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In terms of the space cities occupy, urbanization appears as a minor land transformation. However, it permanently modifies land’s
ecological functions, altering its carbon, energy, and water fluxes. It is therefore necessary to develop a land cover characterization
at fine spatial and temporal scales to capture urbanization’s effects on surface fluxes. We develop a series of biophysical vegetation
parameters such as the fraction of photosynthetically active radiation, leaf area index, vegetation greenness fraction, and roughness
length over the continental US using MODIS and Landsat products for 2001. A 13-class land cover map was developed at a climate
modeling grid (CMG) merging the 500mMODIS land cover and the 30m impervious surface area from the National Land Cover
Database.The landscape subgrid heterogeneity was preserved using fractions of each class from the 500m and 30m into the CMG.
Biophysical parameters were computed using the 8-day composite Normalized Difference Vegetation Index produced by the North
American Carbon Program. In addition to urban impact assessments, this dataset is useful for the computation of surface fluxes in
land, vegetation, and urban models and is expected to be widely used in different land cover and land use change applications.

1. Introduction

Rapid urbanization is replacing large areas of vegetated land,
which by some estimates represent about 3% of the Earth
surface and host more than 50% of its population [1, 2]. In
terms of ecological impact, urbanization is one of the most
significant and long lasting forms of land transformation and
its extent of increase is at least proportional to population
growth and economic development. Viewed from the per-
spective of the amount of space it currently occupies, urban-
ization appears to be a minor form of land transformation.
However, it occupies themost fertile and productive lands [3].
The cumulative signature of this anthropogenic land cover
disturbance is reaching higher proportions in some regions;

for example, about 15%of the best agricultural soils inCalifor-
nia are urbanized [4], which may already be altering the sur-
face fluxes of carbon, water, and energy with implications for
local to regional biological, hydrological, and energy cycles.

Land surface models are useful tools to understand and
simulate the exchange of carbon, energy, water, and momen-
tum between the soil, vegetation, and the atmosphere. These
land surface models are generally coupled to atmospheric
general circulation models (GCMs) and often operate at
the same spatial resolution as the host GCM. Despite the
progress in land surface models (LSMs) and better estimates
of surface fluxes, previous studies describing biophysical data
[5], analyzing the sensitivity of climate [6], or simulating
carbon fluxes [7] were performed at spatial resolution of
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1∘ × 1∘ (about 100 km × 100 km) or coarser and monthly time
scales. It is acknowledged here that even though previous
studies were constrained by the GCM’s coarse resolution,
enormous effort has been put into incorporating subgrid
variability of biophysical parameters into LSMs (e.g., [5]);
and the need for a better description of the landscape
heterogeneity was the motivating driver for more accurate
and finer land cover and biophysical data not previously
available. These LSMs require a detailed characterization of
land cover elements and a specification of a set of physical and
biological parameters for each of these elements. LSMs are
highly sensitive to these parameters [8]. It has been shown,
for example, that land cover misclassification may result in
large uncertainties in the computation of leaf area index and
roughness length, both of which have significant effects on
the fluxes of carbon,water, and energy at the land-atmosphere
interface [9].

Most previous land surface datasets were generated using
theAdvancedVeryHighResolutionRadiometer (AVHRR) in
the late 1990s and early 2000s [5, 10–12] at spatial resolution
of (1∘ × 1∘) and temporal resolution of 1 month. Furthermore,
these previous datasets used the dominant land cover type in
a grid to characterize the entire grid and as such inherently
carried an unquantifiable error in the specification of the
land cover type and the description of its seasonal phenology
which percolates into the land surface model to affect the
calculations of the surface fluxes [9]. MODIS and Landsat
provide a useful combination and more capabilities for more
accurate and consistent estimates of these canopy parameters
for a finer-scale (0.05∘ × 0.05∘) continental land surface
modeling. In this paper we describe production details and
structure of a continental scale gridded land cover dataset
including fractions from 13 land cover classes obtained from
higher resolution MODIS and Landsat products. For each
of these classes, we also provide time series of commonly
used biophysical parameters at 8-day time interval over the
continental US for the year 2001 obtained using algorithms
developed for the Simple Biosphere model (SiB2) [13].
Although the grid is an equal angle grid of 0.05∘ × 0.05∘
latitude/longitude, for simplicity, in the remainder of this
paper, we will refer to the grid resolution as 5 km × 5 km.

