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This paper proposes a new fractional-order approach for synchronization of a class of fractional-order chaotic systems in the
presence of model uncertainties and external disturbances. A simple but practical method to synchronize many familiar fractional-
order chaotic systems has been put forward. A new theorem is proposed for a class of cascade fractional-order systems and it
is applied in chaos synchronization. Combined with the fact that the states of the fractional chaotic systems are bounded, many
coupled items can be taken as zero items.Then, the whole system can be simplified greatly and a simpler controller can be derived.
Finally, the validity of the presented scheme is illustrated by numerical simulations of the fractional-order unified system.

1. Introduction

Fractional calculus, with more than 300-year-old history,
is generalization of ordinary differentiation and integration
to arbitrary order. Until the recent decades, the fractional
calculus attracted attention of researchers in various fields
[1–5]. Many systems in physics and engineering have been
found to be effectively modeled as fractional-order systems
[6–8]. Fractional-order systems could also behave chaotically.
Recently, it has been demonstrated that some fractional-
order differential systems, including fractional-order Lü sys-
tem, fractional-order Chen system, fractional-order coupled
dynamos system, fractional-order Liu system, and fractional-
order unified system [9–13] exhibit chaotic behaviors.

Integer order chaotic systems have been extensively
studied for many decades [14, 15], whereas their fractional-
order counterparts have just recently been investigated. An
extensive survey of various fractional-order chaotic systems
can be found in [4]. Chaos control of fractional-order
chaotic systems has received a lot of considerations of
researchers. However, compared to integer order chaotic
systems, the research results in this field are relatively rare. For

the limitation of the available theoretical tools, a number of
researchworksmainly focus on integer order chaotic systems.

Chaos control based on stability theories for linear
fractional-order systems has been extensively proposed in
[16, 17]. However, this approach provides only local stability.
Active control is another approach that can be found in
the literature [18, 19]. The approach made use of a non-
linear control law to cancel nonlinearities in the control
system. Based on the stability theory for linear fractional-
order systems, a linear control law was designed to stabilize
the linearized system. Reference [20] presented LMI-based
stabilization method for fractional-order chaotic systems.
Themethod required that the systems must be transformable
into a linear interval fractional-order system. In [21, 22], the
authors proposed a sliding mode control approach to realize
chaos control. By adopting a fractional-order sliding surface,
the stability can be obtained via the Lyapunov stability
method. However, the fractional-order sliding surface might
be difficult to implement. Moreover, discontinuous control
signals could induce some undesired behavior.

Many of the above controllers are nonlinear. From a
practical point of view, to design a simple linear controller
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by a special strategy is more valuable. However, to our best
knowledge, there is a limitation of the available theoretical
tools that can be used for nonlinear fractional-order systems.
Therefore, designing a linear controller for fractional-order
chaotic systems has still remained as an open and challenging
problem.

Motivated by the above discussions, in this paper, based
on fractional-order Lyapunov stability theory, a new strat-
egy is proposed to synchronize a class of fractional-order
chaotic systems in the presence of model uncertainties and
external disturbances. Then, a simple linear controller with
low dimensions is designed via the proposed new strategy.
Compared with the control approach in [20], only two
simple and linear feedback controllers are designed to achieve
synchronization. Compared with the control approach in
[21, 22], it can be implemented easily.

The rest of this paper is organized as follows: in Sec-
tion 2, some preliminaries and main results are presented.
In Section 3, we give the famous fractional-order unified
chaotic systems to illustrate that it can be transformed to
our cascade form for further simple design. Experimental
analyses are presented in Section 4. Finally, conclusions are
given in Section 5.

2. Preliminaries and Main Results

In this section, first some basic definitions and lemmas are
briefly presented. Then a useful theorem is put forward to be
utilized later to design a robust linear control law.

Definition 1. The definition of fractional integral is described
by

𝑡0
𝐷−𝛼
𝑡
𝑓 (𝑡) = 1Γ (𝛼) ∫𝑡𝑡0 (𝑡 − 𝜏)𝛼−1 𝑓 (𝜏) 𝑑𝜏, 𝛼 > 0, (1)

where Γ(⋅) is the well-known Gamma function.

