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Link prediction is an important task in complex network analysis. Traditional link prediction methods are limited by network
topology and lack of node property information, whichmakes predicting links challenging. In this study, we address link prediction
using a sparse Gaussian graphical model and demonstrate its theoretical and practical effectiveness. In theory, link prediction
is executed by estimating the inverse covariance matrix of samples to overcome information limits. The proposed method was
evaluated with four small and four large real-world datasets. The experimental results show that the area under the curve (AUC)
value obtained by the proposed method improved by an average of 3% and 12.5% compared to 13 mainstream similarity methods,
respectively. This method outperforms the baseline method, and the prediction accuracy is superior to mainstreammethods when
using only 80% of the training set.Themethod also provides significantly higher AUC values when using only 60% in Dolphin and
Taro datasets. Furthermore, the error rate of the proposed method demonstrates superior performance with all datasets compared
to mainstream methods.

1. Introduction

Since 2010, link prediction has become an increasingly
distinctive and important part of complex network analysis.
Link prediction refers to the prediction of a possible link
between two nodes when links are unknown [1]. Such predic-
tion involves the prediction of existing yet unknown links and
future links. Link prediction is the basis of data mining prob-
lems and lays the foundation for complex network research.
Link prediction provides amechanism for both structure and
evolution of networks. Studying this problem is important
from both theoretical and practical perspectives [2]. Existing
community detection research is primarily based on an adja-
cency matrix, and community detection typically depends
on the adequacy and completeness of the adjacency matrix.
Link prediction is instrumental for accurately analysing
social-network structures, helping community detection, and
improving the accuracy of community detection [2, 3]. Link
prediction can be used to predict missing data and can help
analyse network evolution [4]. For example, we can use the
current network structure to predict users who have not been
recognized as friends or can develop into friends.

Link prediction methods have made remarkable achieve-
ments in various fields, including biology, social science,
security, and medicine. Ermiş et al. [2] address the link
prediction problem by data fusion formulated as simultane-
ous factorization of several observation tensors where latent
factors are shared among each observation; some studies turn
to multirelational link prediction [3]; Yang et al. also studied
evaluation of link prediction [5].

Gong et al. in 2014 extended the Social-Attribute Net-
work framework with several supervised and unsupervised
link-prediction algorithms and demonstrate their method
performance improvement [6]. However, such methods have
limitations when processing social datasets. First, social
datasets are low-quality datasets that include faulty links and
noise. Such datasets must be preprocessed before similarity
measurement, set partitioning, and commonneighbour (CN)
count. Moreover, node properties are cumbersome to obtain,
and most social network data can only be used to obtain a
raw adjacency matrix that does not include specific attribute
information because user information is private in most
online systems. Consequently, many prediction methods
cannot use the features of such properties, and we cannot
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calculate feature property.Therefore, using only an adjacency
matrix can avoid interference of node properties, which is
convenient and feasible.

Many community detection methods are based on an
adjacency matrix. Thus, the adjacency matrixes integrity
directly affects the results. Through link prediction using
an adjacency matrix, we can determine the relationships
between unconnected nodes, and the entire community
structure can be obtained by analysing these relationships.
Thus, an effective link prediction method is required. This
issue presents a series of challenges such as the following:
(1) link prediction must function with an adjacency matrix
that does not contain properties, (2) a graph structure model
for estimating the network is required to determine the role
of different types of connections, and (3) verification and
evaluation of link prediction are required.

Existing link prediction methods use similarities, node
properties, edge properties, and so forth. However, properties
require a large amount of test data and heavily rely on
network connectivity and structure; thus, link prediction
without properties is less robust.When the network structure
changes, it is difficult to mine the relationships between
nodes. Thus, determining how to use limited test data to
predict a network edge is the motivation of this study.

To solve the above problems, this paper presents a link
prediction method based on the application of a Gaussian
graphicalmodel (GGM) to an adjacencymatrix.This concept
references Friedman et al.’s [7] sparse inverse covariance
estimation theory. The study uses the original adjacency
matrix for sampling, thereby obtaining a samplematrix.Thus,
we use a sparse GGM (SGGM) inverse covariance matrix for
link prediction. The main contributions of this study are as
follows:

(1) Sampling of a network to build a feature matrix,
seeking maximum likelihood estimation using an
SGGM and estimating an inverse covariance matrix
(precision matrix) of the adjacency matrix.

(2) Establishing conditional independence between
nodes to complete link prediction using the Markov
random field independence principle.

(3) Proving that the proposed method is more effective
than previous methods by testing the methods using
four real-world datasets.

The remainder of this paper is organised as follows. We
introduce related work in Section 2, includingmany previous
link predictionmethods. In Section 3, we present our SGGM-
based link prediction method. In Section 4, we introduce
eight real-world datasets and test the methods using these
datasets to prove that the proposed method is more effective
than previous methods. Finally, we conclude the paper and
present suggestions for future work in Section 5.

