−1(⋅) are strictly increasing and
odd;

(2) 𝐺(𝑠) ≤ 𝑔(𝑠)𝑠 for all 𝑠 ≥ 0; 𝐺(𝑠) ≥ 𝑔(𝑠)𝑠 for all 𝑠 ≤ 0;
(3) 𝑔(𝐺−1(𝑠)) ≥ 𝑔(0) = 1 for all 𝑠 ∈ R;
(4) 𝐺−1(𝑠)/𝑠 is decreasing on (0, +∞) and increasing on(−∞, 0);
(5) |𝐺−1(𝑠)| ≤ (1/𝑔(0))|𝑠| = |𝑠| for all 𝑠 ∈ R;
(6) |𝐺−1(𝑠)|/𝑔(𝐺−1(𝑠)) ≤ (1/𝑔2(0))|𝑠| = |𝑠| for all 𝑠 ∈ R;
(7) 𝐺−1(𝑠)𝑠/𝑔(𝐺−1(𝑠)) ≤ |𝐺−1(𝑠)|2 for all 𝑠 ∈ R;
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(8) lim|𝑠|→0(𝐺−1(𝑠)/𝑠) = 1/𝑔(0) = 1 and
lim
|𝑠|→∞

𝐺−1 (𝑠)𝑠 = {{{
1𝑔 (∞) , if 𝑔 is bounded,

0, if 𝑔 is unbounded. (22)

Proof. Properties (1)–(3) are obvious. By (2), we have

(𝐺−1 (𝑠)𝑠 )󸀠 = 𝑠 − 𝐺−1 (𝑠) 𝑔 (𝐺−1 (𝑠))
𝑔 (𝐺−1 (𝑠)) 𝑠2 ≤ 0 (23)

for all 𝑠 > 0 and
(𝐺−1 (𝑠)𝑠 )󸀠 = 𝑠 − 𝐺−1 (𝑠) 𝑔 (𝐺−1 (𝑠))

𝑔 (𝐺−1 (𝑠)) 𝑠2 ≥ 0 (24)

for all 𝑠 < 0. Consequently, we obtain (4). By mean value
theorem and (3), one has

󵄨󵄨󵄨󵄨󵄨𝐺−1 (𝑠)󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨𝐺−1 (𝑠) − 𝐺−1 (0)󵄨󵄨󵄨󵄨󵄨 = 1𝑔 (𝐺−1 (𝜃𝑠)) |𝑠|
≤ 1𝑔 (0) |𝑠|

(25)

for all 𝑠 ∈ R, where 𝜃 ∈ (0, 1); that is, (5) is proved.
Obviously, (6) is a consequence of (3) and (5). Moreover, (7)
is a consequence of (2). Finally, using L’ Hospital’s rule, we
know that (8) is satisfied. This completes the proof.

Denote

ℎ𝜆 (𝑥, 𝑠) = 𝑉 (𝑥) 𝑠 − 𝑉 (𝑥) 𝐺−1 (𝑠)𝑔 (𝐺−1 (𝑠))
+ 𝜆𝑓 (𝑥, 𝐺−1 (𝑠))

𝑔 (𝐺−1 (𝑠)) .
(26)

Then

𝐻𝜆 (𝑥, 𝑠) fl ∫𝑠
0
ℎ𝜆 (𝑥, 𝑡) 𝑑𝑡

= 12𝑉 (𝑥) [𝑠2 − 𝐺−1 (𝑠)2] + 𝜆𝐹 (𝑥, 𝐺−1 (𝑠)) .
(27)

Consequently,

𝐽𝜆 (V) = 12 ∫
R𝑁

[|∇V|2 + 𝑉 (𝑥) V2] 𝑑𝑥
− ∫

R𝑁
𝐻𝜆 (𝑥, V) 𝑑𝑥 − 12∗ ∫

R𝑁
|V|2∗ 𝑑𝑥.

(28)

Lemma 7. The functions ℎ𝜆(𝑥, 𝑠) and 𝐻𝜆(𝑥, 𝑠) enjoy the
following properties under (𝑓1)–(𝑓5):

(1) lim|𝑠|→0(ℎ𝜆(𝑥, 𝑠)/𝑠) = 0 and lim|𝑠|→0(𝐻𝜆(𝑥, 𝑠)/𝑠2) = 0
uniformly in 𝑥 ∈ R𝑁;

(2) lim|𝑠|→∞(ℎ𝜆(𝑥, 𝑠)/|𝑠|2∗−1) = 0 and lim|𝑠|→∞(𝐻𝜆(𝑥, 𝑠)/|𝑠|2∗) = 0 uniformly in 𝑥 ∈ R𝑁;

(3) 𝑡ℎ𝜆(𝑥, 𝑡) − 2𝐻𝜆(𝑥, 𝑡) ≥ 𝑠𝑡ℎ𝜆(𝑥, 𝑠𝑡) − 2𝐻𝜆(𝑥, 𝑠𝑡) for all𝑡 ∈ R and 𝑠 ∈ [0, 1];
(4) 𝐻𝜆(𝑥, 𝑠) ≥ 0 for all (𝑥, 𝑠) ∈ R𝑁 × R;
(5) lim|𝑠|→+∞(𝐻𝜆(𝑥, 𝑠)/𝑠2) = +∞ uniformly in 𝑥 ∈ R𝑁.

Proof. By (𝑓1)-(𝑓2), for any 𝜀 > 0, there exists 𝐶𝜀 > 0 such
that 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (𝑥, 𝐺−1 (𝑠))
𝑔 (𝐺−1 (𝑠))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝜀 |𝑠| + 𝐶𝜀 |𝑠|𝑝−1 (29)

for all (𝑥, 𝑠) ∈ R𝑁 × R. Set 𝐺−1(𝑠) = 𝑡. Then Lemma 6(8)
implies that

lim
|𝑠|→0

ℎ𝜆 (𝑥, 𝑠)𝑠 = 𝑉 (𝑥) [1 − 1𝑔2 (0)] + 𝜆 lim
|𝑡|→0

𝑓 (𝑥, 𝑡)𝑔 (𝑡) 𝐺 (𝑡)
= 0

(30)

uniformly in 𝑥 ∈ R𝑁. Moreover, by Lemma 6(6) one has

lim
|𝑠|→∞

ℎ𝜆 (𝑥, 𝑠)|𝑠|2∗−1 = −𝑉 (𝑥) lim
|𝑠|→∞

𝐺−1 (𝑠)𝑠𝑔 (𝐺−1 (𝑠)) 𝑠
|𝑠|2∗−1

+ 𝜆 lim
|𝑡|→∞

𝑓 (𝑥, 𝑡)
𝑔 (𝑡) |𝐺 (𝑡)|2∗−1 = 0

(31)

uniformly in 𝑥 ∈ R𝑁. Similarly, we have

lim
|𝑠|→0

𝐻𝜆 (𝑥, 𝑠)𝑠2 = 0 (32)

uniformly in 𝑥 ∈ R𝑁 and

lim
|𝑠|→∞

𝐻𝜆 (𝑥, 𝑠)|𝑠|2∗ = 0 (33)

