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Gear fault detection is one of the underlying research areas in the field of conditionmonitoring of rotatingmachines.Manymethods
have been proposed as an approach. One of the major tasks to obtain the best fault detection is to examine what type of feature(s)
should be taken out to clarify/improve the situation. In this paper, a new method is used to extract features from the vibration
signal, called 1D local binary pattern (1D LBP). Vibration signals of a rotating machine with normal, break, and crack gears are
processed for feature extraction. The extracted features from the original signals are utilized as inputs to a classifier based on 𝑘-
Nearest Neighbour (𝑘-NN) and Support Vector Machine (SVM) for three classes (normal, break, or crack). The effectiveness of
the proposed approach is evaluated for gear fault detection, on the vibration data obtained from the Prognostic Health Monitoring
(PHM’09) Data Challenge. The experiment results show that the 1D LBP method can extract the effective and relevant features for
detecting fault in the gear. Moreover, we have adopted the LOSO and LOLO cross-validation approaches to investigate the effects
of speed and load in fault detection.

1. Introduction

It is a big challenge in fault detection and diagnostics to
ensure the safe running of rotatingmachines.Vibration signal
analysis has been widely used for fault diagnostics. With
increasing improvements in vibration signal analysis, more
accurate fault-detection techniques are being developed. In
the area of gear fault detection, researchers are constantly
investigating techniques for relevant features of fault detec-
tion.

Among several signal analysis methods, fast Fourier
transform (FFT) is one of the most widely used and well-
established methods. For instance, Pan and Sas in [1] con-
ducted two tests, one to measure transient vibration signals
and another to analyse the nonstationary vibration response
of a rotor-dynamic systemwith both clutch and brake. Unfor-
tunately, FFT-based methods are not suitable for nonstation-
ary signal analysis and are not able to reveal the inherent
information of nonstationary signals [1]. On the other hand,

both wavelet scalogram and wavelet transform are effective
methods for extracting relevant features of vibration signal
for fault diagnostics of rotating machinery and are suitable
for nonstationary signal analysis. In [2], statistical feature
vectors were obtained using Morlet wavelet coefficients,
which were utilized as the input into Support VectorMachine
(SVM) classifiers. Al-Atat et al. in [3] developed a model
that built specific fault signatures more visibly by applying
wavelet decomposition into the row signal. However, the
wavelet scalogram is incapable of achieving good time and
spectral concentration in both the time and frequency space.
Moreover, the wavelet transform cannot fully estimate the
“good” features, because the vibration signal generates the
structure of components, which makes it difficult to identify
features for each component by wavelet transform alone [2,
4, 5]. Momoh and Dias [6] applied both FFT and wavelet
transform to the extraction of features for fault detection and
found that the wavelet transform scheme outperformed the
FFT scheme.
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Another method of fault detection is called Time Syn-
chronous Average (TSA). TSA is a signal processing tech-
nique, which is used to extract repetitive signals from additive
noise [7, 8]. Peng et al. [4] used a TSA technique in time and
frequency domain. A TSA signal was obtained by applying
the TSA technique to the vibration signal. Statistical features
were then obtained from the TSA signal.Their results showed
that the TSA in the frequency domain is more sensitive to
fault detection; however, the spectral analysis may be inca-
pable of detecting gear failures at an early stage [7].Moreover,
the TSA in frequency domain can be a successful technique
if the frequency deterministic component is constant, but in
reality a vibration signal contains small frequency variations
[9, 10].

Do and Chong in [11] reported that the one-dimensional
vibration signal could be converted to two-dimensional
grayscale image. They extracted local features from the
grayscale image and utilized scale invariant feature transform
(SIFT). SIFT produced a 128-dimensional key point utilized
for the classification of motor faults. The proposed method
was efficient at diagnosing motor faults in the presence of
background noise. However, there are some serious disad-
vantages of using SIFT. Firstly, there is an uncertainty in
the number of key points for different images. Secondly,
using SIFT has a high computational cost in processing 128-
dimensional feature descriptors.