2. Related Work

2.1. Problem Description. Existing link prediction methods
can be divided into three categories.

2.1.1. Similarity Link Prediction Employs Different Methods.
One is based on node properties, such as sex, age, occupation,
preferences, and other properties, to compute node similarity.
It is more probable that edges will exist between high-
similarity nodes. Another method is based on the network
structures similarity, for example, the use of CN nodes.
However, this method is only applicable to a network with
a high network clustering coefficient.

2.1.2. Estimates Based on the Maximum Likelihood Estima-
tion of a Link Can Be Divided into Two Categories. One
method is based on network hierarchy, but it has high
complexity because it generates many network samples. The
other method is based on stochastic block model prediction,
wherein nodes are divided into some sets and the probability
of an edge depends on corresponding sets.

2.1.3. A Link Prediction Model Based on Probability Builds a
Model by Adjusting the Parameters. This can fit the structure
of the relationships in real networks. A pair of nodes will gen-
erate an edge determined by probability using the optimum
parameter. A probabilistic model considers the probability of
existing edges as a property. It transforms edge prediction
into property issues. This method takes advantage of the
network structure and node properties with high precision
but offers poor universality.

Due to the poor universality of maximum likelihood
estimation and the probability model, which depend highly
on node properties, thesemethods cannot be applied tomany
networks. Herein, we consider a link prediction method
which is only based on similarity and discuss experiments
performed to compare the proposed and previous methods.

2.2. Similarity-Based Link Prediction. Here, we compare the
prediction accuracies of 13 similarity measures. All of these
measures are based on the local structural information
contained in a test set. We first introduce each measure
briefly. The formulas are shown in Table 1. Here, 𝐺(𝑉, 𝐸) is
an undirected network, 𝑉 is a set of nodes, and 𝐸 is a set of
edges. The total number of nodes for the network is 𝑁 and
the number of edges is 𝑀. For a node 𝑋 and its neighbours
Λ(𝑥), the degree of 𝑋 is 𝑑(𝑥) = |Λ(𝑥)|. The network has
𝑁(𝑁−1)/2 node pairs, that is, a universal set𝑈. When given
a link prediction method, each pair of nodes (𝑥, 𝑦) ∈ (𝑈 \ 𝐸)

without an edge will have a score 𝑆
𝑥𝑦
. Then, all unconnected

pairs of nodes are ordered by the score value in descending
order and the probability of an edge appearing is the largest
on the top.

CN nodes are based on a local information similarity
index, and this is one of the simplest methods [8]. In other
words, it is more likely that a link will exist between two
high-similarity nodes that have many neighbours. For node
𝑋, Λ(𝑥) represent its neighbours, and if nodes 𝑋 and 𝑌

have many CNs, they are more likely to have a link. Visibly,
the structural equivalence pays more attention to whether
two nodes are in the same circumstance. For example, in
a social network context, if two people share many friends,
they are more likely to be friends themselves. We consider
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Table 1: Similarity indexes of local node information.

Name Definition

CN 𝑆
𝑥𝑦
=
󵄨󵄨󵄨󵄨Λ (𝑥) ∩ Λ (𝑦)

󵄨󵄨󵄨󵄨

Salton index 𝑆
𝑥𝑦
=

󵄨󵄨󵄨󵄨Λ (𝑥) ∩ Λ (𝑦)
󵄨󵄨󵄨󵄨

√𝑑 (𝑥) × 𝑑 (𝑦)

Jaccard index 𝑆
𝑥𝑦
=

󵄨󵄨󵄨󵄨Λ (𝑥) ∩ Λ (𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨Λ (𝑥) ∪ Λ (𝑦)
󵄨󵄨󵄨󵄨

Sørensen index 𝑆
𝑥𝑦
=
2
󵄨󵄨󵄨󵄨Λ (𝑥) ∩ Λ (𝑦)

󵄨󵄨󵄨󵄨

𝑑 (𝑥) + 𝑑 (𝑦)

HPI 𝑆
𝑥𝑦
=

󵄨󵄨󵄨󵄨Λ (𝑥) ∩ Λ (𝑦)
󵄨󵄨󵄨󵄨

min {𝑑 (𝑥) , 𝑑 (𝑦)}

HDI 𝑆
𝑥𝑦
=

󵄨󵄨󵄨󵄨Λ (𝑥) ∩ Λ (𝑦)
󵄨󵄨󵄨󵄨

max {𝑑 (𝑥) , 𝑑 (𝑦)}

LHN-I 𝑆
𝑥𝑦
=

󵄨󵄨󵄨󵄨Λ (𝑥) ∩ Λ (𝑦)
󵄨󵄨󵄨󵄨

𝑑 (𝑥) × 𝑑 (𝑦)

PA 𝑆
𝑥𝑦
= 𝑑 (𝑥) × 𝑑 (𝑦)

AA 𝑆
𝑥𝑦
= ∑

𝑧∈Λ(𝑥)∩Λ(𝑦)

1

lg 𝑑 (𝑧)

RA 𝑆
𝑥𝑦
= ∑

𝑧∈Λ(𝑥)∩Λ(𝑦)

1

𝑑 (𝑧)

the impact of degree of both nodes and generate six simi-
larity indices, namely, Salton index (cosine-based similarity)
[9], Jaccard index [10], Sørensen index [11], hub promoted
index (HPI), hub depressed index (HDI), and Leicht-Holme-
Newman (LHN) index [12]. These indices are based on
CN similarity. Another similarity-degree-based method is
preferential attachment (PA) [13], which can generate a scale-
free network. Note that the complexity of this algorithm is
lower than that of others because it requires less information.