uniformly in 𝑥 ∈ R𝑁. Hence, (1) and (2) hold.
In the following, we set 𝑙(𝑡) = 𝐺−1(𝑡)2−𝐺−1(𝑡)𝑡/𝑔(𝐺−1(𝑡)),∀𝑡 ∈ R. If 𝑡 ≥ 0, by Lemma 6(2) and 𝑔󸀠(𝑡) ≥ 0 for 𝑡 ≥ 0, we

have

𝐺 (𝑡) [ 1𝑔2 (𝑡) (𝑔 (𝑡) − 𝑔󸀠 (𝑡) 𝑡)] ≤ 𝑡 (34)

for 𝑡 ≥ 0, which implies that

𝐺 (𝑡) ( 𝑡𝑔 (𝑡))
󸀠 1𝑔 (𝑡) ≤ 𝑡𝑔 (𝑡) (35)

for all 𝑡 ≥ 0. Let 𝑟 = 𝐺(𝑡). Then

𝐺 (𝑡) 𝑑𝑑𝑟 ( 𝑡𝑔 (𝑡)) ≤ 𝑡𝑔 (𝑡) (36)

and hence

𝑟 [ 𝐺−1 (𝑟)𝑔 (𝐺−1 (𝑟))]
󸀠 ≤ 𝐺−1 (𝑟)𝑔 (𝐺−1 (𝑟)) (37)
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for 𝑟 ≥ 0. Consequently,
𝑙󸀠 (𝑡) = 2𝐺−1 (𝑡)𝑔 (𝐺−1 (𝑡)) − [ 𝐺−1 (𝑡)𝑔 (𝐺−1 (𝑡))]

󸀠 𝑡 − 𝐺−1 (𝑡)𝑔 (𝐺−1 (𝑡))
= 𝐺−1 (𝑡)𝑔 (𝐺−1 (𝑡)) − [ 𝐺−1 (𝑡)𝑔 (𝐺−1 (𝑡))]

󸀠 𝑡 ≥ 0
(38)

for all 𝑡 ≥ 0, that is, 𝑙(𝑡) is increasing with respect to 𝑡 ≥ 0.
Hence 𝑙(𝑠𝑡) ≤ 𝑙(𝑡) for all 𝑠 ∈ [0, 1] and 𝑡 ≥ 0; that is,

𝐺−1 (𝑠𝑡)2 − 𝐺−1 (𝑠𝑡) 𝑠𝑡𝑔 (𝐺−1 (𝑠𝑡)) ≤ 𝐺−1 (𝑡)2 − 𝐺−1 (𝑡) 𝑡𝑔 (𝐺−1 (𝑡)) (39)

for all 𝑠 ∈ [0, 1] and 𝑡 ≥ 0. Note that Lemma 6(1) implies that𝑙(𝑡) is an even function. Therefore, if 𝑡 < 0, we easily obtain
that 𝑙(𝑠𝑡) ≤ 𝑙(𝑡) for all 𝑠 ∈ [0, 1] and 𝑡 < 0. Consequently,

𝐺−1 (𝑠𝑡)2 − 𝐺−1 (𝑠𝑡) 𝑠𝑡𝑔 (𝐺−1 (𝑠𝑡)) ≤ 𝐺−1 (𝑡)2 − 𝐺−1 (𝑡) 𝑡𝑔 (𝐺−1 (𝑡)) (40)

for all 𝑠 ∈ [0, 1] and 𝑡 ∈ R. Combining with (𝑓3), we
can conclude (3). Moreover, (𝑓4) and Lemma 6(5) imply that𝐻(𝑥, 𝑠) ≥ 0 for all (𝑥, 𝑠) ∈ R𝑁 × R. Clearly, (𝑓5) and
Lemma 6(5) imply that (5) is satisfied. This completes the
proof.

Lemma 8. Suppose that (𝑉1), (𝑉2), and (𝑓1)-(𝑓2) are satisfied.
Then the energy functional 𝐽𝜆 satisfies the following conditions:

(i) There exist 𝛽, 𝜌 > 0 such that 𝐽𝜆(V) ≥ 𝛽 for ‖V‖𝐸 = 𝜌.
(ii) There exists 𝑒 ∈ 𝐸 with ‖𝑒‖𝐸 > 𝜌 such that 𝐽𝜆(𝑒) < 0.

Proof. (i) Set 𝑆𝜌 fl {𝑢 ∈ 𝐸 : ‖𝑢‖𝐸 = 𝜌}. By (𝑓1)-(𝑓2), Lemmas
6(6) and 7(1), and (2), for any 𝜀 > 0, there exists 𝐶𝜀 > 0 such
that 󵄨󵄨󵄨󵄨𝐻𝜆 (𝑥, 𝑠)󵄨󵄨󵄨󵄨 ≤ 𝜀 (|𝑠|2 + |𝑠|2∗) + 𝐶𝜀 |𝑠|𝑝 (41)

for all (𝑥, 𝑠) ∈ R𝑁 × R. Consequently, for V ∈ 𝑆𝜌, we have
𝐽𝜆 (V) ≥ 12𝐶1 ‖V‖2𝐸 − 𝐶2𝜀 ‖V‖2𝐸 − 𝐶3𝜀 ‖V‖2∗𝐸

− 𝐶4𝐶𝜀 ‖V‖𝑝𝐸
≥ 12𝐶1𝜌2 − 𝐶2𝜀𝜌2 − 𝐶3𝜀𝜌2∗ − 𝐶4𝐶𝜀𝜌𝑝 fl 𝛽 > 0

(42)

for small 𝜀 > 0 and 𝜌 > 0.
(ii) Take V∗ ∈ 𝐸\{0}. Then

𝐽𝜆 (𝑡V∗) ≤ 12𝐶5𝑡2 󵄩󵄩󵄩󵄩V∗󵄩󵄩󵄩󵄩2𝐸 − 12∗ 𝑡2
∗ ∫

R𝑁

󵄨󵄨󵄨󵄨V∗󵄨󵄨󵄨󵄨2∗ 𝑑𝑥
+ 𝜀𝑡2 ∫

R𝑁

󵄨󵄨󵄨󵄨V∗󵄨󵄨󵄨󵄨2 𝑑𝑥 + 𝜀𝑡2∗ ∫
R𝑁

󵄨󵄨󵄨󵄨V∗󵄨󵄨󵄨󵄨2∗ 𝑑𝑥
+ 𝐶𝜀𝑡𝑝 ∫

R𝑁

󵄨󵄨󵄨󵄨V∗󵄨󵄨󵄨󵄨𝑝 𝑑𝑥 < 0
(43)

for large 𝑡 > 0 and small 𝜀 > 0. Consequently, we can take 𝑒 fl𝑡∗V∗ for some large 𝑡∗ > 0 such that (ii) holds.This completes
the proof.

