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Due to the variable curvature of the conformal carrier, the pattern of each element has a different direction.The traditional method
of analyzing the conformal array is to use the Euler rotation angle and its matrix representation. However, it is computationally
demanding especially for irregular array structures. In this paper, we present a novel algorithm by combining the geometric
algebra with Multiple Signal Classification (MUSIC), termed as GA-MUSIC, to solve the direction of arrival (DOA) for cylindrical
conformal array. And on this basis, we derive the pattern and arraymanifold. Compared with the existing algorithms, our proposed
one avoids the cumbersome matrix transformations and largely decreases the computational complexity. The simulation results
verify the effectiveness of the proposed method.

1. Introduction

A conformal antenna is an antenna that conforms to a
prescribed shape. The shape can be some part of an airplane,
high-speedmissile, or other vehicle [1].Their benefits include
reduction of aerodynamic drag, wide angle coverage, and
space-saving [2]. Nevertheless, due to the complex curved
surface structure, the pattern of each antenna is inconsistent.
Thus, the conformal array can no longer be regarded as
a simple isotropic one. The pattern multiplication theorem
is not available as well. Most classical DOA estimation
algorithms cannot be directly transplanted to such scene.

In recent years, there has been a considerable interest
in estimating DOAs for conformal array. Milligan used
Euler rotation angles to find the patterns with elements in
a conformal array that requires one to rotate not only the
direction but also the polarization [3]. In [2], Wang et al.
proposed a uniformmethod for the element polarized pattern
transformation of arbitrary 3D conformal arrays based on
Euler rotation. Yang et al. introduced a conformal array DOA
algorithm with an unknown source number; the method was
realized by virtue of the pseudo expected signal [4]. However,
the root mean square error (RMSE) deteriorated severely

when the number of snapshots was small. Up to the present,
we have observed that most of DOA estimation algorithms
for conformal array are based on the Euler rotation trans-
formation which converts the local coordinate system to the
global coordinate system. Though the Euler rotation angle is
a useful tool for spatial rotation transformation [5], a huge
amount of computation is incurred.

Geometric algebra is the largest possible associative
algebra that integrates all algebraic systems (algebra of com-
plex numbers, matrix algebra, quaternion algebra, etc.) into
a coherent mathematical language [6]. Three-dimensional
pattern analysis of arbitrary conformal arrays using the
mathematical framework of the geometric algebra was intro-
duced [7]. Nevertheless, this mathematical language was
not transplanted to the DOA estimation. In [8], Zou et al.
took several elements as a new one and transformed the
original array into another regular array to estimate theDOA.
However, this method was only suitable for some particular
array structures. Combining the MUSIC with geometric
algebra to solve the DOA estimation has not been addressed
in the literature. In this paper, we fill this gap and study the
problem based on the cylindrical conformal array. Compared
with the existing methods, the proposed one has three main
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Table 1: Properties of the outer product.

Property Meaning
Antisymmetry (x ∧ y) = −(y ∧ x)
Scaling x ∧ (𝛾y) = 𝛾(x ∧ y)
Distributivity x ∧ (y + z) = (x ∧ y) + (x ∧ z)
Associativity x ∧ (y ∧ z) = (x ∧ y) ∧ z
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Figure 1: The geometry of outer product (a) x ∧ y and (b) y ∧ x.

advantages. Firstly, it does not need to calculate the rotation
matrices and therefore has a much lower computational
complexity. Subsequently, it is not limited to the cylindrical
conformal array due to its strong commonality. Finally, it
can still work effectively even when the number of polarized
signals is larger than that of the array elements.

The structure of this paper is as follows. In Section 2,
the rotors in geometric algebra which establishes the math-
ematical knowledge of transformation is briefly introduced.
In Section 3, we derive the cylindrical conformal array
manifold using rotors and present the GA-MUSIC algorithm.
In addition, to better explain the superiority of GA-MUSIC in
reducing the computational complexity, we briefly introduce
the Euler angle and compare it with the proposed algorithm.
Simulations using the proposed method for cylindrical con-
formal array are given in Section 4. Finally, the conclusions
are drawn.