If we consider degree information of two nodes CNs, we
have the Adamic-Adar (AA) index [14], which considers that
the contribution of a small degree of CN nodes is greater than
that of a larger one. Liu et al. [15] proposed the RA index,
which forms a view of network resource allocation. The RA
andAA indices determine theweight of CNnodes in different
ways; RA decreases by 1/𝑘 and AA is 1/ lg 𝑘. The RA index
performs better than the AA index in a weighted network
and community mining. Traditional CN methods do not
distinguish the different roles of CNs. Liu et al. [15] proposed
a local naive Bayes (LNB) model. This model creates a role
parameter for marking the different roles of CNs. However, it
is only applied to certain types of networks.

3. Link Prediction Based on Sparse Gaussian
Graphical Model

Most similarity algorithms perform well with ideal datasets
and large training datasets. Such algorithms do not con-
sider missing, incomplete, and polluted data in an adja-
cency matrix. As previously mentioned, the accuracy of
similarity-based methods depends on whether the method

can determine the characteristics of the network structure.
For example, CN-based algorithms utilise a nodes CNs, and
a pair of nodes with many CNs are more likely to connect.
Such algorithms perform well, sometimes even better than
complex algorithms, in a network with a high clustering
coefficient. However, in networks with a low clustering
coefficient, such as router or power networks, accuracy is
significantly worse.

This study attempts to determine links in an adjacency
matrix to reveal actual links between nodes. The proposed
SGGM method is based on an undirected graphical model
and transforms the adjacency matrix without using node
properties. The SGGMmethod estimates the precision of the
matrix of a network to predict unknown edges. To verify link
prediction accuracy, area under the curve (AUC) and an error
metric are used to prove the proposed methods’ effective-
ness.

3.1. Sparse Graphical Model. Biologists interested in genetic
connections use the GGM to estimate genetic interaction.
Edge relationships in an undirected graph are represented
by the joint distribution of random variables. For example,
genome work is based on biological functions, and some
supervising relationships exist between genes. Correspond-
ing to the graph, genes represent nodes and edges repre-
sent this supervising relationship. The relationship between
genes provides a method to model such relationships. We
assume that variables have Gaussian distribution; therefore,
the GGM is most frequently used. Therefore, the problem is
equivalent to estimating the inverse covariance matrix Σ

−1

(precision matrix Θ = Σ
−1), and the diagonal elements of

precision matrixΘ represent the edges in the graph [16]. The
GGM denotes the statistical dependencies between variables.
If there is no link between two nodes, such nodes have
conditional independence. In the GGM, a precision matrix
can parameterise each edge.

A popular modern method for evaluating a GGM is the
graphical lasso, and Friedman et al. [7] added an ℓ

1
norm to

punish each off-diagonal element of the inverse covariance
matrix.

The GGM encodes the conditional dependence relation-
ships among a set of 𝑝 variables and 𝑛 observations that have
identical and independent Gaussian distribution. Motivated
by network terminology, we can refer to the 𝑝 variables in a
graphical model as nodes. If a pair of variables (or features)
is conditionally dependent, then there is an edge between
the corresponding pair of nodes; otherwise, no edge is
present.Thebasicmodel for continuous data assumes that the
observations have a multivariate Gaussian distribution with
mean𝜇 and covariancematrixΣ, and𝑋[1], 𝑋[2], . . . , 𝑋[𝑁] ∼

𝑁(0, Σ). If the 𝑖𝑗th component of Σ−1 is zero, then the
variables 𝑖 and 𝑗 are conditionally independent given the
other variables. Specifically, given𝑋

𝑘
and 𝑘 = {1, . . . , 𝑝}\{𝑖, 𝑗},

the nonzero elements inΣ−1 represent the graphs structure. In
other words, if (Σ−1)

𝑖,𝑗
= 0, nodes 𝑖 and 𝑗 have no connecting

edge in the graph. The precision matrix is sparse due to



4 Mathematical Problems in Engineering

the conditional independence of the variables. To estimate
a sparse GGM, many methods are based on maximum
likelihood estimation (MLE), and one such method is the
graphical lasso, which is expressed as

max
Θ≻0

{log detΘ − tr (𝑆Θ) − 𝜆 ‖Θ‖
1
} , (1)

𝑆 =
1

𝑁

𝑁

∑

𝑖=1

(𝑥
𝑖
− 𝑥) (𝑥

𝑖
− 𝑥)
𝑇

, (2)

‖Θ‖
1
= ∑

𝑖 ̸=𝑗

󵄨󵄨󵄨󵄨󵄨
Θ
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
. (3)

Here, 𝑆 is the experiential covariance matrix and 𝜆 is
positive tuning parameter. If Θ > 0, Θ is a 𝑝 × 𝑝 positive
definite matrix. ‖Θ‖

1
is the punishment element, and Θ

becomes increasingly sparse with increasing 𝜆. An ℓ
1
-norm is

utilised to considerΘ a variable rather than a fixed parameter.