Lemma9. Suppose that (𝑉1), (𝑉2), and (𝑓1)–(𝑓4) are satisfied.
Then there exists a bounded Cerami sequence {V𝑛} ⊂ 𝐸 for 𝐽𝜆
with 𝐽𝜆(V𝑛) → 𝑐𝜆 ≥ 𝛽 > 0, where
𝑐𝜆 fl inf
𝛾∈Γ

sup
𝑡∈[0,1]

𝐽𝜆 (𝛾 (𝑡)) ,
Γ fl {𝛾 ∈ 𝐶 ([0, 1] , 𝐸) : 𝛾 (0) = 0, 𝐽𝜆 (𝛾 (1)) < 0} , (44)

𝛽 is the constant appearing in Lemma 8.

Proof. By Lemma 8 and the mountain pass theorem without(PS) condition (see Theorem 4.1 in [26]), there exists a
Cerami sequence {V𝑛} ⊂ 𝐸 satisfying

𝐽𝜆 (V𝑛) 󳨀→ 𝑐𝜆 ≥ 𝛽 > 0,
(1 + 󵄩󵄩󵄩󵄩V𝑛󵄩󵄩󵄩󵄩𝐸) 󵄩󵄩󵄩󵄩󵄩𝐽󸀠𝜆 (V𝑛)󵄩󵄩󵄩󵄩󵄩𝐸∗ 󳨀→ 0, (45)

where

𝑐𝜆 fl inf
𝛾∈Γ

sup
𝑡∈[0,1]

𝐽𝜆 (𝛾 (𝑡)) ,
Γ fl {𝛾 ∈ 𝐶 ([0, 1] , 𝐸) : 𝛾 (0) = 0, 𝐽𝜆 (𝛾 (1)) < 0} , (46)

𝛽 is the constant appearing in Lemma 8.
Let 𝑡𝑛 ∈ [0, 1] be such that 𝐽𝜆(𝑡𝑛V𝑛) = max𝑡∈[0,1]𝐽𝜆(𝑡V𝑛).

Then {𝐽𝜆(𝑡𝑛V𝑛)} is bounded from above. Indeed, without loss
of the generality, we may assume that 𝑡𝑛 ∈ (0, 1) for all 𝑛 ∈ N.
Hence, by Lemma 7(3) we have

𝐽𝜆 (𝑡𝑛V𝑛) = 𝐽𝜆 (𝑡𝑛V𝑛) − 12 ⟨𝐽󸀠𝜆 (𝑡𝑛V𝑛) , 𝑡𝑛V𝑛⟩
= (12 − 12∗ ) 𝑡2∗𝑛 ∫

R𝑁

󵄨󵄨󵄨󵄨V𝑛󵄨󵄨󵄨󵄨2∗ 𝑑𝑥
+ ∫

R𝑁
[12𝑡𝑛V𝑛ℎ𝜆 (𝑥, 𝑡𝑛V𝑛) − 𝐻𝜆 (𝑥, 𝑡𝑛V𝑛)] 𝑑𝑥

≤ (12 − 12∗ )∫
R𝑁

󵄨󵄨󵄨󵄨V𝑛󵄨󵄨󵄨󵄨2∗ 𝑑𝑥
+ ∫

R𝑁
[12V𝑛ℎ𝜆 (𝑥, V𝑛) − 𝐻𝜆 (𝑥, V𝑛)] 𝑑𝑥

= 𝐽𝜆 (V𝑛) − 12 ⟨𝐽󸀠𝜆 (V𝑛) , V𝑛⟩ = 𝑐𝜆 + 𝑜 (1) .

(47)

This shows that {𝐽𝜆(𝑡𝑛V𝑛)} is bounded from above.
Now, we prove that {V𝑛} is bounded in 𝐸. Otherwise,

if ‖V𝑛‖𝐸 is unbounded, then, up to a subsequence, we may
assume that ‖V𝑛‖𝐸 → +∞. Set 𝑤𝑛 = V𝑛/‖V𝑛‖𝐸. Then there
exists 𝑤 ∈ 𝐸 such that 𝑤𝑛 ⇀ 𝑤 in 𝐸. By 𝐽𝜆(V𝑛) → 𝑐𝜆, we have

𝑜 (1) + 12 max {1, 𝑉∞}
≥ 12∗

󵄩󵄩󵄩󵄩V𝑛󵄩󵄩󵄩󵄩2∗2∗󵄩󵄩󵄩󵄩V𝑛󵄩󵄩󵄩󵄩2𝐸 + ∫
R𝑁

𝐻𝜆 (𝑥, V𝑛)󵄩󵄩󵄩󵄩V𝑛󵄩󵄩󵄩󵄩2𝐸 𝑑𝑥.
(48)
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Set Ω = {𝑥 ∈ R𝑁 : 𝑤(𝑥) ̸= 0}. If meas(Ω) > 0, then by
Lemma 7(4) and Fatou Lemma, one has

𝑜 (1) + 12 max {1, 𝑉∞}
≥ 12∗

󵄩󵄩󵄩󵄩V𝑛󵄩󵄩󵄩󵄩2∗2∗󵄩󵄩󵄩󵄩V𝑛󵄩󵄩󵄩󵄩2𝐸 + ∫
R𝑁

𝐻𝜆 (𝑥, V𝑛)󵄩󵄩󵄩󵄩V𝑛󵄩󵄩󵄩󵄩2𝐸 𝑑𝑥
≥ 12∗ ∫

Ω
𝑤2𝑛 󵄨󵄨󵄨󵄨V𝑛󵄨󵄨󵄨󵄨2∗−2 𝑑𝑥 󳨀→ +∞

(49)

as 𝑛 → ∞. This is a contradiction. Hence |Ω| = 0, that is,𝑤 = 0 a.e. on R𝑁. For any 𝐵 > 0, by ‖V𝑛‖𝐸 → +∞ we have

𝐽𝜆 (𝑡𝑛V𝑛) ≥ 𝐽𝜆 ( 𝐵󵄩󵄩󵄩󵄩V𝑛󵄩󵄩󵄩󵄩𝐸 V𝑛) = 𝐽𝜆 (𝐵𝑤𝑛)
≥ 𝐵22 min {1, 𝑉0} − ∫

R𝑁
𝐻𝜆 (𝑥, 𝐵𝑤𝑛) 𝑑𝑥

− 𝐵2∗2∗ ∫
R𝑁

󵄨󵄨󵄨󵄨𝑤𝑛󵄨󵄨󵄨󵄨2∗ 𝑑𝑥

(50)

for 𝑛 sufficiently large. By (29), Lemmas 6(6) and 7(1), and (2),
for any 𝜀 > 0, there exists 𝐶𝜀 > 0 such that

󵄨󵄨󵄨󵄨ℎ𝜆 (𝑥, 𝑠) 𝑠󵄨󵄨󵄨󵄨 ≤ 𝜀 (|𝑠|2 + |𝑠|2∗) + 𝐶𝜀 |𝑠|𝑝 (51)

for all (𝑥, 𝑠) ∈ R𝑁 × R. Consequently,

∫
R𝑁

󵄨󵄨󵄨󵄨𝑤𝑛󵄨󵄨󵄨󵄨2∗ 𝑑𝑥 ≤ max {1, 𝑉∞}󵄩󵄩󵄩󵄩V𝑛󵄩󵄩󵄩󵄩2∗−2𝐸
− 1󵄩󵄩󵄩󵄩V𝑛󵄩󵄩󵄩󵄩2∗𝐸 ∫

R𝑁
ℎ𝜆 (𝑥, V𝑛) V𝑛𝑑𝑥 + 𝑜 (1)