2. Rotors in Geometric Algebra

Geometric algebra was first introduced by the British math-
ematician, named Clifford, in the nineteenth century. He
constructed the geometric product by combining the inner
product with the outer product. The main advantage of the
geometric algebra is embodied in processing the rotation
transformation [9]. Various rotations can be described by an
element called the rotor. A rotor ismore general than an Euler
rotation angle because a rotor can be used in an arbitrary
dimensional space.

We begin by introducing a new product between vectors
that we call the outer product. Let us use the wedge symbol
“∧” to denote outer product with the properties listed in
Table 1.

The outer product is regarded as the “addition operator”
of subspaces, in that the outer product x∧y spans the subspace
that x and y span together, as long as x and y are independent.
The geometry is illustrated in Figure 1.

Next, we will introduce the fundamental product of the
geometric algebra, namely, geometric product. It is simply the
sum of the outer and inner product:

xy = x ∙ y + x ∧ y. (1)
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Figure 2: The geometry of 3-blade.

Reversing the order of x and y in (1), by means of the
symmetry of the inner product and the antisymmetry of the
outer product, it follows that

yx = x ∙ y − x ∧ y. (2)

Thus, combining (1) with (2), the inner product and the
outer product can be uniformly represented by the geometric
product:

x ∙ y = xy + yx2
x ∧ y = xy − yx2 . (3)

Generally, we call an outer product of 𝑘 vectors a 𝑘-blade.
The value of 𝑘 is called the grade of the blade. Specifically,
the top-grade blades E𝑛 in an 𝑛-dimensional space are called
pseudoscalars. In principle, blades are just elements of the
geometric algebra. To be useful for doing geometry, blades
can be interpreted as subspaces. x∧ y is a 2-blade as shown in
Figure 1(a). By introducing vector z, we can construct the 3-
blade x∧y∧z, which coincides with the Cartesian coordinate
system.As shown in Figure 2, the unit vectors e𝑥, e𝑦, and e𝑧, in
that order, form a right-handed Cartesian coordinate system.
E3 is the pseudoscalar, relative to the origin denoted byO.The
3-blade is drawn as a parallelepiped. The volume depicts the
weight of the 3-blade, but, in principle, blades have no specific
shape.

As shown in Figure 3, vector y is obtained by rotating
vector xwith 𝜃.We can regard the rotation as two consecutive
reflections, first in a and then in b.The expression that reflects
x in the line with direction a is

x󸀠 = axa = 2 (a ∙ x) a − x. (4)

In (4), a must be unit length. We give the detailed
derivation process in Appendix.The regularity condition can
be dropped by using an inverse geometric product, as in

x󸀠 = axa−1 = 2 (a ∙ x) a−1 − x, (5)

where

a−1 = a
a ∙ a (6)

with (⋅)−1 representing the inverse operator.
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Figure 3: Rotation of vector x.

Then, y can be obtained by reflecting x󸀠 in the line with
direction b:

y = bx󸀠b−1 = baxa−1b−1 = (ba) x (ba)−1 = RxR−1. (7)

Thus, we can identify R as the rotor. To proceed further,
we rewrite R according to the definition of the geometric
product:

R = ba = b ∙ a + b ∧ a. (8)

Here, we consider the case that the vectors are unit length.
This assumption is reasonable, because the basic vectors of the
Cartesian coordinate system satisfy it as well. The geometric
product of b ∧ a itself is

(b ∧ a) (b ∧ a) = (ba − b ∙ a) (b ∙ a − ab)
= b ∙ a (ba + ab) − (b ∙ a)2 − baab

= b ∙ a (2b ∙ a) − (b ∙ a)2 − b (aa) b
= (b ∙ a)2 − bb = cos2𝜃 − 1 = −sin2𝜃.

(9)

Thus, we define the 2-blade E2:

E2 = b ∧ a
sin 𝜃 . (10)

R can be further simplified by substituting (10) into (8):

R = cos 𝜃 − E2 sin 𝜃. (11)

The expression is similar to the polar decomposition of
a complex number with the unit imaginary replaced by the
2-blade E2. It can also be written as the exponentials of E2:

R = 𝑒−𝐸2𝜃. (12)

This formalism is more useful for the log-space of rotors
is linear. Up to this point, the angle of rotation in the b ∧ a-
plane remains to be determined. We split x into part (x𝑝)
parallel to b∧a-plane and part (x𝑜) orthogonal to b∧a-plane.
Then, x𝑜 is not affected by applicationR. Andwe infer that the
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Figure 4:The cylindrical conformal array consisting of𝑀×𝑁 short
dipoles.