3.2. Graphical Lasso Algorithm. In 2008, Banerjee et al. [17]
proved that formula (1) is convex. They estimated Σ via 𝑊
only and subsequently solved the problem by optimising
over each row. Moreover, they optimised the corresponding
column of𝑊 in a block coordinate descent fashion:

𝑊 = (

𝑊
11

𝑤
12

𝑤
𝑇

12
𝑤
22

) ,

𝑆 = (

𝑆
11

𝑠
12

𝑠
𝑇

12
𝑠
22

) .

(4)

By partitioning𝑊 and 𝑆, the solution for 𝑤
12
satisfies

𝑤
12
= argmin

𝑦

{𝑦
𝑇

𝑊
−1

11
𝑦 :

󵄩󵄩󵄩󵄩𝑦 − 𝑠12
󵄩󵄩󵄩󵄩∞

≤ 𝑝} . (5)

Banerjee et al. [17] proved that solving (5) is equivalent to
solving its dual problem:

min
𝛽

= {
1

2

󵄩󵄩󵄩󵄩󵄩
𝑊
1/2

11
𝛽 − 𝑏

󵄩󵄩󵄩󵄩󵄩

2

+ 𝜌
󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩1
} . (6)

Here, assume that 𝛽 is the solution to (6); that is, 𝑏 =

𝑊
1/2

11
𝑠
12
; thus,𝑤

12
= 𝑊
11
𝛽 is the solution to (5).Therefore, (6)

is similar to lasso regression and is the basis for the graphical
lasso algorithm. First, we must prove that (6) and (1) are
equivalent. Given𝑊Θ = 𝐼, that is,

(

𝑊
11

𝑤
12

𝑤
𝑇

12
𝑤
22

)(

Θ
11

𝜃
12

𝜃
𝑇

12
𝜃
22

) = (

𝐼 0

0
𝑇

1

) , (7)

the MLE of (1) is rewritten as

𝑊− 𝑆 − 𝜌𝐻 = 0. (8)

Note that the derivative of log detΘ equals Θ−1 = 𝑊.
Here, 𝐻

𝑖𝑗
∈ sign(Θ

𝑖𝑗
); that is, 𝐻

𝑖𝑗
= sign(Θ

𝑖𝑗
), if Θ

𝑖𝑗
̸= 0;

else𝐻
𝑖𝑗
∈ [−1, 1] ifΘ

𝑖𝑗
= 0. Thus, the upper-right block of (8)

is expressed as

𝑤
12
− 𝑠
12
− 𝜌𝛾
12
= 0. (9)

The subgradient equation of (6) is expressed as follows:

𝑊
11
𝛽 − 𝑠
12
+ 𝜌V = 0, (10)

where V ∈ sign(𝛽). Here, suppose that (𝑊,𝐻) solves (8);
consequently, (𝑤

12
, 𝛾
12
) solves (9). Then, 𝛽 = 𝑊

−1

11
𝑤
12

and
V = −𝛾

12
solve (10). For the sign terms,𝑊

11
Θ
12
+ 𝑤
12
Θ
22
= 0

is derived from (7); therefore, we obtainΘ
12
= −Θ
22
𝑊
−1

11
𝑤
12
.

Since Θ
22
> 0, it follows that sign(Θ

12
) = − sign(𝑊−1

11
𝑤
12
) =

− sign(𝛽), which proves the equivalence.The solution𝛽 to the
lasso problem (6) gives the relevant part of Θ

12
= −Θ
22
𝛽.

Problem (6) appears similar to a lasso (ℓ
1
-regularised)

least-squares problem. In fact, if 𝑊
11

= 𝑆
11
, the solutions

of 𝛽 are equal to the lasso estimates for the 𝑝th variable. In
2007, Friedman et al. used fast coordinate descent algorithms
to solve the lasso problem. Hsieh et al. [18, 19] proposed a
novel block-coordinate descentmethod via clustering to solve
the optimization problem. The method can reach quadratic
convergence rates, which is designed for large network.

3.3. Link Prediction Scheme Based on Sparse Inverse Covari-
ance Estimation. Here, we consider an undirected simple
network𝐺(𝑉, 𝐸), where 𝐸 is the set of links and𝑉 is the set of
nodes. Moreover, 𝐴 is an adjacent matrix, Λ is the graphical
lasso parameter, 𝑝 denotes the number of nodes, and the
universal set 𝑈 consists of 𝑝(𝑝 − 1)/2 edges. The set of links
are randomly divided into two parts: training (𝐸

𝑇
) and testing

(𝐸
𝑃
) sets. Note that only the information in the training set

can be used for link prediction. 𝜌 denotes the ratio of the
training set which means the amount of edges being used.
Clearly, 𝐸 = 𝐸

𝑇
∪ 𝐸
𝑃
, and 𝐸

𝑇
∩ 𝐸
𝑃
= 0. In the training set

sampling process, we generated 𝑛 independent observations
𝑋 = [𝑥

1
, . . . , 𝑥

𝑛
], each from normal distribution 𝑁(0, Σ),

where Σ = (𝐸
𝑇
)
−1. Here, 𝑆 denotes the sample covariance

matrices of 𝑋 = [𝑥
1
, . . . , 𝑥

𝑛
]. We then apply SGGM for link

prediction. The pseudocode of the link prediction scheme is
given in Algorithm 1.