Shahriar et al. in [12] extracted an LBP feature from the
images obtained from the vibration signal in order to create
a fault diagnosis system for induction motors. These feature
descriptors are then utilized by the classifier to diagnose faults
on the motor. The method was effective in discriminating
a normal and single fault in a time but was incapable of
discriminating texture patterns for different fault categories.
Moreover, the method required more complex computation
such as the conversion of vibration signal into image followed
by applying LBP.

In this paper, we use one-dimensional LBP inspired
by the works in [13, 14], who were the first to adopt 1D
LBP extraction from a one-dimensional speech signal. The
advantage of 1D LBP is the possibility of choosing fewer than
eight bits and consequently a smaller number of features.
Additionally, there is no need to normalize the vibration
signal value to be suitable to represent a proper image format.
Our experimental results show comparable performance
accuracy between our 1D LBP-based model that considers
six neighbours and a 2D LBP scheme that exploits eight
neighbours.

In order to investigate the effect of different conditions
(speed and load), we adopt a special technique of cross-
validation called Leave One Speed Out (LOSO) and Leave
One Load Out (LOLO). This kind of cross-validation pro-
vides an experimental environment such that all the samples
belonging to one condition will be used to test the model,
while the model trained by samples belongs to different
conditions.

Section 2 explains the processing of 1D LPB, Section 3
provides illustrations of data resulting from the experiments
discussed in this paper, Section 4 explains the experiential

work, Section 5 discusses the results obtained, and Section 6
reaches a conclusion.

2. 1D Local Binary Pattern

The local binary pattern is a nonparametric operator.TheLBP
code can explain the data using the differences between a
sample and its neighbours [15, 16]. LBPs have been widely
used, particularly in face recognition systems [16–18]. At a
fixed pixel position, the LBP operator is described as an
ordered set of binary comparisons of pixel intensities between
the centre pixel and its neighbouring pixels. However, LBPs
used for images utilize the pixel neighbour in two dimen-
sions, which is called 2D LBP.

Although it is notwidely used, 1DLBP can provide similar
characteristics to the 2D LBP. For example, the researchers
in [13] showed a distinctive marker of certain features of
the speech signal, where the 1D LBP features were able
to distinguish the unvoiced and the voiced components of
speech signals. Additionally, the authors of [14] adopted 1D
LBP to segment and separate Voice Active Detection (VAD)
of the speech signal.

The 1D LBP operator labels every single value of the
vibration signal by considering its neighbourhoods and using
the value of the centre position as a threshold for the
neighbourhoods. If the neighbour value is less than the centre
value, the value of the neighbour will turn to 0; otherwise it
turns to 1. A local binary pattern code for a neighbourhood
is then produced. The decimal value of the LBP binary code
presents the local structural knowledge around the fixed
value [15].

The histogram of the 1D LBP signal displays how often
these various patterns appear in a given signal. The distribu-
tion of the patterns denotes the whole structure of the signal.
The 1D LBP operation of a sample value can be defined as

LBP
𝑃 (𝑥 [𝑖]) =

𝑃/2−1

∑

𝑟=0

{𝑓 [𝑥 [𝑖 + 𝑟 −
𝑃

2
] − 𝑥 [𝑖]] 2

𝑟

+ 𝑠 [𝑥 [𝑖 + 𝑟 + 1] − 𝑥 [𝑖] 2
𝑟+𝑃/2
]} ,

(1)

where the Sign function is

𝑓 (𝑥) =
{

{

{

0, 𝑥 < 0

1, 𝑥 ≥ 0,

(2)

where 𝑥[𝑖] is the signal and 𝑃 is the number of considered
neighbours. The Sign function 𝑓[𝑥] transforms the differ-
ences to a 𝑃-bit binary code.

In this paper only six neighbours are considered (three
to the left of the centre and three to the right). Equation
(1) illustrates how the 1D LBP is evaluated. Hence, the
value range of the new signal is between 0 and 63. The
obtained signal is discriminated into two parts, uniform and
nonuniform number. The uniform number comprises the
numbers with fewer than or equal to two transition bits from
1 to 0 or 0 to 1 in their circular bit patterns. The nonuniform
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Figure 1: The whole processing of 1D LPB.

numbers havemore than two transition bits. For instance, the
patterns 111111 (0 transitions) and 100011 (2 transitions) are
uniform, while the patterns 10101 (4 transitions) and 010101 (6
transitions) are nonuniform. There are 21 uniform numbers
in the range 0–63 and the rest are nonuniform numbers.
The histogram is computed such that an independent bin
represents each uniform number, while all the nonuniform
numbers are represented in one bin. Therefore, the set of
features consists of 22 bins—21 bins for each uniformnumber
and one bin for all nonuniform numbers. These bins are
utilized as features to detect fault. The number of bins in the
histogram depends on howmany neighbours are considered.