Definition 2. The Riemann-Liouville derivative is defined as𝐷𝑞𝑡𝑓 (𝑡) = 𝐷𝑚𝑡0𝐷𝑞−𝑚𝑡 𝑓 (𝑡) , 𝑞 ∈ [𝑚 − 1,𝑚) , (2)

where𝑚 ∈ 𝑍+,𝐷𝑚𝑡 is the classical𝑚-order derivative.

In the rest of the paper,𝐷𝑞𝑡 is used to denote the Riemann-
Liouville derivative of order 𝑞.
Lemma3. Assume𝑓(𝑡) is bounded and lim𝑡→∞𝑔(𝑡) = 0; then
lim𝑡→∞[𝑓(𝑡)𝑔(𝑡)] = 0.
Proof. Since𝑓(𝑡) is bounded, then there exists a number𝑀 >0 such that |𝑓(𝑡)| < 𝑀 for all 𝑡.∀𝜀 > 0, since lim𝑡→∞𝑔(𝑡) = 0, then, for 𝜀1 = 𝜀/𝑀 > 0, ∃𝛿
such that 󵄨󵄨󵄨󵄨𝑔 (𝑡)󵄨󵄨󵄨󵄨 < 𝜀1 = 𝜀𝑀, when 𝑡 > 𝛿. (3)

Then, when 𝑡 > 𝛿󵄨󵄨󵄨󵄨𝑓 (𝑡) 𝑔 (𝑡)󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝑓 (𝑡)󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑔 (𝑡)󵄨󵄨󵄨󵄨 < 𝑀 ∗ 𝜀1 = 𝜀. (4)

This means lim𝑡→∞[𝑓(𝑡)𝑔(𝑡)] = 0. Here the proof is
complete.

Lemma 4 (see [23]). Let 𝐴 ∈ 𝑅𝑛×𝑛 be a real matrix. Then, a
necessary and sufficient condition for the asymptotical stability
of𝐷𝛼𝑥(𝑡) = 𝐴𝑥(𝑡) is 󵄨󵄨󵄨󵄨arg (𝜆 (𝐴))󵄨󵄨󵄨󵄨 > 𝛼𝜋2 , (5)

where 0 < 𝛼 < 1, 𝜆(𝐴) is the spectrum of all eigenvalues of 𝐴.
In this paper, we consider the case of the synchronization

of two commensurate fractional-order chaotic systems. The
master system is as follows:𝐷𝑞𝑥 = 𝐴 (𝑥) 𝑥, (6)

where 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑇 ∈ 𝑅𝑛 is the state vector, 𝐴(𝑥) is
the parametric coefficient matrix of states 𝑥, and 0 < 𝑞 ≤ 1 is
the fractional commensurate order. The slave system is𝐷𝑞𝑥̂ = 𝐴 (𝑥̂) 𝑥̂ + 𝑢 (𝑡) , (7)

where 𝑢(𝑡) is the controller to be designed. Define 𝑒(𝑡) =𝑥̂(𝑡) − 𝑥(𝑡). We can get the error system:𝐷𝑞𝑒 = 𝐹 (𝑒, 𝑥) + 𝑢 (𝑒, 𝑥) , (8)

where 𝐹(𝑒, 𝑥) = 𝐴(𝑥̂)𝑥̂ − 𝐴(𝑥)𝑥. The synchronization
problem can be transformed to design a controller 𝑢 such that
lim𝑡→∞‖𝑒(𝑡)‖ = 0.

For further discussion, a useful theorem is presented.
Consider a class of cascade-connected system described by𝐷𝑞𝑥1 = 𝑓 (𝑥1)𝐷𝑞 (𝑥1, 𝑥2) = 𝐴 (𝑥1, 𝑥2) 𝑥2 + 𝐵 (𝑥1, 𝑥2) 𝑔 (𝑥1) , (9)

where 𝑥1 ∈ 𝑅𝑛, 𝑥2 ∈ 𝑅𝑚, 𝑓(0) = 0, and𝑔(0) = 0. 𝑓(𝑥1) and𝑔(𝑥1) are both𝐶1 vector fields.𝐴(𝑥1, 𝑥2) and𝐵(𝑥1, 𝑥2) are𝐶𝑚
and 𝐶𝑛 coefficient matrix, respectively.