4. Experiment and Analysis

4.1. Evaluation Metrics

4.1.1. AUC. In link prediction, we focus on accurately recov-
ering missing links. Here, we have chosen the area under
a relative operating characteristic (ROC) curve as a metric.
An ROC curve represents a comparison of two operating
characteristics TPR and FPR as the criterion changes. The
AUC ranges from 0.5 to 1, and a higher value means a better
model.

4.1.2. Error Rate. We also defined an error metric to evaluate
the difference between the original and estimated networks
and are denoted by 𝜃 and 𝜃󸀠, respectively. The error metric is
defined as Error = ‖𝜃−𝜃

󸀠

‖
𝐹
/‖𝜃‖
𝐹
, where ‖⋅‖

𝐹
is the Frobenius

norm.

4.2. Real-World Datasets. In this paper, we consider four
representative networks drawn from disparate fields (data
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Require: 𝐴, 𝜌 > 0, 𝜆 > 0, 𝑛 > 0

Ensure: 𝐴
𝐸
𝑇: randomly select 𝜌|𝐸| edges from 𝐸.

𝐸
𝑃

⇐ 𝐸 − 𝐸
𝑇

Σ ⇐ (𝐸
𝑇

)
−1

𝑋 ⇐ [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
]: 𝑛 independent observations from

𝑁(0, Σ)

𝑆 ⇐ cov(𝑋)
Θ ⇐ Sparse Inverse Covariance Estimation (𝐴, 𝜆, 𝑆)
if 𝜃
𝑖𝑗
≤ 0 and 𝑖 ̸= 𝑗 then

𝐴
𝑖𝑗
⇐ 1

else
𝐴
𝑖𝑗
⇐ 0

end if

Algorithm 1: Link prediction based on sparse inverse covariance
estimation with graphical lasso.

Table 2: Basic topological features of four real-world networks.

Network 𝑁 𝑀 𝐸 𝐶 Avg 𝐷 𝑟

Taro 22 39 0.488 0.339 3.546 −0.375
Tailor Shop 39 158 0.567 0.458 8.103 −0.183
Dolphin 62 159 0.379 0.259 5.129 −0.044
Football 115 613 0.450 0.403 10.661 0.162

sources: (1) http://www-personal.umich.edu/∼mejn/netdata/
(Football andDolphin) and (2) http://vlado.fmf.uni-lj.si/pub/
networks/data/ucinet/ucidata.htm (Tailor Shop and Taro)).

We selected four real-world datasets to compare the
proposed method with the 13 similarity measures. Table 2
shows the basic topological features of the four real-world
networks, wherein 𝑁 and𝑀 are the total numbers of nodes
and links, respectively. 𝐸 is the network efficiency [20] which
is defined as 𝐸 = (2/𝑁(𝑁 − 1))∑

𝑥,𝑦∈𝑉,𝑥 ̸=𝑦
𝑑
−1

𝑥𝑦
, where 𝑑

𝑥𝑦

denotes the shortest distance between nodes 𝑥 and 𝑦 and
𝑑
𝑥𝑦

= +∞ if 𝑥 and 𝑦 are in two different components.
𝐶 and Avg 𝐷 denote the clustering coefficient [21] and
average degree, respectively, and 𝑟 is the network assortative
coefficient [22]. The network is assortative if a node tends to
connect with the approximate node. 𝑟 > 0 means that the
entire network has assortative structure, and a nodewith large
degree tends to connect to other nodes with large degree. 𝑟 <
0 means that the entire network has disassortative structure,
and 𝑟 = 0 implies that there is no correlation in the network
structure. Figure 1 shows the distribution of the four datasets.
It is clear that the degree distributions of the four data sets are
considerably different.

4.3. Experimental Settings. To evaluate the performance of
the algorithmswith different sized training sets, we randomly
selected 60%, 70%, 80%, and 90% of the links from the
original network as training sets. Only the information in
the training set was used for estimation. Each training set
was executed 10 times. We choose 10-fold cross validation
because it has been widely accepted in machine learning

Table 3: Football dataset results.