󳨀→ 0

(52)

as 𝑛 → ∞ and so ∫
R𝑁

|𝑤𝑛|𝑝𝑑𝑥 → 0 as 𝑛 → ∞ by using
interpolation inequality. Moreover, (41) implies that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫R𝑁𝐻𝜆 (𝑥, 𝐵𝑤𝑛) 𝑑𝑥󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝜀𝐵2 ∫
R𝑁

𝑤2𝑛𝑑𝑥
+ 𝜀𝐵2∗ ∫

R𝑁

󵄨󵄨󵄨󵄨𝑤𝑛󵄨󵄨󵄨󵄨2∗ 𝑑𝑥
+ 𝐶𝜀𝐵𝑝 ∫

R𝑁

󵄨󵄨󵄨󵄨𝑤𝑛󵄨󵄨󵄨󵄨𝑝 𝑑𝑥.
(53)

By the arbitrariness of 𝜀, we obtain ∫
R𝑁

𝐻𝜆(𝑥, 𝐵𝑤𝑛)𝑑𝑥 → 0 as𝑛 → ∞. Hence

lim inf
𝑛→∞

𝐽𝜆 (𝑡𝑛V𝑛) ≥ 𝐵22 min {1, 𝑉0} , ∀𝐵 > 0. (54)

This contradicts the fact that {𝐽𝜆(𝑡𝑛V𝑛)} is bounded from
above. Consequently, {V𝑛} is bounded in𝐸.This completes the
proof of Lemma 9.

Lemma 10. Suppose that (𝑉1), (𝑉2), and (𝑓1)–(𝑓5) are sat-
isfied. Then if 𝑁 ≥ 5, the minimax level 𝑐𝜆 satisfies 𝑐𝜆 <(1/𝑁)𝑆𝑁/2 for all 𝜆 > 0; if 𝑁 = 3, 4, the minimax level 𝑐𝜆
satisfies 𝑐𝜆 < (1/𝑁)𝑆𝑁/2 for large 𝜆, where 𝑆 is the best constant
of the embedding 𝐷1,2(R𝑁) 󳨅→ 𝐿2∗(R𝑁).
Proof. From the minimax characterization of 𝑐𝜆 we see that
it is sufficient to show that there exists V0 ∈ 𝐸\{0} such that
sup𝑡≥0𝐽𝜆(𝑡V0) < (1/𝑁)𝑆𝑁/2.

We follow the strategy used in [24] but need to modify
some process. Given 𝜀 > 0, we consider the function

𝑤𝜀 (𝑥) = [𝑁 (𝑁 − 2) 𝜀](𝑁−2)/4
(𝜀 + |𝑥|2)(𝑁−2)/2 , (55)

which satisfies the following equations:

−Δ𝑢 = 𝑢2∗−1, in R
𝑁,

𝑢 ∈ 𝐷1,2 (R𝑁) ,
𝑢 (𝑥) > 0,

in R
𝑁.

(56)

Moreover, 𝑤𝜀(𝑥) satisfies
󵄨󵄨󵄨󵄨∇𝑤𝜀󵄨󵄨󵄨󵄨22 = 󵄨󵄨󵄨󵄨𝑤𝜀󵄨󵄨󵄨󵄨2∗2∗ = 𝑆𝑁/2. (57)

Let 𝜑 ∈ 𝐶∞0 (R𝑁, [0, 1]) be such that 𝜑(𝑥) ≡ 1 for |𝑥| ≤ 𝜌𝜀 and𝜑(𝑥) ≡ 0 for |𝑥| ≥ 2𝜌𝜀, where 𝜌𝜀 fl 𝜀𝜏 with 𝜏 ∈ (1/4, 1/2). Set𝜓𝜀(𝑥) = 𝜑(𝑥)𝑤𝜀(𝑥). Then

∫
R𝑁

󵄨󵄨󵄨󵄨∇𝜓𝜀󵄨󵄨󵄨󵄨2 𝑑𝑥 = 𝑆𝑁/2 + 𝑂 (𝜀(𝑁−2)/2) ,
∫
R𝑁

󵄨󵄨󵄨󵄨𝜓𝜀󵄨󵄨󵄨󵄨2∗ 𝑑𝑥 = 𝑆𝑁/2 + 𝑂 (𝜀𝑁/2) ,
∫
R𝑁

󵄨󵄨󵄨󵄨𝜓𝜀󵄨󵄨󵄨󵄨 𝑑𝑥 ≤ 𝐶𝜀(𝑁−2)/4,
∫
R𝑁

󵄨󵄨󵄨󵄨𝜓𝜀󵄨󵄨󵄨󵄨2∗−1 𝑑𝑥 ≤ 𝐶𝜀(𝑁−2)/4,
∫
R𝑁

󵄨󵄨󵄨󵄨∇𝜓𝜀󵄨󵄨󵄨󵄨 𝑑𝑥 ≤ 𝐶𝜀(𝑁−2)/4,

∫
R𝑁

󵄨󵄨󵄨󵄨𝜓𝜀󵄨󵄨󵄨󵄨2 𝑑𝑥 =
{{{{{{{{{

𝐶𝜀 + 𝑂 (𝜀(𝑁−2)/2) , if 𝑁 ≥ 5,
𝐶𝜀 |ln 𝜀| + 𝑂 (𝜀) , if 𝑁 = 4,
𝑂 (𝜀1/2) , if 𝑁 = 3.

(58)

Since 𝐽𝜆(0) = 0 and lim𝑡→∞𝐽𝜆(𝑡𝜓𝜀) = −∞, there exists 𝑡𝜀 > 0
such that 𝐽𝜆(𝑡𝜀𝜓𝜀) = max𝑡≥0𝐽𝜆(𝑡𝜓𝜀). We claim that there exist
two positive constants 𝑡1, 𝑡2 independent of 𝜀 such that

𝑡1 ≤ 𝑡𝜀 ≤ 𝑡2 (59)
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for small 𝜀 > 0. Indeed, by ⟨𝐽󸀠𝜆(𝑡𝜀𝜓𝜀), 𝜓𝜀⟩ = 0 we have
∫
R𝑁

[󵄨󵄨󵄨󵄨∇𝜓𝜀󵄨󵄨󵄨󵄨2 + 𝑉 (𝑥) 𝜓2𝜀 ] 𝑑𝑥󵄨󵄨󵄨󵄨𝜓𝜀󵄨󵄨󵄨󵄨2∗2∗ − 𝑡2∗−2𝜀

− ∫
R𝑁

ℎ𝜆 (𝑥, 𝑡𝜀𝜓𝜀) 𝑡𝜀𝜓𝜀𝑑𝑥
𝑡2𝜀 󵄨󵄨󵄨󵄨𝜓𝜀󵄨󵄨󵄨󵄨2∗2∗ = 0.