rotation must be in b ∧ a-plane. As stated above, the rotation
consists of two successive reflections which are orthogonal
(angle-preserving) transformations.Thus, it allows us to pick
any vector in b∧a-plane to determine the angle.Without loss
of generality, we choose vector a and construct the “sandwich
product” RaR−1 as shown in (7):

RaR−1 = baaa−1b−1 = bab−1, (13)

where bab−1 is the reflection of a in b. From this, it is clear
that the rotation must be over twice the angle between a and
b, since the angle between a and bab−1 is twice the angle
between a and b.The negative signature in (12) represents the
rotation direction.

Consequently, if we want to rotate a vector counterclock-
wise by a specific angle, we only need to apply the rotor to the
vector.

3. GA-MUSIC Algorithm

3.1. Array Manifold Modeling Based on GA-MUSIC. In this
subsection, we will combine the geometric algebra with
MUSIC to estimate the DOA. To illustrate the versatility of
this algorithm, we consider 𝑀 × 𝑁 cylindrical conformal
array as shown in Figure 4. The array contains 𝑁 uniformly
spaced rings on the surface. In addition, there are𝑀 dipoles
distributed on each ring.We assume that each dipole is a short
dipole whose output voltage is proportional to the electric
field along the dipole. The angle between two consecutive
elements on the same ring is 𝛽.

Assume that there are 𝑃 far-field narrow band polariza-
tion sources. 𝜃𝑝 represents 𝑝th signal elevation angle which
is measured down from e𝑧-axis. 𝜑𝑝 indicates 𝑝th signal
azimuth angle and is measured counterclockwise from e𝑥-
axis. The polarization ellipse of 𝑝th signal is depicted by
constants 𝛾𝑝 and 𝜂𝑝, representing the auxiliary polarization
angle and the polarization phase difference [10], respectively.
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Figure 5: The local coordinate of (𝑚, 𝑛)th element.

The array element spatial phase matrix of the 𝑝th signal can
be described as follows:

Υ𝑝 = Υ𝜃𝑝,𝜑𝑝 = [[[[
𝑢𝑝,1

d 𝑢𝑝,𝑃
]]]]
, (14)

where Υ𝑝 is the diagonal matrix depicting the output
signal spatial coherent structures. 𝑘th diagonal element,𝑢𝑝,𝑘 = 𝑒−𝑗2𝜋(𝜀𝑇𝑠 (𝜃𝑝,𝜑𝑝)r𝑘)/𝜆𝑝 , represents the space phase fac-
tor about 𝑝th array element. Among which, 𝜀𝑠(𝜃𝑝, 𝜙𝑝) =−[sin 𝜃𝑝 cos𝜑𝑝, sin 𝜃𝑝 sin𝜑𝑝, cos 𝜃𝑝]T and 𝜆𝑝 are 𝑝th signal
propagation vector and the wavelength, respectively. Symbol
r𝑘 is the element location vector and (⋅)T denotes the trans-
pose operator.

It is worthwhile to note that the aforementioned ele-
ment spatial phase matrix, Υ𝑝, is derived under the global
coordinate system. The azimuth and elevation are defined in
Figure 4 as well. However, due to the effects of the curvature
of conformal carriers, the local coordinate system is distinct
from the global one. As stated above, the rotor can be used
to realize the rotation between the two coordinate systems.
Thus, we define the local coordinate system of (𝑚, 𝑛)th
element as shown in Figure 5.

e𝑥𝑚𝑛-axis is the same as e𝑥-axis in the global coordinate
system, e𝑧𝑚𝑛 is normal to the element surface, and e𝑦𝑚𝑛 is
tangent to the surface so as to form a right-handed coordinate
system. Naturally, transforming the global coordinate into
the local one is equivalent to rotating the global coordinate
around e𝑥-axis. From the last section, we have known that
(12) denotes the rotation in b ∧ a-plane with twice the value
of 𝜃. The rotation angle is

𝜉 = (𝑚 − 1) 𝛽 − 𝑀 − 12 𝛽 = (𝑚 − 𝑀 + 12 )𝛽. (15)