Figure 1 demonstrates a 1D LBP operator for 𝑃 = 6 with
the centre sample as given. After processing 1D LBP, the 6-
neighbour samples in the example above produce the 100101
codes. The code is then converted to a decimal number that
is equal to 37 and substituted in the same index as the centre
sample.

3. Vibration Data

Fault detection is an important problem in machinery diag-
nostics. There are many techniques that have been developed
to detect fault in the rotationmachinery throughout vibration
signal analysis. Vibration analysis is a way of interpreting
where the fault is occurring in a rotating machine (e.g.,
motor and gearbox). In this paper, the authors applied their
investigation to vibration data designed by the Prognostics
and Health Management Society, known as the Prognostic
Health Monitoring (PHM) Data Challenge. The challenge is
how to detect and isolate faults in an equipment industrial
gearbox using vibration data that have been collected from
two accelerometers.There are a total of 560 recorded samples
for two typical gearboxes. One of the gearboxes contains
spur gear and the other contains helical gear. The data were
recorded at different shaft speeds 30, 35, 40, 45, and 50Hz,
each under high and low load (see Table 1). The data consist
of three gear modes, which are No Fault (NF), Chipped
Tooth (CT), and Broken Tooth (BT) [19]. In this paper,
fault detection in helical gear is considered; hence the data
comprise 120 recorded samples from the gearbox.

4. Experiential Work

Thevibration data are used to detect fault in the gear.The data
adopted in this paper consisted of three gear situations: NF,
CT, andBT.One of the challenges of detecting fault in the gear
is how to extract relevant features from the vibration signal.

Table 1: The adopted helical gear data distribution on speeds and
loads.

Helical gear data 30Hz 35Hz 40Hz 45Hz 50Hz Sum
Low load 12 12 12 12 12 60
High load 12 12 12 12 12 60
Sum 24 24 24 24 24 120

Raw signal
(vibrations)

Feature extraction 
using 1D local
binary pattern

Classifiers
SVM and
k-NN

Decision

Figure 2: The procedure of the adopted algorithm for fault detec-
tion.

The 1D LBP is used as a technique to extract the features from
the vibration signal. The procedure of 1D LBP is explained
in Section 2. The features are then utilized as input to two
classifiers (SVM and 𝑘-NN). In the case of the SVM scheme,
a pairwise approach is adopted for our multiclass problem.
The kernel function of the SVM is linear and the optimization
method is sequential minimal optimization.

The second adopted classifier is the NN, which is a
geometric classifier that considers only one neighbour.Three
types of cross-validation are exploited, Leave One Out
(LOO), Leave One Speed Out (LOSO), and Leave One Load
Out (LOLO). In order to investigate the influence of different
conditions it is necessary to train the classification model
with samples belonging to one condition and evaluated
with the samples of another condition. This investigation
has been performed by adopting LOLO and LOSO cross-
validation. Unlike LOLO and LOSO, LOO is considered for
the experiments that do not consider the cross-condition
(speed and load) in the training and testing data. Figure 2
illustrates the procedure of the adopted algorithm for fault
detection.

We partition the experimental result into four different
models. The first model can detect fault in the gear when
the speed signal and load are fixed. We call this model Fixed
Speed Fixed Load (FSFL). This model consists of 10 different
cases because there are five speeds with two different loads.
For example, one of the cases is when the speed of the
vibration signal is 30Hz with high load. The LOO cross-
validation is used in each case.

The second model detects fault in the vibration signal
when the speed is fixed and both loads are combined. We
call this model Fixed Speed Various Load (FSVL). Five
cases are considered in this model. An example is when the
speed signal is 45 with both high and low loads. Two cross-
validations are used in the second model, LOO and LOLO.