Method Training set ratio
60% 70% 80% 90%

SGGM, 𝑛 = 0.5𝑝 0.702 0.725 0.757 0.783
SGGM, 𝑛 = 𝑝 0.742 0.777 0.818 0.857
SGGM, 𝑛 = 1.5𝑝 0.753 0.795 0.845 0.889
SGGM, 𝑛 = 2𝑝 0.756 0.800 0.852 0.905
CN 0.774 0.798 0.824 0.835
Salton 0.779 0.804 0.828 0.838
Jaccard 0.502 0.508 0.514 0.520
Sørensen 0.590 0.597 0.604 0.606
HPI 0.778 0.802 0.827 0.838
HDI 0.779 0.803 0.827 0.838
LHN 0.777 0.802 0.827 0.838
AA 0.774 0.798 0.825 0.836
RA 0.774 0.798 0.824 0.836
PA 0.515 0.516 0.520 0.528
LNBCN 0.777 0.800 0.825 0.836
LNBAA 0.777 0.800 0.825 0.836
LNBRA 0.776 0.799 0.825 0.837

and data mining research. Thirteen similarity measures were
implemented following Zhou et al. [14], and the SGGM was
implemented using the SLEP toolbox [23]. We evaluated the
performance of the GGM algorithm with different sample
scales. Here, 𝑝 denotes the number of nodes. We set the
sample scale to 0.5𝑝, 𝑝, 1.5𝑝, and 2𝑝. The parameter 𝜆 in the
SGGM controlled the sparsity of the estimated model. Larger
𝜆 gives a sparser estimated network. Here, 𝜆 ranged from 0.01

to 0.2 with a step of 0.01.

4.4. Results

4.4.1. Tuning Parameter for the SGGM. Using the training set
that was scaled to 90%, we tested the proposed SGGM with
different 𝜆 and sample scales. As shown in Figure 2, the AUC
of the SGGM increased with increasing sample scale for the
four datasets. One advantage of the SGGM is that it is not
sensitive to the parameter 𝜆. Then, we set the sample scale to
0.5𝑁. Figure 3 shows that the AUC increased with increase in
training set scale. For the Tailor Shop dataset, the proposed
algorithm performs optimally with the 70% scaled training
set.

4.4.2. Comparison on AUC. Table 3 lists the results for 14
methods with the Football dataset. The SGGM performs
optimally when 80% or 90% of the training set is used and the
number of samples is greater than𝑁.The prediction accuracy
of the SGGM increased by 5% compared to the other 13
methods.However, with lower proportions of the training set,
the SGGMs AUC is very close to that of the other methods.
Note that PA yielded the poorest result with this dataset.

As shown in Table 4, the SGGM method performs opti-
mally with the Dolphin dataset. The prediction accuracy of
the SGGMmethod increased by at least 3% compared to the
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Figure 1: Degree distribution of four real-world datasets.

other thirteen methods. PA is optimal among the similarity
measures, and Jaccard yielded the poorest result.

As shown in Table 5, the SGGMmethod outperforms the
other 13 methods with the Taro dataset. The AUC improved
by at least 10%. For the Taro dataset, the degree of 70% nodes
is 3, which indicates a low degree of heterogeneity; thus, the
performance of the other thirteen methods is very close. One
might expect PA to show good performance on assortative
networks and poor performance on disassortative networks.
However, the experimental results show no obvious correla-
tion between PA performance and the assortative coefficient.

For the Tailor Shop dataset, PA performs optimally when
the 60% and 70% training sets were used, while the SGGM

method performs optimally with the 80% and 90% training
sets (Table 6). The SGGMs prediction accuracy gradually
increased with increasing the number of samples.Thus, when
sampling conditions permit, multiple samples could improve
prediction accuracy.

4.4.3. Comparison on ROC. The ratio of the training set was
set to 90%.The sample scale of the SGGM varied within 0.5𝑝,
𝑝, 1.5𝑝, and 2𝑝;𝜆 = 0.01. CNwas chosen as the representative
neighbourhood because six other measures (Salton, Jaccard,
Sørensen, HPI, HDI, and LHN) are variants of CN.

The ROC of the RA index is similar to that of the AA
index. As observed in Figure 4, in most cases, the SGGM



Mathematical Problems in Engineering 7

0
0.05

0.10
0.15

0.20

0.5
0.6

0.7
0.8

0.9

0.65
0.7

0.75
0.8

0.85
0.9

Ratio of training

AU
C

𝜆

(a) Dolphin

0
0.05

0.10
0.15

0.20

0.5
0.6

0.7
0.8

0.9

0.55
0.6

0.65
0.7

0.75
0.8

Ratio of training

AU
C

𝜆

(b) Football

0
0.05

0.10
0.15

0.20

0.6

0.7

0.8

0.64
0.66
0.68

0.7
0.72
0.74
0.76

0.9

Ratio of training

AU
C

𝜆

(c) Taro

0
0.05

0.10
0.15

0.20

0.6

0.7

0.8

0.9

0.6
0.62
0.64
0.66
0.68

0.7
0.72

Ratio of training

AU
C

𝜆

(d) Tailor Shop

Figure 2: AUC of the SGGM (four datasets, training set ratio = 90%).
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Figure 3: AUC of the SGGM (four datasets, sample scale = 0.5𝑁).
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Figure 4: Comparison of ROC metric of four methods (SGGM, CN, AA, and PA) on four datasets.

shows an improvement over existing similarity measures
when sufficient samples were used. Note that more samples
lead to higher accuracy.