Theorem 5. If

(1) the subsystem 𝐷𝑞𝑥1 = 𝑓(𝑥1) is globally asymptotically
stable at 𝑥1 = 0,

(2) 𝐵(𝑥1, 𝑥2) is a bounded matrix and lim𝑡→∞𝑔(𝑥1) = 0,
(3) 𝐴(𝑥1, 𝑥2) is a matrix with the following structure:𝐴 (𝑥1, 𝑥2)

=((
(

𝐴11 (⋅) 𝐴12 (⋅) ⋅ ⋅ ⋅ 𝐴1𝑛 (⋅)𝐴21 (⋅) 𝐴22 (⋅) d
...... ... d 𝐴𝑛−1𝑛 (⋅)𝐴𝑛1 (⋅) ⋅ ⋅ ⋅ 𝐴𝑛𝑛−1 (⋅) 𝐴𝑛𝑛 (⋅)

))
)

, (10)

where (𝐴 𝑖𝑗(⋅) ≤ 0), 𝑖 = 𝑗, (𝐴 𝑖𝑗(⋅) = −𝐴𝑗𝑖(⋅)), 𝑖 ̸= 𝑗, then,
system (9) is globally asymptotically stable at the equilibrium(𝑥1, 𝑥2) = (0, 0).
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Proof. Since the subsystem𝐷𝑞𝑥1 = 𝑓 (𝑥1) (11)

is already globally asymptotically stable at 𝑥1 = 0, we only
need to consider the subsystem𝐷𝑞 (𝑥1, 𝑥2) = 𝐴 (𝑥1, 𝑥2) 𝑥2 + 𝐵 (𝑥1, 𝑥2) 𝑔 (𝑥1) . (12)

From assumption (2) we know that lim𝑡→∞𝑔(𝑥1) = 0.
Consider the fact that 𝐵(𝑥1, 𝑥2) is a bounded matrix. From
Lemma 3 we know that

lim
𝑡→∞

[𝐵 (𝑥1, 𝑥2) 𝑔 (𝑥1)] = 0. (13)

This means that the second item in the system𝐷𝑞 (𝑥1, 𝑥2) = 𝐴 (𝑥1, 𝑥2) 𝑥2 + 𝐵 (𝑥1, 𝑥2) 𝑔 (𝑥1) (14)

can be neglected when 𝑡 → ∞. To study the asymptotical
stability problem of system (9), we only need to consider the
following system:𝐷𝑞 (𝑥1, 𝑥2) = 𝐴 (𝑥1, 𝑥2) 𝑥2. (15)

Here, we take three steps to illustrate that system (15) is
globally asymptotically stable at the equilibrium (𝑥1, 𝑥2) =(0, 0).

Firstly, let us consider the following equation:𝐴 (𝑥1, 𝑥2) 𝜉 = 𝜆𝜉, (16)

where 𝜆 is one of the eigenvalues of 𝐴(𝑥1, 𝑥2) and 𝜉 is a
nonzero eigenvector of 𝜆. Take the conjugate transpose on
either side of (16) and we can get(𝐴 (𝑥1, 𝑥2) 𝜉)𝑇 = 𝜆𝜉𝐻. (17)

Combine (16) with (17) and we can get𝜉𝐻 (𝑃𝐴 (𝑥1, 𝑥2) + (𝐴 (𝑥1, 𝑥2))𝐻 𝑃) 𝜉 = (𝜆 + 𝜆) 𝜉𝐻𝑃𝜉. (18)

Secondly, because 𝐴(𝑥1, 𝑥2) has the structure𝐴 (𝑥1, 𝑥2)
=((
(

𝐴11 (⋅) 𝐴12 (⋅) ⋅ ⋅ ⋅ 𝐴1𝑛 (⋅)𝐴21 (⋅) 𝐴22 (⋅) d
...... ... d 𝐴𝑛−1𝑛 (⋅)𝐴𝑛1 (⋅) ⋅ ⋅ ⋅ 𝐴𝑛𝑛−1 (⋅) 𝐴𝑛𝑛 (⋅)

))
)