Substituting e𝑧 and e𝑦 for b and a, respectively, then the
rotor is

R𝑚𝑛 = 𝑒−(e𝑧∧e𝑦)(𝜉/2). (16)

In addition, e𝑥, e𝑦, and e𝑧 are orthogonal to each other
and the inner products between them are zero. So,

e𝑧 ∧ e𝑦 = e𝑧e𝑦. (17)

According to the antisymmetry property of the outer
product,

e𝑧e𝑦 = e𝑧 ∧ e𝑦 = −e𝑦 ∧ e𝑧 = −e𝑦e𝑧. (18)

Adopting E3 = e𝑥e𝑦e𝑧 as the pseudoscalar in the three-
dimensional space, (16) can be further simplified:

R𝑚𝑛 = 𝑒E3e𝑥(𝜉/2). (19)

Through (7), we obtain the standard orthogonal basis in
the local coordinate, and the specific calculation process can
refer to [11]. Here, the results are given directly:

e𝑥𝑚𝑛 = R𝑚𝑛e𝑥R
−1
𝑚𝑛 = e𝑥 (20)

e𝑦𝑚𝑛 = R𝑚𝑛e𝑦R
−1
𝑚𝑛

= cos [(𝑚 − 𝑀 + 12 )𝛽] e𝑦
− sin [(𝑚 − 𝑀 + 12 )𝛽] e𝑧

(21)

e𝑧𝑚𝑛 = R𝑚𝑛e𝑧R
−1
𝑚𝑛

= sin [(𝑚 − 𝑀 + 12 )𝛽] e𝑦
+ cos [(𝑚 − 𝑀 + 12 )𝛽] e𝑧.

(22)

Referring back to (14), the remaining unknown variable is
r𝑘.The position vector of (𝑚, 𝑛)th element in the global frame
is

r𝑚𝑛 = (−𝑛𝛿) e𝑥 + (𝑅 sin(𝑚 − 𝑀 + 12 )𝛽) e𝑦
+ (𝑅 cos(𝑚 − 𝑀 + 12 )𝛽) e𝑧

𝑚 = 1, . . . ,𝑀; 𝑛 = 1, . . . , 𝑁,
(23)

where 𝛿means the spacing between adjacent rings. Thus, Υ𝑝
can be obtained. If 𝑔 is the gain when the signal perfectly
matched the antenna polarization, then the element of gen-
eralized polarization sensitive matrix Q can be represented
as

𝑞
= 𝑔 [cos (𝜑󸀠) sin (𝜃󸀠) sin (𝜑󸀠) sin (𝜃󸀠) cos (𝜃󸀠)]T , (24)

where 𝜃󸀠 and 𝜑󸀠 indicate the elevation and azimuth pointing
directions of the short dipole.

According to this, we can get the array manifold:

a𝑝 = a𝜃𝑝,𝜙𝑝,𝛾𝑝,𝜂𝑝 = Υ𝑝QΨ𝑝h𝑝, (25)

where h𝑝 is 𝑝th signal polarization vector [12] and can be
described by 𝛾𝑝 and 𝜂𝑝, that is, h𝑝 = [cos 𝛾𝑝 sin 𝛾𝑝𝑒𝑗𝜂𝑝]T. Ψ𝑝
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is the steering vector of the angle field [13] and is independent
of the space location:

Ψ𝑝 = [[[[
− sin𝜑𝑝 cos 𝜃𝑝 cos𝜑𝑝
cos𝜑𝑝 cos 𝜃𝑝 sin𝜑𝑝0 − sin 𝜃𝑝

]]]]
. (26)

The received signals of the array are a superposition of the
response of each signal, and the output can be expressed as

x (𝑡) = 𝑃∑
𝑝=1

a𝑝𝑠𝑝 (𝑡) + n (𝑡) , (27)

where 𝑠𝑝(𝑡) is 𝑝th signal and n(𝑡) is assumed to be zeromean,
complex Gaussian processes statistically independent of each
other, with covariance 𝜎𝑛2.

Up to the present, we have perfectly applied the geometric
algebra to the derivation of the steering vector of the confor-
mal array and acquired theGA-MUSIC algorithm.This is also
the focus of our work. As for the content of constructing the
spatial spectrum and searching the peak, the readers can refer
to literature [14]. As the spatial location of the short dipole is
arbitrary when introducing the “rotors,” the GA-MUSIC is
not limited to any specific array geometry.