The third model is built for fault detection when the load
is fixed and all the speeds are combined, for example, when
the speed signal includes 30, 35, 40, 45, and 50Hz with one
load. We call this model Various Speed Fixed Load (VSFL).
Here, two cases are considered and both LOO and LOSO are
utilized as cross-validation.
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Table 2:The performance of SVM in FSFL model when the 1D LBP
scheme is used for feature extraction.

Speed 30 35 40 45 50
High 91.67 91.67 100 75 100
Low 66.67 75 100 100 100

Table 3:The performance of 𝑘-NN in FSFLmodel when the 1D LBP
scheme is used for feature extraction.

Speed 30 35 40 45 50
High 100 100 100 100 100
Low 100 75 100 100 100

Table 4:The performance of SVM in FSFLmodel when the 2D LBP
scheme is used for feature extraction.

SVM 30 35 40 45 50
High 100 100 100 100 100
Low 100 100 91.67 100 100

Table 5:The performance of 𝑘-NN in FSFLmodel when the 2DLBP
scheme is used for feature extraction.

𝑘-NN 30 35 40 45 50
High 83.33 100 100 100 91.67
Low 100 100 100 100 100

Finally, the fourth model is designed to detect fault when
all the vibration data are combined, which means that all
speeds and both loads are combined together. We call this
model Various Speed Various Load (VSVL). In this model,
three cross-validation methods are used, LOO, LOSO, and
LOLO.

5. Result and Discussion

The fault detection is processed in all models mentioned in
Section 4. The models are Fixed Speed Fixed Load (FSFL),
Fixed Speed Various Load (FSVL), Various Speed Fixed Load
(VSFL), and Various Speed Various Load (VSVL).

5.1. Model FSFL. It can be seen from Tables 2 and 3, which
demonstrate the result of the FSFL model, that neither of
the classifiers SVM and 𝑘-NN is significantly different in
their performance based on a 𝑝 value computed using a chi-
square test for the cases of high load with speeds 30, 35,
and 45 (𝑝 = 0.3, 𝑝 = 0.3, and 𝑝 = 0.08), while for the
cases of low load with speeds 30 and 35 the 𝑝 values are
𝑝 = 0.04 and 𝑝 = 0.08, respectively, which means that the
only significant performance of 𝑘-NN over SVM happens
with the speed of 30Hz under the low load. The reason for
this statistically unclear performance is the limited number
of samples involved in this model.

In order to compare the results of the 1D LBP scheme
with the 2D LBP scheme proposed in [12], Tables 4 and
5 demonstrate the result of the same condition using the
2D LBP scheme. However, there is no significant difference

Table 6: The performance of classifiers for the FSVL model when
the 1D LBP scheme is used for feature extraction.

1D LBP 30H&L 35H&L 40H&L 45H&L 50H&L
SVM 66.67 79.17 83.33 91.67 100
𝑘-NN 91.67 87.5 100 100 100

Table 7: The performance of classifiers for the FSVL model when
the 2D LBP scheme is used for feature extraction.

2D LBP 30H&L 35H&L 40H&L 45H&L 50H&L
SVM 83.33 100 87.5 100 100
𝑘-NN 91.67 100 100 100 95.83

Table 8: The performance of SVM in both schemes when LOLO
cross-validation is used.

LOLO
at 30

LOLO
at 35

LOLO
at 40

LOLO
at 45

LOLO
at 50

1D LBP 66.67 41.67 66.67 66.67 66.67
2D LBP 45.83 33.33 41.67 41.67 50

between the two schemes in the case of using 𝑘-NN and 2D
LBP scheme significantly outperforms the 1D LBP using SVM
only in one case (speed 30Hz with low load).

5.2. Model FSVL. The size of the data of this model (24
samples, eight for each class) is twice that of the data of the
FSFLmodel because both loads are considered. From Table 6
it can be observed that the results of the FSVLmodel for both
classifiers SVM and 𝑘-NN are not significantly different in
their performance based on a 𝑝 value calculated by a chi-
square test for the cases of speeds 35, 45, and 50. However
𝑘-NN significantly outperform the SVM in both speeds 30
and 40 (𝑝 = 0.03 and 𝑝 = 0.04, resp.).