(60)

By (29), Lemmas 6(6) and 7(1), and (2), for any 𝛿 > 0, there
exists 𝐶𝛿 > 0 such that

󵄨󵄨󵄨󵄨ℎ𝜆 (𝑥, 𝑠) 𝑠󵄨󵄨󵄨󵄨 ≤ 𝛿 |𝑠|2∗ + 𝐶𝛿 |𝑠|2 (61)

for all (𝑥, 𝑠) ∈ R𝑁 × R. Consequently,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
R𝑁

ℎ𝜆 (𝑥, 𝑡𝜀𝜓𝜀) 𝑡𝜀𝜓𝜀𝑑𝑥
𝑡2𝜀 󵄨󵄨󵄨󵄨𝜓𝜀󵄨󵄨󵄨󵄨2∗2∗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ∫

R𝑁
[𝛿𝑡2∗𝜀 𝜓2∗𝜀 + 𝐶𝛿𝑡2𝜀𝜓2𝜀 ] 𝑑𝑥

𝑡2𝜀 󵄨󵄨󵄨󵄨𝜓𝜀󵄨󵄨󵄨󵄨2∗2∗
= 𝛿𝑡2∗−2𝜀 + 𝐶𝛿

󵄨󵄨󵄨󵄨𝜓𝜀󵄨󵄨󵄨󵄨22󵄨󵄨󵄨󵄨𝜓𝜀󵄨󵄨󵄨󵄨2∗2∗
= 𝛿𝑡2∗−2𝜀 + 𝐶𝛿 [𝑆𝑁/2 + 𝑂 (𝜀𝑁/2)]−1 󵄨󵄨󵄨󵄨𝜓𝜀󵄨󵄨󵄨󵄨22
≤ 𝛿𝑡2∗−2𝜀 + 𝐶𝑆−𝑁/2 󵄨󵄨󵄨󵄨𝜓𝜀󵄨󵄨󵄨󵄨22
= 𝛿𝑡2∗−2𝜀

+ 𝐶𝑆−𝑁/2
{{{{{{{{{

𝐶𝜀 + 𝑂 (𝜀(𝑁−2)/2) , if 𝑁 ≥ 5,
𝐶𝜀 |ln 𝜀| + 𝑂 (𝜀) , if 𝑁 = 4,
𝑂 (𝜀1/2) , if 𝑁 = 3

= 𝛿𝑡2∗−2𝜀 + 𝑜 (1)

(62)

as 𝜀 → 0. Note that
󵄩󵄩󵄩󵄩𝜓𝜀󵄩󵄩󵄩󵄩2𝐸󵄨󵄨󵄨󵄨𝜓𝜀󵄨󵄨󵄨󵄨2∗2∗ = 󵄨󵄨󵄨󵄨∇𝜓𝜀󵄨󵄨󵄨󵄨22 + 󵄨󵄨󵄨󵄨𝜓𝜀󵄨󵄨󵄨󵄨22󵄨󵄨󵄨󵄨𝜓𝜀󵄨󵄨󵄨󵄨2∗2∗ = 1𝑆𝑁/2 + 𝑂 (𝜀𝑁/2)

⋅
{{{{{{{{{

𝑆𝑁/2 + 𝑂 (𝜀(𝑁−2)/2) + 𝐶𝜀 + 𝑂 (𝜀(𝑁−2)/2) , if 𝑁 ≥ 5,
𝑆𝑁/2 + 𝑂 (𝜀(𝑁−2)/2) + 𝐶𝜀 |ln 𝜀| + 𝑂 (𝜀) , if 𝑁 = 4,
𝑆𝑁/2 + 𝑂 (𝜀(𝑁−2)/2) + 𝑂 (𝜀1/2) , if 𝑁 = 3

󳨀→ 1

(63)

as 𝜀 → 0. Hence by (60) one has
0 ≥ min {1, 𝑉0} (1 + 𝑜 (1)) − 𝑡2∗−2𝜀 − 𝛿𝑡2∗−2𝜀 + 𝑜 (1) (64)

as 𝜀 → 0, which implies that

𝑡𝜀 ≥ [min {1, 𝑉0}2 (1 + 𝛿) ]1/(2
∗−2)

fl 𝑡1 > 0 (65)

for 𝜀 > 0 small enough. On the other hand, (60) leads to

𝑡2∗−2𝜀 ≤ max {1, 𝑉∞} 󵄩󵄩󵄩󵄩𝜓𝜀󵄩󵄩󵄩󵄩2𝐸󵄨󵄨󵄨󵄨𝜓𝜀󵄨󵄨󵄨󵄨2∗2∗
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
R𝑁

ℎ𝜆 (𝑥, 𝑡𝜀𝜓𝜀) 𝑡𝜀𝜓𝜀𝑑𝑥
𝑡2𝜀 󵄨󵄨󵄨󵄨𝜓𝜀󵄨󵄨󵄨󵄨2∗2∗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ max {1, 𝑉∞} (1 + 𝑜 (1)) + 𝛿𝑡2∗−2𝜀 + 𝑜 (1)

(66)

as 𝜀 → 0, which implies that

𝑡𝜀 ≤ [2max {1, 𝑉∞}
1 − 𝛿 ]1/(2

∗−2)

fl 𝑡2 < +∞ (67)

for 𝛿 > 0 and 𝜀 > 0 small enough.
Since 𝑄(𝑡) fl 𝑡2/2 − 𝑡2∗/2∗ has only maximum at 𝑡 = 1,

one has

𝐽𝜆 (𝑡𝜀𝜓𝜀) = 12𝑡2𝜀 ∫
R𝑁

󵄨󵄨󵄨󵄨∇𝜓𝜀󵄨󵄨󵄨󵄨2 𝑑𝑥 + 12𝑡2𝜀 ∫
R𝑁

𝑉 (𝑥) 𝜓2𝜀𝑑𝑥
− ∫

R𝑁
𝐻𝜆 (𝑥, 𝑡𝜀𝜓𝜀) 𝑑𝑥

− 12∗ 𝑡2
∗

𝜀 ∫
R𝑁

𝜓2∗𝜀 𝑑𝑥
= (𝑡2𝜀2 − 𝑡2∗𝜀2∗ )𝑆𝑁/2 + 𝑂 (𝜀(𝑁−2)/2)

+ 12𝑡2𝜀 ∫
R𝑁

𝑉 (𝑥) 𝜓2𝜀𝑑𝑥
− ∫

R𝑁
𝐻𝜆 (𝑥, 𝑡𝜀𝜓𝜀) 𝑑𝑥

≤ 1𝑁𝑆𝑁/2 + 𝑂 (𝜀(𝑁−2)/2)
+ 12𝑡22𝑉∞ ∫

R𝑁
𝜓2𝜀𝑑𝑥

− ∫
R𝑁

𝐻𝜆 (𝑥, 𝑡𝜀𝜓𝜀) 𝑑𝑥.