3.2. Comparing with the Conventional Modeling Using Euler
Angle. For better understanding of the superiority of the
geometric algebra in modeling the conformal array, we will
briefly introduce the conventional methods of analysis based
on Euler angle. In general, the transformations from the
element local coordinates to the array global coordinates
can be realized by three successive Euler rotations [2]. The
corresponding rotation matrix can be written as

R (𝐶,𝐷, 𝐹) = R𝑥 (𝐶)R𝑦 (𝐷)R𝑧 (𝐹) = [[[
1 0 00 cos𝐶 − sin𝐶0 sin𝐶 cos𝐶

]]]
[[[
cos𝐷 0 − sin𝐷0 1 0
sin𝐷 0 cos𝐷

]]]
[[[
cos𝐹 − sin𝐹 0
sin𝐹 cos𝐹 00 0 1

]]]
= [[[

cos𝐷 cos𝐹 − cos𝐷 sin𝐹 − sin𝐷
cos𝐶 sin𝐹 − cos𝐹 sin𝐶 sin𝐷 cos𝐶 cos𝐹 + sin𝐶 sin𝐷 sin𝐹 − cos𝐷 sin𝐶
sin𝐶 sin𝐹 + cos𝐶 cos𝐹 sin𝐷 cos𝐹 sin𝐶 − cos𝐶 sin𝐷 sin𝐹 cos𝐶 cos𝐷

]]]
,

(28)

where𝐶,𝐷, 𝐹 are three successive Euler rotation angles about
e𝑥-axis, e𝑦-axis, and e𝑧-axis, respectively. R𝑥(𝐶), R𝑦(𝐷), and
R𝑧(𝐹) are the corresponding Euler rotation matrices. Note
that, for cylindrical conformal array, two successive Euler
rotations are usually sufficient [2]. The third Euler rotation

matrix is added here to account for some irregular or complex
conformal arrays. Moreover, as shown in (28), the rotation
matrix is invertible. Thus, the inversion is taken with respect
to R(𝐶,𝐷, 𝐹), resulting in

R (𝐶,𝐷, 𝐹)−1 = R−1𝑧 (𝐹)R−1𝑦 (𝐷)R−1𝑥 (𝐶) = [[[
cos𝐹 sin𝐹 0− sin𝐹 cos𝐹 00 0 1

]]]
[[[

cos𝐷 0 sin𝐷0 1 0− sin𝐷 0 cos𝐷
]]]
[[[
1 0 00 cos𝐶 sin𝐶0 − sin𝐶 cos𝐶

]]]
= [[[

cos𝐷 cos𝐹 cos𝐶 sin𝐹 − cos𝐹 sin𝐶 sin𝐷 sin𝐶 sin𝐹 + cos𝐶 cos𝐹 sin𝐷− cos𝐷 sin𝐹 cos𝐶 cos𝐹 + sin𝐶 sin𝐷 sin𝐹 cos𝐹 sin𝐶 − cos𝐶 sin𝐷 sin𝐹− sin𝐷 − cos𝐷 sin𝐶 cos𝐶 cos𝐷
]]]
.

(29)

From (28) and (29), it is not hard to find that

R (𝐶,𝐷, 𝐹)−1 = R (𝐶,𝐷, 𝐹)𝑇 . (30)

So, R(𝐶,𝐷, 𝐹) is the orthogonal matrix. Then, taking
the transformation from the element local coordinates to
the array global coordinates is equivalent to taking the
transposition/inversion with respect to the aforementioned
rotation matrix. If we model the conformal array adopting
the Euler angle, three matrix multiplications and one matrix
transposition are involved for each element.

In practical applications, the matrix operations are essen-
tially the multiplication and addition operations between
elements. To quantify what we mean by this, the amounts of
multiplication and addition operations of the two algorithms
(i.e., GA-MUSIC and Euler angle) are computed, respectively,
as shown in Table 2. Suppose that one matrix transposition is
regarded as one multiplication or addition operation. As is
known to all, the multiplication between two 3 × 3 matrices
requires 9 × 3 multiplications and 9 × 2 additions. For
convenience, the multiplication operation and the addition
operation are collectively referred to as the operation. Then,
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Table 2: The computational complexity of GA-MUSIC and Euler angle.