=((
(

𝐴11 (⋅) 𝐴12 (⋅) ⋅ ⋅ ⋅ 𝐴1𝑛 (⋅)−𝐴12 (⋅) 𝐴22 (⋅) d
...... d d 𝐴𝑛−1𝑛 (⋅)−𝐴1𝑛 (⋅) ⋅ ⋅ ⋅ −𝐴𝑛−1𝑛 (⋅) 𝐴𝑛𝑛 (⋅)

))
)

,
(19)

we can know that thematrix𝐴(𝑥1, 𝑥2) satisfies the continuous
Lyapunov equation𝐴 (𝑥1, 𝑥2) 𝑃 + 𝑃𝐴 (𝑥1, 𝑥2)𝐻 = −𝑄, (20)

where 𝑃 = 𝐼 is the real symmetric identity matrix and

𝑄 =(−2𝐴11 −2𝐴22
d −2𝐴𝑛𝑛) (21)

is a Hermitian matrix. Moreover, we can have𝐴 (𝑥1, 𝑥2) 𝑃 + 𝑃𝐴 (𝑥1, 𝑥2)𝐻= (𝐴 (𝑥1, 𝑥2) 𝑃 + 𝑃𝐴 (𝑥1, 𝑥2)𝐻)𝐻 . (22)

Namely, 𝐴(𝑥1, 𝑥2)𝑃 + 𝑃(𝐴(𝑥1, 𝑥2))𝐻 is also a Hermitian
matrix.

Lastly, according to the properties of positive definite and
negative semidefinite matrix, we can get two inequalities𝜉𝐻 (𝑃𝐴 (𝑥1, 𝑥2) + (𝐴 (𝑥1, 𝑥2))𝐻 𝑃) 𝜉 = 𝜉𝐻 (−𝑄) 𝜉 ≤ 0𝜉𝐻𝑃𝜉 > 0. (23)

Consequently, combining (18), we can have

(𝜆 + 𝜆) = 𝜉𝐻 (−𝑄) 𝜉(𝜉𝐻𝑃𝜉) ≤ 0. (24)

Obviously, any eigenvalue 𝜆 of the coefficient matrix𝐴(𝑥1, 𝑥2) satisfies the following inequality:󵄨󵄨󵄨󵄨arg (𝜆)󵄨󵄨󵄨󵄨 ≥ 𝜋2 > 𝛼𝜋2 (𝛼 < 1) . (25)

From Lemma 4, we know that system (15) is globally asymp-
totically stable at the equilibrium (𝑥1, 𝑥2) = (0, 0). This
completes the proof.

3. Illustrative Example

In the first part of section, the fractional-order unified
chaotic system and its synchronization are transformed to
our cascade form and a simpler controller is derived. Then
its robustness analysis will be introduced.

3.1. Fractional-Order Unified Chaotic System and Its Syn-
chronization. Similar to the classical unified chaotic system,
the fractional-order unified system could be considered
as the system that bridges the gap among the fractional-
order Lorenz system, the fractional-order Lü system, and
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Figure 1:The fractional-order unified chaotic systemwith 𝑞1 = 𝑞2 =𝑞3 = 0.95 and 𝛼 = 0.2.
the fractional-order Chen system. The fractional-order uni-
fied chaotic system [13] is described by𝑑𝑞1𝑥𝑑𝑡𝑞1 = (25𝛼 + 10) (𝑦 − 𝑥)𝑑𝑞2𝑦𝑑𝑡𝑞2 = (28 − 35𝛼) 𝑥 − 𝑥𝑧 + (29𝛼 − 1) 𝑦𝑑𝑞3𝑧𝑑𝑡𝑞3 = 𝑥𝑦 − (8 + 𝛼) 𝑧3 ,

(26)

where 𝑑𝑞𝑖/𝑑𝑡𝑞𝑖 = 𝐷𝑞𝑖∗ (𝑖 = 1, 2, 3). Its order is denoted by 𝑞 =(𝑞1, 𝑞2, 𝑞3) subject to 0 < 𝑞1, 𝑞2, 𝑞3 ≤ 1, and 𝛼 ∈ [0, 1]. Some
examples of the chaotic attractor of system (26) with 𝑞1 =𝑞2 = 𝑞3 = 0.95 are shown in Figures 1 and 2.