(68)

Notice that, for 𝑥 ∈ 𝐵𝜌𝜀 , we have
𝑡𝜀𝜓𝜀 = 𝑡𝜀𝑤𝜀 = 𝑡𝜀 [𝑁 (𝑁 − 2) 𝜀](𝑁−2)/4

(𝜀 + |𝑥|2)(𝑁−2)/2

≥ 𝐶𝑡𝜀 [𝑁 (𝑁 − 2)](𝑁−2)/4 𝜀(𝑁−2)/4𝜀𝜏(𝑁−2)
≥ 𝐶𝑡1 [𝑁 (𝑁 − 2)](𝑁−2)/4 𝜀(𝑁−2)(1/4−𝜏) 󳨀→ +∞

(69)

as 𝜀 → 0, which combining with Lemma 7(4) and (5) implies
that for any 𝑀 > 0

∫
R𝑁

𝐻𝜆 (𝑥, 𝑡𝜀𝜓𝜀) 𝑑𝑥 ≥ 𝑀𝑡2𝜀 ∫
𝐵𝜌𝜀

𝜓2𝜀𝑑𝑥 (70)
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for 𝜀 > 0 small enough. Note that

∫
𝐵𝜌𝜀

𝜓2𝜀𝑑𝑥

= [𝑁 (𝑁 − 2)](𝑁−2)/2𝑁𝜔𝑁𝜀 ∫𝜌𝜀/√𝜀
0

𝑠𝑁−1
(1 + 𝑠2)𝑁−2 𝑑𝑠,

∫+∞
0

𝑠𝑁−1
(1 + 𝑠2)𝑁−2 𝑑𝑠 ≥ ∫1

0

𝑠𝑁−1
(1 + 𝑠2)𝑁−2 𝑑𝑠 ≥ 1𝑁 ⋅ 12𝑁−2

fl 𝐶 > 0.

(71)

Consequently,

∫
R𝑁

𝐻𝜆 (𝑥, 𝑡𝜀𝜓𝜀) 𝑑𝑥 ≥ 𝑀𝐶𝜀 (72)

for 𝜀 > 0 small enough. Hence by (68)

𝐽𝜆 (𝑡𝜀𝜓𝜀) ≤ 1𝑁𝑆𝑁/2 + 𝑂 (𝜀(𝑁−2)/2)
+ 12𝑡22𝑉∞ ∫

R𝑁
𝜓2𝜀𝑑𝑥

− ∫
R𝑁

𝐻𝜆 (𝑥, 𝑡𝜀𝜓𝜀) 𝑑𝑥
≤ 1𝑁𝑆𝑁/2 + 𝑂 (𝜀(𝑁−2)/2) − 𝑀𝐶𝜀

+ 𝐶
{{{{{{{{{

𝜀 + 𝑂 (𝜀(𝑁−2)/2) , if 𝑁 ≥ 5,
𝜀 |ln 𝜀| + 𝑂 (𝜀) , if 𝑁 = 4,
𝑂 (𝜀1/2) , if 𝑁 = 3.

(73)

From this, we see that 𝐽𝜆(𝑡𝜀𝜓𝜀) < (1/𝑁)𝑆𝑁/2 for 𝜀 > 0 small
enough and 𝑀 big enough if 𝑁 ≥ 5. Consequently, 𝑐𝜆 < (1/𝑁)𝑆𝑁/2 for all 𝜆 > 0 if 𝑁 ≥ 5.

In the following, we consider the case𝑁 = 3, 4. Indeed, if
the conclusion is false, then there exists a sequence {𝜆𝑛} with𝜆𝑛 → +∞ such that 𝑐𝜆𝑛 ≥ (1/𝑁)𝑆𝑁/2. Take V ∈ 𝐸\{0}. Then
by the proof of Lemma 8, there exists a unique 𝑡𝜆𝑛 > 0 such
that max𝑡>0𝐽𝜆𝑛(𝑡V) = 𝐽𝜆𝑛(𝑡𝜆𝑛V). Hence

𝑡2𝜆𝑛 ∫
R𝑁

|∇V|2 𝑑𝑥 + ∫
R𝑁

𝑉 (𝑥) 𝐺−1 (𝑡𝜆𝑛V)𝑔 (𝐺−1 (𝑡𝜆𝑛V)) 𝑡𝜆𝑛V 𝑑𝑥
= 𝑡2∗𝜆𝑛 ∫

R𝑁
|V|2∗ 𝑑𝑥

+ 𝜆𝑛 ∫
R𝑁

𝑓 (𝑥, 𝐺−1 (𝑡𝜆𝑛V))𝑔 (𝐺−1 (𝑡𝜆𝑛V)) 𝑡𝜆𝑛V 𝑑𝑥.

(74)

By Lemma 6(6) and (𝑓4) we get
max {1, 𝑉∞} ‖V‖2𝐸 ≥ 𝑡2∗−2𝜆𝑛 ∫

R𝑁
|V|2∗ 𝑑𝑥, (75)

which implies that {𝑡𝜆𝑛} is bounded. Hence, up to a subse-
quence, there exists 𝑡0 ≥ 0 such that 𝑡𝜆𝑛 → 𝑡0 as 𝑛 → ∞. If𝑡0 > 0, then by (𝑓4) and Fatou lemma we have

lim
𝑛→∞

[𝑡2∗𝜆𝑛 ∫
R𝑁

|V|2∗ 𝑑𝑥

+ 𝜆𝑛 ∫
R𝑁

𝑓 (𝑥, 𝐺−1 (𝑡𝜆𝑛V))𝑔 (𝐺−1 (𝑡𝜆𝑛V)) 𝑡𝜆𝑛V 𝑑𝑥] = +∞.
(76)

But, on the other hand, by Lemma 6(6) one has

𝑡2∗𝜆𝑛 ∫
R𝑁

|V|2∗ 𝑑𝑥 + 𝜆𝑛 ∫
R𝑁

𝑓 (𝑥, 𝐺−1 (𝑡𝜆𝑛V))𝑔 (𝐺−1 (𝑡𝜆𝑛V)) 𝑡𝜆𝑛V 𝑑𝑥
≤ max {1, 𝑉∞} 𝑡2𝜆𝑛 ‖V‖2𝐸 󳨀→ max {1, 𝑉∞} 𝑡20 ‖V‖2𝐸 ,

(77)

a contradiction. Hence 𝑡0 = 0 and by Lemma 7(4) we know
that

max
𝑡>0

𝐽𝜆𝑛 (𝑡V) = 𝐽𝜆𝑛 (𝑡𝜆𝑛V)
≤ 12 max {1, 𝑉∞} 𝑡2𝜆𝑛 ‖V‖2𝐸

− 12∗ 𝑡2
∗

𝜆𝑛
∫
R𝑁

|V|2∗ 𝑑𝑥 󳨀→ 0
(78)

as 𝑛 → ∞. Consequently,

0 < 1𝑁𝑆𝑁/2 ≤ 𝑐𝜆𝑛 ≤ inf
𝑢∈𝐸\{0}

max
𝑡>0

𝐽𝜆𝑛 (𝑡𝑢) ≤ max
𝑡>0

𝐽𝜆𝑛 (𝑡V)
󳨀→ 0,

(79)

a contradiction. This completes the proof.

Proof of Theorem 1. Since {V𝑛} ⊂ 𝐸 is a bounded Cerami
sequence for 𝐽𝜆 at the level 𝑐𝜆 > 0, there exists V ∈ 𝐸 such
that

V𝑛 ⇀ V in 𝐸,
V𝑛 󳨀→ V in 𝐿𝑞loc (R𝑁) for 1 ≤ 𝑞 < 2∗,

V𝑛 (𝑥) 󳨀→ V (𝑥) a.e. on R
𝑁.