Multiplications Additions Transpositions Operations
Euler angle 2 × 9 × 3 ×𝑀𝑁 2 × 9 × 2 ×𝑀𝑁 𝑀𝑁 91 ×𝑀𝑁
GA-MUSIC 4 ×𝑀𝑁 2 ×𝑀𝑁 0 6 ×𝑀𝑁
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Figure 6: Pattern analysis: (a) pattern of single short dipole and (b) pattern of cylindrical conformal array.

the calculation of (28) contains 2× 9× 3+ 2× 9× 2 operations.
For the conformal array consisting of 𝑀 × 𝑁 elements, the
transformation between different coordinates involves 91 ×𝑀𝑁 operations. In contrast to the Euler angle, GA-MUSIC
avoids the cumbersome matrix transformations.

From (20)–(22), we know that e𝑦𝑚𝑛 and e𝑧𝑚𝑛 are indepen-
dent of e𝑥. Moreover, e𝑥𝑚𝑛 can be obtained directly from (20)
without extra computations. Thus, (21)-(22) can be rewritten
in 2 × 2 matrix. While applying the rotor to construct the
array manifold, the computational process is equivalent to 2× 2 matrix multiplied by 2 × 1 vector.Then, the operations for
each element involve 4 multiplications and 2 additions. The
total amount of operations is 6×𝑀𝑁.Thus, the latter method
largely decreases the computational complexity.

To sum up, the Euler rotation and its matrix representa-
tion cannot intuitively display the whole procedure. More-
over, as the configuration of the conformal array becomes
more irregular and complex, the level of complexity involved
in the transformations and the number of calculations
required increase significantly.

4. Simulation Results

In this section, Monte-Carlo simulation experiments are
employed to verify the effectiveness of the GA-MUSIC
algorithm. The array structure is shown in Figure 4. We
select 𝑀 and 𝑁 as 4 and 2, respectively, for the validations.
The pattern of single short dipole is shown in Figure 6(a),
while the cylindrical conformal array pattern is displayed in
Figure 6(b). Compared with the existing methods, adopting

the geometric algebra will be more simple and intuitive. For
the solved array pattern or manifold is the superposition of
various elements, the proposed method can be applied to
arbitrary array structures. This also proves the superiority of
the rotor in solving conformal problems.

Next, the performance of the GA-MUSIC algorithm is
to be verified. We make some notations. Firstly, the absolute
value of the differences between the estimated mean and the
true value is regarded as the deviation. Secondly, the RMSE is
utilized as the performance measure. Under these premises,
100 independent simulation experiments are carried out.The
RMSE is defined as

RMSE = √ 1100
100∑
𝑖=1

[(𝜃̂𝑖 − 𝜃𝑖)2 + (𝜑̂𝑖 − 𝜑𝑖)2], (31)

where {𝜃̂𝑖, 𝜑̂𝑖} are the estimates of elevation angles and
azimuth angles, respectively, at 𝑖th run. Wang’s method [2]
and Qun’s method [4] are included for comparison.

Provided that there are three signals that can be received,
the incident angles are (15∘, 40∘), (35∘, 10∘), and (60∘, 65∘),
respectively. The corresponding polarization auxiliary angle
and the polarization phase difference are (20∘, 25∘), (50∘,
45∘), and (65∘, 65∘). The snapshot, 𝐾, is selected as 100.
Figure 7(a) shows the simulation results of the GA-MUSIC
algorithm. The position of the spectrum peak represents
the corresponding signal DOA. Intuitively, the estimation
accuracy of the GA-MUSIC algorithm is high.

We assume that there are nine distinct signals impinging
on the cylindrical conformal array at the same time. The
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Figure 7: The performance of GA-MUSIC algorithm: (a) DOA estimation using GA-MUSIC and (b) the spatial spectra of multiple signals.
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Figure 8: The DOA estimation accuracy with 𝐾 = 100: (a) deviation of estimates versus SNR and (b) the RMSE and CRB versus SNR.

spatial spectra are shown in Figure 7(b). It is obvious that the
method still works effectively when the number of incident
signals is larger than that of the array elements.