Two systems in synchronization are called themaster sys-
tem and the slave system, respectively. From (26), the master
system and the slave system can be expressed, respectively, as𝑑𝑞1𝑥1𝑑𝑡𝑞1 = (25𝛼 + 10) (𝑥2 − 𝑥1)𝑑𝑞2𝑥2𝑑𝑡𝑞2 = (28 − 35𝛼) 𝑥1 − 𝑥1𝑥3 + (29𝛼 − 1) 𝑥2 󳨀→
master system𝑑𝑞3𝑥3𝑑𝑡𝑞3 = 𝑥1𝑥2 − (8 + 𝛼) 𝑥33 ,

(27)

𝑑𝑞1𝑦1𝑑𝑡𝑞1 = (25𝛼 + 10) (𝑦2 − 𝑦1) + 𝑢1𝑑𝑞2𝑦2𝑑𝑡𝑞2 = (28 − 35𝛼) 𝑦1 − 𝑦1𝑦3 + (29𝛼 − 1) 𝑦2 + 𝑢2 󳨀→
slave system𝑑𝑞3𝑦3𝑑𝑡𝑞3 = 𝑦1𝑦2 − (8 + 𝛼) 𝑦33 ,

(28)

where 𝑢1, 𝑢2 are the control signals used to drive the slave
system to follow the master system.
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Figure 2:The fractional-order unified chaotic systemwith 𝑞1 = 𝑞2 =𝑞3 = 0.95 and 𝛼 = 1.
Denote the synchronization error as 𝑒 = 𝑦 − 𝑥. Our aim

is to design a controller 𝑢(𝑡) = (𝑢1, 𝑢2)𝑇 such that controlled
system (28) asymptotically synchronizes master system (27)
in the sense that

lim
𝑡→∞

‖𝑒‖ = lim
𝑡→∞

󵄩󵄩󵄩󵄩𝑦 (𝑡, 𝑦0) − 𝑥 (𝑡, 𝑥0)󵄩󵄩󵄩󵄩 = 0. (29)

Subtracting (27) from (28), then the synchronization error
equation can be obtained as𝑑𝑞1𝑒1𝑑𝑡𝑞1 = (25𝛼 + 10) (𝑒2 − 𝑒1) + 𝑢1𝑑𝑞2𝑒2𝑑𝑡𝑞2 = (28 − 35𝛼) 𝑒1 − 𝑒1𝑒3 − 𝑒1𝑥3 − 𝑒3𝑥1+ (29𝛼 − 1) 𝑒2 + 𝑢2𝑑𝑞3𝑒3𝑑𝑡𝑞3 = 𝑒1𝑒2 + 𝑒1𝑥2 + 𝑒2𝑥1 − (8 + 𝛼) 𝑒33 .

(30)

Here, we take two steps to design a linear controller to
globally asymptotically stabilize error system (30).

Step 1. From the proof process of Theorem 5 we know that if
the matrix𝐴(⋅) satisfies assumption (3) inTheorem 5, system
(15) is asymptotically stable. If we can design a controller 𝑢1
such that it has a similar form to (15), 𝑒1 will be stable. Let𝑢1 = −(25𝛼 + 10)𝑒2 and the first subsystem of (28) becomes𝑑𝑞1𝑒1𝑑𝑡𝑞1 = − (25𝛼 + 10) 𝑒1. (31)

Obviously, for each 𝛼 ∈ [0, 1], it is globally asymptotically
stable at 𝑒1 = 0.
Step 2. A similar idea to 𝑢1 is used in the design of the
controller 𝑢2. Let 𝑢2 = −𝑘𝑒2 (𝑘 > 29𝛼 − 1). Consider the
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remaining subsystem of (30) and substitute 𝑢2 = −𝑘𝑒2 (𝑘 >29𝛼 − 1) into the remaining subsystem. Then we can have𝑑𝑞2𝑒2𝑑𝑡𝑞2 = (28 − 35𝛼) 𝑒1 − 𝑒1𝑒3 − 𝑒1𝑥3 − 𝑒3𝑥1+ (29𝛼 − 1) 𝑒2 + 𝑘𝑒2𝑑𝑞3𝑒3𝑑𝑡𝑞3 = 𝑒1𝑒2 + 𝑒1𝑥2 + 𝑒2𝑥1 − (8 + 𝛼) 𝑒33 . (32)