(80)

Using a standard argument, we know that 𝐽󸀠𝜆(V) = 0, that is,
V is a weak solution of (11). Indeed, for any 𝜓 ∈ 𝐶∞0 (R𝑁), we
have

𝑜 (1) = ⟨𝐽󸀠𝜆 (V𝑛) , 𝜓⟩
= ∫

R𝑁
∇V𝑛∇𝜓𝑑𝑥 + ∫

R𝑁
𝑉 (𝑥) V𝑛𝜓𝑑𝑥

− ∫
R𝑁

󵄨󵄨󵄨󵄨V𝑛󵄨󵄨󵄨󵄨2∗−2 V𝑛𝜓𝑑𝑥 − ∫
R𝑁

ℎ𝜆 (𝑥, V𝑛) 𝜓 𝑑𝑥.
(81)



Advances in Mathematical Physics 9

Since V𝑛 ⇀ V in 𝐸, one has
∫
R𝑁

∇V𝑛∇𝜓𝑑𝑥 󳨀→ ∫
R𝑁

∇V∇𝜓𝑑𝑥,
∫
R𝑁

𝑉 (𝑥) V𝑛𝜓𝑑𝑥 󳨀→ ∫
R𝑁

𝑉 (𝑥) V𝜓𝑑𝑥,
∫
R𝑁

󵄨󵄨󵄨󵄨V𝑛󵄨󵄨󵄨󵄨2∗−2 V𝑛𝜓𝑑𝑥 󳨀→ ∫
R𝑁

|V|2∗−2 V𝜓𝑑𝑥,
∫
R𝑁

ℎ𝜆 (𝑥, V𝑛) 𝜓 𝑑𝑥 󳨀→ ∫
R𝑁

ℎ𝜆 (𝑥, V) 𝜓 𝑑𝑥.

(82)

Consequently,

0 = ∫
R𝑁

∇V∇𝜓𝑑𝑥 + ∫
R𝑁

𝑉 (𝑥) V𝜓𝑑𝑥
− ∫

R𝑁
|V|2∗−2 V𝜓𝑑𝑥 − ∫

R𝑁
ℎ𝜆 (𝑥, V) 𝜓 𝑑𝑥

(83)

for all 𝜓 ∈ 𝐶∞0 (R𝑁). For any 𝜑 ∈ 𝐸, there exists a sequence{𝜓𝑛} ⊂ 𝐶∞0 (R𝑁) such that 𝜓𝑛 → 𝜑 in 𝐸. Hence
0 = ∫

R𝑁
∇V∇𝜓𝑛𝑑𝑥 + ∫

R𝑁
𝑉 (𝑥) V𝜓𝑛𝑑𝑥

− ∫
R𝑁

|V|2∗−2 V𝜓𝑛𝑑𝑥 − ∫
R𝑁

ℎ𝜆 (𝑥, V) 𝜓𝑛𝑑𝑥.
(84)

Let 𝑛 → ∞, we get

0 = ∫
R𝑁

∇V∇𝜑𝑑𝑥 + ∫
R𝑁

𝑉 (𝑥) V𝜑𝑑𝑥
− ∫

R𝑁
|V|2∗−2 V𝜑𝑑𝑥 − ∫

R𝑁
ℎ𝜆 (𝑥, V) 𝜑 𝑑𝑥;

(85)

that is, ⟨𝐽󸀠𝜆(V), 𝜑⟩ = 0 for all 𝜑 ∈ 𝐸. Hence 𝐽󸀠𝜆(V) = 0; that is, V
is a weak solution of (11).

In the following, we prove that V is nontrivial. With the
aid of Lemma 10, the proof follows essentially the proof of
Theorem 1.1 in [16]. For completeness, we present the proof
as follows. If the conclusion is false, wemay assume V = 0. We
divide the proof into four steps.

Step 1. We prove that {V𝑛} ⊂ 𝐸 is also a Cerami sequence for
the functional 𝐽∞𝜆 : 𝐸 → R, where

𝐽∞𝜆 (V𝑛) = 12 ∫
R𝑁

[󵄨󵄨󵄨󵄨∇V𝑛󵄨󵄨󵄨󵄨2 + 𝑉∞V2𝑛] 𝑑𝑥
− ∫

R𝑁
𝐻𝜆 (𝑥, V𝑛) 𝑑𝑥 − 12∗ ∫

R𝑁

󵄨󵄨󵄨󵄨V𝑛󵄨󵄨󵄨󵄨2∗ 𝑑𝑥.
(86)

By (𝑉2) and V𝑛 ⇀ 0 in 𝐸, one has
𝐽𝜆 (V𝑛) − 𝐽∞𝜆 (V𝑛) = 12 ∫

R𝑁
[𝑉 (𝑥) − 𝑉∞] V2𝑛𝑑𝑥 󳨀→ 0 (87)

as 𝑛 → ∞. Similarly, we have󵄩󵄩󵄩󵄩󵄩𝐽󸀠𝜆 (V𝑛) − (𝐽∞𝜆 )󸀠 (V𝑛)󵄩󵄩󵄩󵄩󵄩𝐸∗
= sup
‖𝜑‖𝐸≤1

󵄨󵄨󵄨󵄨󵄨⟨𝐽󸀠𝜆 (V𝑛) − (𝐽∞𝜆 )󸀠 (V𝑛) , 𝜑⟩󵄨󵄨󵄨󵄨󵄨
= sup
‖𝜑‖𝐸≤1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫R𝑁 [𝑉 (𝑥) − 𝑉∞] V𝑛𝜑𝑑𝑥󵄨󵄨󵄨󵄨󵄨󵄨󵄨 󳨀→ 0
(88)

as 𝑛 → ∞. Consequently, {V𝑛} is also a Cerami sequence of𝐽∞𝜆 .
Step 2. There exist 𝛼, 𝑅 > 0 and {𝑦𝑛} ⊂ R𝑁 such that

lim
𝑛→∞

∫
𝐵𝑅(𝑦𝑛)

󵄨󵄨󵄨󵄨V𝑛󵄨󵄨󵄨󵄨2 𝑑𝑥 ≥ 𝛼 > 0. (89)

Indeed, by contradiction, then by Lemma 1.21 in [27], one
has V𝑛 → 0 in 𝐿𝑞(R𝑁) for 2 < 𝑞 < 2∗. Notice that