4.4.4. Comparison on Error Rate. The error rate is a metric
to evaluate the difference between two matrices. A lower
error rate indicates that the estimated matrix approximates

the original matrix. From Table 7, we observe that the SGGM
has the lowest error rate among all methods shown. To
show the effectiveness of the proposed SGGM, both the
original adjacency matrix and estimated adjacency matrix
are presented as a coloured graph in Figure 5. We used
the Taro dataset with a 90% training set to recover the
original network. Graphs with fewer red points indicate
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Figure 5: Recovery performances of 14methods on the Taro dataset.
The upper left corner is the original matrix; blue points denote links
between two corresponding nodes. The red points denote links in
the original matrix that were not accurately estimated. The green
points denote links in the estimated matrix that do not exist in the
original matrix. From left to right, top to bottom, the figures are the
recovered matrix by SGGM (𝑛 = 0.5𝑝, 𝑝, 1.5𝑝, and 2𝑝), CN, Salton,
Jaccard, Sørensen, HPI, HDI, LHN, AA, RA, PA, LNBCN, LNBAA,
and LNBRA, respectively.

Table 4: Dolphin dataset results.

Method Training set ratio
60% 70% 80% 90%

SGGM, 𝑛 = 0.5𝑝 0.699 0.731 0.761 0.801
SGGM, 𝑛 = 𝑝 0.742 0.775 0.823 0.867
SGGM, 𝑛 = 1.5𝑝 0.758 0.803 0.845 0.895
SGGM, 𝑛 = 2𝑝 0.765 0.807 0.857 0.909
CN 0.631 0.687 0.728 0.762
Salton 0.621 0.673 0.709 0.740
Jaccard 0.485 0.490 0.495 0.500
Sørensen 0.538 0.558 0.571 0.583
HPI 0.620 0.669 0.702 0.728
HDI 0.626 0.680 0.720 0.753
LHN 0.619 0.666 0.698 0.721
AA 0.633 0.690 0.732 0.767
RA 0.632 0.690 0.731 0.766
PA 0.712 0.727 0.737 0.746
LNBCN 0.636 0.696 0.739 0.775
LNBAA 0.635 0.694 0.738 0.773
LNBRA 0.635 0.693 0.736 0.771

good recovery of the original matrix. As can be seen from
Figure 5, using the SGGM method can restore the original
image, whereas the other similarity measures return greater
error rates. Note that the SGGM error rate decreased with
increasing sample scale.

4.5. Large Datasets. The main challenge of link prediction is
dealing with large network. We carefully choose four large
datasets from four individual domain. For SGGM method,
𝜆 is set to 0.01; 90% of data was used as training set.

Table 5: Taro dataset results.

Method Training set ratio
60% 70% 80% 90%

SGGM, 𝑛 = 0.5𝑝 0.672 0.711 0.736 0.750
SGGM, 𝑛 = 𝑝 0.713 0.747 0.779 0.815
SGGM, 𝑛 = 1.5𝑝 0.721 0.763 0.816 0.857
SGGM, 𝑛 = 2𝑝 0.723 0.788 0.825 0.865
CN 0.529 0.545 0.573 0.582
Salton 0.530 0.542 0.571 0.580
Jaccard 0.468 0.476 0.476 0.478
Sørensen 0.523 0.533 0.544 0.552
HPI 0.533 0.545 0.574 0.585
HDI 0.528 0.541 0.568 0.576
LHN 0.532 0.543 0.570 0.579
AA 0.533 0.554 0.589 0.609
RA 0.533 0.554 0.589 0.610
PA 0.559 0.568 0.582 0.607
LNBCN 0.536 0.562 0.616 0.638
LNBAA 0.537 0.561 0.614 0.634
LNBRA 0.536 0.560 0.613 0.634

Table 6: Tailor Shop dataset results.

Method Training set ratio
60% 70% 80% 90%

SGGM, 𝑛 = 0.5𝑝 0.652 0.679 0.677 0.706
SGGM, 𝑛 = 𝑝 0.703 0.723 0.750 0.769
SGGM, 𝑛 = 1.5𝑝 0.715 0.755 0.786 0.817
SGGM, 𝑛 = 2𝑝 0.734 0.770 0.803 0.844
CN 0.673 0.699 0.720 0.746
Salton 0.616 0.628 0.646 0.667
Jaccard 0.494 0.498 0.504 0.514
Sørensen 0.583 0.589 0.592 0.597
HPI 0.615 0.618 0.631 0.642
HDI 0.628 0.643 0.660 0.680
LHN 0.588 0.574 0.571 0.566
AA 0.682 0.709 0.729 0.753
RA 0.681 0.707 0.729 0.752
PA 0.761 0.775 0.779 0.786
LNBCN 0.692 0.715 0.746 0.765
LNBAA 0.693 0.716 0.746 0.764
LNBRA 0.693 0.715 0.745 0.762

In order to prove the performance of SGGM, we compare
the proposed method with the other thirteen methods on
these large datasets (for details see Table 8) in terms of AUC
and error rate (data sources: (1) http://konect.uni-koblenz
.de/networks/ (Email). (2) http://www3.nd.edu/∼networks/
resources.htm (Protein). (3) http://www-personal.umich
.edu/∼mejn/netdata/power.zip (Grid). (4) http://konect.uni-
koblenz.de/networks/ (Astro-ph)).