Equation (32) can be rewritten by the matrix form as[𝑑𝑞2𝑒2𝑑𝑞3𝑒3] = 𝐴[𝑒2𝑒3] + 𝐵𝑒1, (33)

where 𝐴 = [[𝑘 + 29𝛼 − 1 −𝑒1 − 𝑥1𝑒1 + 𝑥1 −(8 + 𝛼)3 ]] ,𝐵 = [28 − 35𝛼0 ] + [−𝑥3𝑥2 ] .
(34)

Because master system (27) is a chaotic system, its states are
bounded.This means that there exists a positive constant 𝜆 >0 such that 󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨 ≤ 𝜆 (𝑖 = 1, 2, 3) . (35)

So the matrix 𝐵 is also a bounded matrix. Obviously, 𝐴(𝑥)
has a special form that satisfies assumption (3) inTheorem 5.
FormTheorem 5, error system (30) is globally asymptotically
stable at𝐸(0, 0, 0), and slave system (28)will synchronizewith
master system (27).

3.2. Robustness Analysis. In order to verify the robustness of
the linear chaos controller, the disturbance signal is added
to the fractional-order unified chaotic system. Master system
(27) and slave system (28) can be rewritten as the following
forms:𝑑𝑞1𝑥1𝑑𝑡𝑞1 = (25𝛼 + 10) 𝑥2 − (25𝛼 + 10 + Δ 1) 𝑥1𝑑𝑞2𝑥2𝑑𝑡𝑞2 = (28 − 35𝛼 + Δ 2) 𝑥1 − (𝑥1 + Δ 3) 𝑥3+ (29𝛼 − 1 + Δ 4) 𝑥2𝑑𝑞3𝑥3𝑑𝑡𝑞3 = (𝑥1 + Δ 3) 𝑥2 + Δ 5𝑥1 − (8 + 𝛼 + Δ 6) 𝑥33 ,

(36)

𝑑𝑞1𝑦1𝑑𝑡𝑞1 = (25𝛼 + 10) 𝑦2 − (25𝛼 + 10 + Δ 1) 𝑦1 + 𝑢1𝑑𝑞2𝑦2𝑑𝑡𝑞2 = (28 − 35𝛼 + Δ 2) 𝑦1 − (𝑦1 + Δ 3) 𝑦3+ (29𝛼 − 1 + Δ 4) 𝑦2 + 𝑢2𝑑𝑞3𝑦3𝑑𝑡𝑞3 = (𝑦1 + Δ 3) 𝑦2 + Δ 5𝑦1 − (8 + 𝛼 + Δ 6) 𝑦33 ,
(37)

whereΔ 𝑖 (𝑖 = 1, 2, . . . , 6) express the independent uncertain-
ties which may be time varying or state dependent but are
bounded by a constant 𝛾 > 0:

sup 󵄨󵄨󵄨󵄨Δ 𝑖󵄨󵄨󵄨󵄨 ≤ 𝛾 (𝑖 = 1, 2, . . . , 6) . (38)

Form system (36), we can see that the system model can
denote system uncertainties and parameter uncertainties.

Subtract (36) from (37) andwe can get the following error
system:𝑑𝑞1𝑒1𝑑𝑡𝑞1 = (25𝛼 + 10) 𝑒2 − (25𝛼 + 10 + Δ 1) 𝑒1 + 𝑢1𝑑𝑞2𝑒2𝑑𝑡𝑞2 = (28 − 35𝛼 + Δ 2) 𝑒1 − 𝑥3𝑒1− (𝑒1 + 𝑥1 + Δ 3) 𝑒3 + (29𝛼 − 1 + Δ 4) 𝑒2+ 𝑢2𝑑𝑞3𝑒3𝑑𝑡𝑞3 = Δ 5𝑒1 + 𝑥2𝑒1 + (𝑒1 + 𝑥1 + Δ 3) 𝑒2− (8 + 𝛼 + Δ 6) 𝑒33 .