Figure 8 displays the performance with a varying SNR
from 0 dB to 30 dB. Among them, Figure 8(a) displays the
relationship between SNR and deviation of DOA estimation,
while Figure 8(b) reveals the Cramer-Rao Lower Bound
(CRLB) and the RMSE versus the SNR, respectively. It is clear
that the deviation varies inversely with SNR. The higher the
SNR, the lower the deviation.The trend of the variance of the
CRLBwith SNRs is the same as the RMSE, which is expected.
Obviously, in the engineering design, the higher the SNR,
the better the estimation performance that we can obtain.

Note that, since statistical data have some randomness, the
simulation curves in Figure 8(a) are not smooth and do not
decline monotonically.

To proceed further, we increase the number of snapshots
to 200 and leave the other conditions unchanged. The
respective results are shown in Figure 9. Compared with
Figure 8, both the deviation and CRB were improved. If we
choose the point at some SNR, we can find that the CRB of
Figure 8 is nearly twice as much as of Figure 9. For example,
the CRB of Target 1 is −82.58 dB when the SNR is 20 dB
as shown in Figure 8(b), while, in Figure 9(b), the value
is −86.08 dB. In fact, these improvements can be predicted
from the derivation of CRLB. For details on the specific
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Figure 9: The DOA estimation accuracy with 𝐾 = 200: (a) deviation of estimates versus SNR and (b) the RMSE and CRB versus SNR.
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Figure 10: Improvements of GA-MUSIC: (a) RMSE versus SNR with the snapshots being 100 and (b) RMSE versus the snapshots with the
SNR fixed at 20 dB.

derivation process, see thework of Stoica andNehorai [15, 16].
The number of snapshots can be extracted from the Fisher
information matrix. Moreover, the CRLB is found as the
element of the inverse of that matrix. So, we can conclude
thatCRLB is inversely proportional to𝐾.Thus, the estimation
precision will be higher.

Figure 10 shows the improvements of GA-MUSIC over
existing algorithms, such as Qun’s method [4] and Wang’s

method [2]. We study the performance with a varying SNR
from 0 dB to 30 dB and the performance with the number
of snapshots varying from 100 to 1000, respectively. Without
loss of generality, we select the first source (T1) and the
second source (T2), respectively, to verify it. As shown
in Figure 10(a), the proposed method outperforms Qun’s
method by exploiting the polarization information of the
received data. Moreover, the elliptic covariance matrix of
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the GA-MUSIC is nonzero which increases the information
utilization rates as well.

TheRMSE of theGA-MUSIC is close to that of theWang’s
method. The reason is that the estimation accuracy mainly
depends on the steering vector. Both the Euler rotation angle
and the geometric algebra can be used to derive the steering
vector. As previously mentioned, the array manifold was
obtained by using the rotor in this paper. However, in [2],
Wang derived the array manifold by means of the Euler
rotation angle. Therefore, in this case, both methods exhibit
the same performance. From Section 3.2, we clearly know
the GA-MUSIC is superior to the Euler rotation angle in
computational complexity.

Figure 10(b) illustrates the RMSE versus the number
of snapshots with the SNR fixed at 20 dB. Compared with
Figure 10(a), we can draw similar conclusions.

5. Conclusion

In this paper, we proposed a novel algorithm named GA-
MUSIC to estimate the DOA for cylindrical conformal array,
which combines the geometric algebra with MUSIC. Com-
pared with existing methods based on Euler rotation angle, it
avoids complex matrix transformations and largely decreases
the computational complexity. In contrast to the method
introduced in the literature [8], our presented method has
a strong commonality which can be used for arbitrary array
structure. In addition, it can also be suited for the case that
the number of polarized signals is larger than that of the array
elements. At last, the simulated results verify the effectiveness
of the GA-MUSIC algorithm.

Appendix

Here, we derive the calculation process of (4).
From (1)–(3), we get

xyx = (x ∙ y + x ∧ y) x = (x ∙ y) x + (x ∧ y) x
= (x ∙ y) x + xy − yx2 x = (x ∙ y) x + xy2 x − yx2 x

= (x ∙ y) x + xy2 x − y2 .
(A.1)

Thus,

xyx2 = (x ∙ y) x − y2 . (A.2)

Up to the present, (4) has been obtained.
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