𝑜 (1) = ⟨𝐽󸀠𝜆 (V𝑛) , V𝑛⟩
= ∫

R𝑁
[󵄨󵄨󵄨󵄨∇V𝑛󵄨󵄨󵄨󵄨2 + 𝑉 (𝑥) V2𝑛] 𝑑𝑥

− ∫
R𝑁

ℎ𝜆 (𝑥, V𝑛) V𝑛𝑑𝑥 − ∫
R𝑁

󵄨󵄨󵄨󵄨V𝑛󵄨󵄨󵄨󵄨2∗ 𝑑𝑥,
(90)

which combining with (51) leads to

∫
R𝑁

[󵄨󵄨󵄨󵄨∇V𝑛󵄨󵄨󵄨󵄨2 + 𝑉 (𝑥) V2𝑛] 𝑑𝑥 − ∫
R𝑁

󵄨󵄨󵄨󵄨V𝑛󵄨󵄨󵄨󵄨2∗ 𝑑𝑥 󳨀→ 0 (91)

as 𝑛 → ∞. Consequently, there exists a constant 𝑙 ≥ 0 such
that

∫
R𝑁

[󵄨󵄨󵄨󵄨∇V𝑛󵄨󵄨󵄨󵄨2 + 𝑉 (𝑥) V2𝑛] 𝑑𝑥 󳨀→ 𝑙,
∫
R𝑁

󵄨󵄨󵄨󵄨V𝑛󵄨󵄨󵄨󵄨2∗ 𝑑𝑥 󳨀→ 𝑙.
(92)

Obviously, 𝑙 > 0. Otherwise, 𝐽𝜆(V𝑛) → 0 as 𝑛 → ∞, which
contradicts with 𝑐𝜆 > 0. Hence by the definition of 𝑆, we have

𝑆 ≤ ∫
R𝑁

󵄨󵄨󵄨󵄨∇V𝑛󵄨󵄨󵄨󵄨2 𝑑𝑥
(∫

R𝑁
󵄨󵄨󵄨󵄨V𝑛󵄨󵄨󵄨󵄨2∗ 𝑑𝑥)2/2

∗

≤ ∫
R𝑁

[󵄨󵄨󵄨󵄨∇V𝑛󵄨󵄨󵄨󵄨2 + 𝑉 (𝑥) V2𝑛] 𝑑𝑥
(∫

R𝑁
󵄨󵄨󵄨󵄨V𝑛󵄨󵄨󵄨󵄨2∗ 𝑑𝑥)2/2

∗ 󳨀→ 𝑙𝑙2/2∗ = 𝑙2/𝑁;
(93)

that is, 𝑙 ≥ 𝑆𝑁/2. Therefore, (41) implies that

𝑐𝜆 + 𝑜 (1) = 𝐽𝜆 (V𝑛)
= 12 ∫

R𝑁
[󵄨󵄨󵄨󵄨∇V𝑛󵄨󵄨󵄨󵄨2 + 𝑉 (𝑥) V2𝑛] 𝑑𝑥

− ∫
R𝑁

𝐻𝜆 (𝑥, V𝑛) 𝑑𝑥 − 12∗ ∫
R𝑁

󵄨󵄨󵄨󵄨V𝑛󵄨󵄨󵄨󵄨2∗ 𝑑𝑥
󳨀→ (12 − 12∗ ) 𝑙 = 1𝑁𝑙 ≥ 1𝑁𝑆𝑁/2,

(94)
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as 𝑛 → ∞, which implies that 𝑐𝜆 ≥ (1/𝑁)𝑆𝑁/2, a
contradiction.

Step 3. After a translation of {V𝑛} called {Ṽ𝑛}, then Ṽ𝑛 converges
weakly to a nonzero critical point of 𝐽∞𝜆 .

Set Ṽ𝑛(𝑥) = V𝑛(𝑥+𝑦𝑛). Since {V𝑛} ⊂ 𝐸 is aCerami sequence
of 𝐽∞𝜆 and ‖Ṽ𝑛‖𝐸 = ‖V𝑛‖𝐸, arguing as in the case of {V𝑛}, wemay
assume Ṽ𝑛 ⇀ Ṽ in 𝐸 and (𝐽∞𝜆 )󸀠(Ṽ) = 0. So by Step 2 we know
Ṽ ̸= 0. By Lemma 7(3) and Fatou Lemma, one has

2𝑐𝜆 = lim inf
𝑛→∞

[2𝐽∞𝜆 (Ṽ𝑛) − ⟨(𝐽∞𝜆 )󸀠 (Ṽ𝑛) , Ṽ𝑛⟩]
≥ lim inf
𝑛→∞

∫
R𝑁

[ℎ𝜆 (𝑥, Ṽ𝑛) Ṽ𝑛 − 2𝐻𝜆 (𝑥, Ṽ𝑛)] 𝑑𝑥
+ (1 − 22∗ ) lim inf

𝑛→∞
∫
R𝑁

󵄨󵄨󵄨󵄨Ṽ𝑛󵄨󵄨󵄨󵄨2∗ 𝑑𝑥
≥ ∫

R𝑁
[ℎ𝜆 (𝑥, Ṽ) Ṽ − 2𝐻𝜆 (𝑥, Ṽ)] 𝑑𝑥

+ (1 − 22∗ )∫
R𝑁

|Ṽ|2∗ 𝑑𝑥
= 2𝐽∞𝜆 (Ṽ) − ⟨(𝐽∞𝜆 )󸀠 (Ṽ) , Ṽ⟩ = 2𝐽∞𝜆 (Ṽ) ,

(95)

which implies that 𝐽∞𝜆 (Ṽ) ≤ 𝑐𝜆.
Step 4. We use Ṽ to construct a path which allows us to obtain
a contradiction with the definition of mountain pass level 𝑐𝜆.

Define the mountain pass level 𝑐∞𝜆 fl
inf𝛾∈Γ∞sup𝑡∈[0,1]𝐽∞𝜆 (𝛾(𝑡)) > 0, where Γ∞ fl {𝛾 ∈ 𝐶([0, 1], 𝐸) :𝛾(0) = 0, 𝐽∞𝜆 (𝛾(1)) < 0}. It follows the arguments used in
[28, 29], we can construct a path 𝛾 : [0, 1] → 𝐸 such that

𝛾 (0) = 0,
𝐽∞𝜆 (𝛾 (1)) < 0,

Ṽ ∈ 𝛾 ([0, 1]) ,
𝛾 (𝑡) (𝑥) > 0, ∀𝑥 ∈ R

𝑁, 𝑡 ∈ [0, 1] ,
max
𝑡∈[0,1]

𝐽∞𝜆 (𝛾 (𝑡)) = 𝐽∞𝜆 (Ṽ) .

(96)

Then 𝑐∞𝜆 ≤ max𝑡∈[0,1]𝐽∞𝜆 (𝛾(𝑡)) = 𝐽∞𝜆 (Ṽ). If 𝑉(𝑥) ≡ 𝑉∞, we
have already proved Theorem 1. If 𝑉(𝑥) ≤ 𝑉∞ but 𝑉(𝑥) ̸≡𝑉∞, we take the path 𝛾 given by above, and by 𝛾 ∈ Γ∞ ⊂ Γ,
we have

𝑐𝜆 ≤ max
𝑡∈[0,1]

𝐽𝜆 (𝛾 (𝑡)) = 𝐽𝜆 (𝛾 (𝑡)) < 𝐽∞𝜆 (𝛾 (𝑡))
≤ max
𝑡∈[0,1]

𝐽∞𝜆 (𝛾 (𝑡)) = 𝐽∞𝜆 (Ṽ) ≤ 𝑐𝜆, (97)

a contradiction. Consequently, V ̸≡ 0. This completes the
proof of Theorem 1.
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