(39)

Substitute 𝑢1 = −(25𝛼 + 10)𝑒2 𝑢2 = −𝑘𝑒2 (𝑘 > 29𝛼 − 1) into
system (39) and we can get a matrix form as𝑑𝑞1𝑒1𝑑𝑡 = − (25𝛼 + 10 + Δ 1) 𝑒1

[[[[[
𝑑𝑞2𝑒2𝑑𝑡𝑞𝑑𝑞3𝑒3𝑑𝑡𝑞

]]]]] = 𝐴󸀠 [𝑒2𝑒3] + 𝐵󸀠𝑒1, (40)

where 𝐴󸀠 = [ 𝑘+29𝛼−1+Δ 4 −(𝑒1+𝑥1+Δ 3)𝑒1+𝑥1+Δ 3 −(8+𝛼+Δ 6)/3
], 𝐵󸀠 = [ 28−35𝛼+Δ 2Δ 5

] +[ −𝑥3𝑥2 ].
When 𝑘 + 29𝛼− 1 +Δ 4 < 0, 8 + 𝛼+Δ 6 > 0, together with

Theorem 5, the error system (39) is globally asymptotically
stable at 𝐸(0, 0, 0). Hence the chaos controller is robust when𝑘 + 29𝛼 − 1 + Δ 4 < 0, 8 + 𝛼 + Δ 6 > 0.
4. Experimental Analyses

In this section, the predictor-corrector method is used to
obtain the solutions of fractional-order differential equations
with step size 0.001. If the step size is too large, the simulation
results will not converge. Many authors in other references
have adopted the step size as 0.001. And we have also
adopted variable step size to do the simulation and we
found the simulation results were better. In the simulation
process for the fractional-order unified system, we let 𝑞1 =𝑞2 = 𝑞3 = 0.95 and choose the initial states of the
master and slave system as (𝑥1(0), 𝑥2(0), 𝑥(0))𝑇 = (1, 2, 3)𝑇,(𝑦1(0), 𝑦2(0), 𝑦(0))𝑇 = (−1, −2, 6)𝑇.

When 𝛼 = 0 system (26) is a fractional-order
Lorenz chaotic system. When 𝛼 = 0.8 system (26) is
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Figure 3: Synchronization errors of the fractional-order Lorenz
system (𝛼 = 0).
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Figure 4: Synchronization errors of the fractional-order Lü system(𝛼 = 0.8).
a fractional-order Lü chaotic system and when 𝛼 = 1
system (26) is a fractional-order Chen chaotic system. The
simulation results for synchronization of the fractional-
order Lorenz, Lü, and Chen chaotic systems with known
parameters are shown in Figures 3–5, respectively. We
chose the uncertain parameters (Δ 1, Δ 2, Δ 3, Δ 4, Δ 5, Δ 6)𝑇 =(sin𝑥1, 2 cos𝑥2, sin𝑥3, cos𝑦1, sin𝑦2, 1)𝑇. Figures 6–8 show
the synchronization of two identical Chen chaotic systems
with uncertain parameters. As expected, one can see that
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Figure 5: Synchronization errors of the fractional-order Chen
system (𝛼 = 1).
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Figure 6: State trajectories of an uncertain fractional-order Chen
system 𝑥1 − 𝑦1(𝛼 = 1).
the trajectories of the closed loop slave system can synchro-
nize the trajectories of the master system.These results of the
simulation verify the effectiveness of the proposed scheme.

5. Conclusions

This paper discusses a linear control scheme for synchro-
nizing a class of cascade fractional-order chaotic systems.
Based on continuous Lyapunov equation, the stability of the
closed loop system is proved. This synchronization approach
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Figure 7: State trajectories of an uncertain fractional-order Chen
system 𝑥2 − 𝑦2(𝛼 = 1).
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Figure 8: State trajectories of an uncertain fractional-order Chen
system 𝑥3 − 𝑦3(𝛼 = 1).
is simple, global, and theoretically rigorous. Numerical sim-
ulations have been used to clarify the effectiveness of the
proposed control laws. It should be noted that the introduced
fractional linear controller is applicable for a large class
of commensurate fractional-order chaotic systems in the
presence of model uncertainties and eternal disturbances.
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