To estimate the large network efficiently, we used QUIC
[19] to solve sparse inverse covariance estimation (formula
(1)) instead of glasso [7]. Overall, the proposed method
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Table 7: Error rate of 13 methods on 4 datasets.

Method Datasets
Football Dolphin Taro Tailor Shop

SGGM, 𝑛 = 0.5𝑝 1.467 1.251 1.098 1.121
SGGM, 𝑛 = 𝑝 1.364 1.109 1.062 1.188
SGGM, 𝑛 = 1.5𝑝 1.362 1.198 1.098 1.025
SGGM, 𝑛 = 2𝑝 1.200 1.121 1.013 0.987
CN 1.641 1.291 1.320 1.485
Salton 1.641 1.291 1.320 1.485
Jaccard 1.641 1.291 1.320 1.485
Sørensen 1.863 1.672 1.695 1.826
HPI 1.641 1.291 1.320 1.485
HDI 1.641 1.291 1.320 1.485
LHN 1.641 1.291 1.320 1.485
AA 1.641 1.291 1.320 1.485
RA 1.641 1.291 1.320 1.485
PA 2.512 1.251 1.340 1.446
LNBCN 1.641 1.291 1.261 1.382
LNBAA 1.641 1.291 1.261 1.382
LNBRA 1.641 1.291 1.261 1.382

Table 8: Basic topological features of four large networks.

Network 𝑁 𝑀 𝐸 𝐶 Avg 𝐷 𝑟

Email 1133 5451 0.299 0.220 9.622 0.078
Protein 1870 2240 0.099 0.099 2.396 −0.156
Grid 4941 6594 0.063 0.107 2.669 0.003
Astro-ph 18771 198050 0.091 0.486 4.140 0.294

Table 9: Comparison of 14 methods on 4 large datasets on AUC.

Method Email Protein Grid Astro-ph
SGGM 0.916 0.943 0.944 0.929
CN 0.817 0.566 0.570 0.864
Salton 0.812 0.566 0.569 0.863
Jaccard 0.475 0.479 0.487 0.479
Sørensen 0.547 0.493 0.529 0.584
HPI 0.809 0.566 0.569 0.863
HDI 0.813 0.566 0.569 0.863
LHN-I 0.805 0.565 0.570 0.864
AA 0.819 0.565 0.570 0.876
RA 0.818 0.566 0.568 0.838
PA 0.824 0.820 0.713 0.785

can efficiently recover the original network and predict the
missing links accurately. As observed from Table 9, AUC of
SGGM is highest on all 4 datasets. For Email, Protein, Grid,
and Astro-ph datasets, SGGM improves 9.2%, 12.3%, 23.1%,
and 5.3% on AUC, respectively. For error rate metric, as
shown in Table 10, the SGGM method performs optimally
with all 4 large datasets. It indicates that SGGMmethod could
accurately recover the original network.

Table 10: Comparison of 14 methods on 4 large datasets on error
rate.

Method Email Protein Grid Astro-ph
SGGM 0.467 0.411 0.367 0.359
CN 2.348 2.189 1.670 1.568
Salton 2.978 2.189 1.767 1.549
Jaccard 2.982 2.189 1.450 1.548
Sørensen 3.047 2.555 2.071 2.771
HPI 2.578 2.189 1.670 1.610
HDI 2.978 2.189 1.237 1.854
LHN-I 2.428 2.189 1.692 1.612
AA 2.922 2.204 1.872 1.953
RA 2.348 2.189 1.670 1.410
PA 9.219 8.032 15.081 12.451

4.6. Analysis. In the comparative analysis of the performance
of the 14 methods using the eight real-world datasets, the
SGGM method was outstanding in terms of AUC and error
rate. This method can accurately recover the original adja-
cency matrix and, in most of cases, requires fewer samples,
that is, far fewer than the actual number of nodes. The
SGGM method’s prediction precision gradually increased
with the increase in number of samples; moreover, the
recovery error rate decreased with the increase in matrix
sparsity.Therefore, the SGGMmethod can be applied to small
samples; however, it performs better with more samples.
These results demonstrate that the SGGM method can be
implemented in a scalable fashion.

5. Conclusions

Link prediction is a basic problem in complex network
analysis. In real-world networks, obtaining node and edge
properties is cumbersome. Link prediction methods based
on network structure similarity do not depend on node
properties; however, these methods are limited by network
structure and are difficult to adapt in different network
structures.

Our work is not dependent on node properties and
expands link prediction methods that cannot deal with
diverse network topologies.We sampled the original network
adjacency matrix and used the SGGM method to depict the
network structure.

Most nodes are independent in the actual network; thus,
we used the SGGM method to estimate a precision matrix
of the adjacency matrix to predict links. Our experimental
results show that using the SGGMmethod to recover network
structure is better than 13mainstream similaritymethods.We
tested the proposed method with eight real-world datasets
and used the AUC and error rate as evaluation indexes. We
found that this method obtains higher prediction precision.
We also analysed the influence of different parameters on
the SGGM method and found no significant influence.
The SGGM method returns a high AUC value within a
certain range. Furthermore, the proposed method retains
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high prediction precision with fewer training samples; it can
be applied in large network.
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