In comparison with the 2D LBP approach, whose result
is shown in Table 7, it can be observed that there is no
significant improvement between 1D LBP and 2D LBP in the
exception of the case of speed 35 when using SVM.

The result in Table 8 shows a comparison between 1D and
2DLBPby adopting LOLOcross-validation, which highlights
the load effect on specific speed data.The results clearly show
that 1DLBPoutperforms 2DLBP (with the exception of 35Hz
speed) with 𝑝 value of 𝑝 = 0.02, 𝑝 = 0.15, 𝑝 = 0.02, 𝑝 = 0.02,
and 𝑝 = 0.04 for 30, 35, 40, 45, and 50Hz speeds, respectively.

5.3. Model VSFL. In this model we investigate the case of the
availability of data of one load with various speeds, which
means that 60 samples will participate in each experiment.
In the case of SVM, there is no difference in the performance
of both 1D and 2D LBP. Additionally, the 1D LBP with SVM
has no significant difference with the 𝑘-NN. However, the 2D
LBP outperforms the 1D LBP using 𝑘-NN in the case of low
load (𝑝 = 0.01). The results are shown in Tables 9 and 10.

The effect of speed on fault detection is very clear in the
low performance in the case of LOSO (see Table 11). However,
neither LBP scheme shows significant improvement on the
other. Removing samples at the same speed as the testing
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Table 9: The performance of classifiers for VSFL model when the
1D LBP scheme is used for feature extraction.

1D LBP All speeds and with
high load

All speeds and
with low load

SVM 93.33 78.33
𝑘-NN 95 90

Table 10: The performance of classifiers for VSFL model when the
2D LBP scheme is used for feature extraction.

2D LBP All speeds and with
high load

All speeds and
with low load

SVM 93.33 81.67
𝑘-NN 93.33 100

Table 11: The performance of SVM in both schemes when LOSO
cross-validation is used.

LOSO at high load LOSO at low load
1D LBP 41.67 46.67
2D LBP 40 46.67

Table 12: The performance of classifiers for VSVL model when the
1D LBP scheme is used for feature extraction.

1D LBP SVM 𝑘-NN
All data 81.67 90.83

Table 13: The performance of classifiers for VSVL model when the
2D LBP scheme is used for feature extraction.

2D LBP SVM 𝑘-NN
All data 86.67 96.67

sample from the training set led to a reduction in the
performance accuracy of nearly 60%.

5.4. Model VSVL. The data for the model are collected
from all speeds and both loads together. The size of the
data of this model is 120 samples. The performance of both
classifiers is high when the cross-validation is LOO.However,
the performance of the 𝑘-NN significantly outperforms the
SVM classifier with 𝑝 = 0.03, as shown in Table 12.
Furthermore, the performance of SVM in both 1D and 2D
LBP is not significantly different (𝑝 = 0.06). But the 2D LBP
outperforms the 1D LBP using 𝑘-NNwith𝑝 value of 0.03. (see
Tables 12 and 13).

A significant degradation in the performance occurs
when LOLO and LOSO cross-validation are used. For exam-
ple, when the cross-validation is LOSO, the performance of
SVM is degraded by 56% and when the cross-validation is
LOLO, the performance of SVM is degraded by 40%. The
result of Table 14 also shows how 1D LBP is significantlymore
effective in fault detection in cross-condition; that is, the 1D
LBP features can adapt the data of the different speeds and

Table 14:The performance of SVM in both schemeswhen the cross-
validation is LOLO and LOSO.

LOLO LOSO
1D LBP 60.83 44.17
2D LBP 37.5 30.83

it is less sensitive than 2D LBP features with speed and load
conditions.

6. Conclusion

In this paper, it has been shown that 1D LPB is an effective
technique to extract features for detecting fault in gear when
data with the same speed and/or load are available in training
and testing the model. Moreover, the 1D LBP is cheaper in
terms of computation than the 2D LBP scheme. The 1D LBP
scheme is shown to be less sensitive to a specific load and
speed; that is, 1D LBP features reduce the effect of different
conditions such as speed and load. We have adopted the
LOSO and LOLO cross-validation approaches to investigate
the effect of speed and load in fault detection.
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