The dataset described in this paper has been produced
for simulation of surface state variables with the Simple Bio-
sphere model (SiB2) land-vegetation model and will be used
to explore the impact of urbanization dynamics on surface
climate. The dataset can also be used in a myriad of other
land surface models of comparable complexity, such as the
Community Land Model [14], the Biosphere-Atmosphere-
Transfer Scheme (BATS) [15], Mosaic [16], Noah [17], the
Variable infiltration Capacity (ViC) [18], and the Catchment
model [19] and many other land surface vegetation models
requiring characterization of terrestrial vegetation to repre-
sent not only the exchanges of energy, water, and momentum
across the land-atmosphere interface but also how ecosys-
tems andwater resources respond to climate and atmospheric
environment [20].The dataset can also be used for ecological
modeling and other land cover and land use change diagnos-
tic studies.

2. Methodology

We combined the 30m impervious surface area (ISA) from
the National Land Cover Database (NLCD) and the 500m
MODIS collection 5 land cover (MCD12Q1) for the year 2001
and aggregated them to a common Climate Modeling Grid
(CMG) at 5 km× 5 kmover the contiguousUS.The fractional
ISA of the NLCD were retrieved using Landsat 7 Enhanced
Thematic Mapper Plus and IKONOS discriminating man-
made surfaces from natural or vegetated lands. The ISA
productwas generated by theUnited StatesGeological Survey
(USGS) [21–23] and was not altered in the processing. The
ISA and its distribution obtained from Landsat compare
well with independently derived census data estimating
urban populations in the USA [24], represent phenologically
different environments [25], and are positively linked to
urban warming effects in the US long-term climate record
[26]. The MODIS MCD12Q1-Type 1 (IGBP, International
Geosphere Biosphere Program) land cover classification uses
a dominant type to produce 17 distinct cover types including
build-up, ice and water classes [27]. The data fusion has been
done considering Landsat data as the ground truth and was
implemented as follows. (1)We aggregated the different cover
types from the 500m MCD12Q1 and obtained fractions in
the 5 km × 5 km CMG. (2) We aggregated the Landsat ISA
from 30m × 30m to 5 km × 5 km and coregistered them to
the CMG. (3) We then imposed the aggregated Landsat ISA
fractions as ground truth into the CMG replacing the build-
up fraction of MODIS. When imposing the Landsat ISA into
theCMG, differences between the ISA fraction obtained from
Landsat and the build-up fraction obtained from MODIS
were proportionally distributed over other nonurban land
cover types coexisting in the CMG. The distributions were
weighted by the fractions of the existing vegetation classes.
In cases where the build-up class from MODIS was 100%,
the difference was distributed over nonurban cover types
imported from surrounding grids in the immediate vicinity.

The reconstructed product provides a gridded dataset in
a CMG at 5 km × 5 km spatial resolution over the continental
US. Each CMG can have up to 13 land cover classes (Table 1)
along with fractions of each class within the CMG obtained
from higher resolution MODIS and Landsat data. For each
of the land cover classes in the CMG a set of 7 biophysical
parameters is mapped for 46 time periods representing an 8-
day composite annual cycle for the year 2001 (Figure 1).

We aggregated the 500m gap-filled North American
Carbon Program (NACP) MODIS Normalized Difference
Vegetation Index (NDVI) to each CMG by averaging the
500m NDVI values over each land cover class. In doing so,
we obtain an average NDVI value for each land cover class
coexisting in the CMG. The NACP MODIS NDVI is an 8-
day product over North America obtained using an advanced
interpolation algorithm [28]. We used Landsat images to
generate NDVI over a range of urban areas having different
ISA values. We find that maximum NDVI values for densely
impervious pixels (>25% ISA) are less than or equal to 0.1with
NDVI values of approximately 0.05 for pixels with maximum
ISA of 73% [29]. Since Landsat NDVI is not continuous in
space and time, we use the sample of Landsat-derived urban
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Figure 1: Flow chart of data fusion. First, the 30m impervious surface area (ISA) is aggregated to the CMG (a) and then superimposed on the
500mMODIS land cover (b) to produce a hybrid CMG containing fractions of vegetation cover fromMODIS and fractions of ISA from the
Landsat 30m (d). Note the difference in the fraction of LC8 between (a) and (b) and its proportional redistribution over other classes in (d)
(see text for details). Second, we combine the 500m MODIS NDVI (c) with the 500m MODIS land cover (b) to produce the average NDVI
for each land cover class in the CMG (e). NDVI over the urban areas was scaled using Landsat retrieved NDVI values (see text for details).

NDVI values as a factor to scale down theMODISNDVI over
urban areas based on the ISA fractions. We found the NDVI
values over urban classes to be less than 0.1 at the CMG scale
butmaintained themnevertheless to represent the phenology
of the small fractions of vegetation in urban setting.

Using the aggregated average NDVI values, a set of bio-
physical and physical parameters were then computed for
each cover type coexisting in theCMG for 2001 (Table 2).This
set includes the following variables: the fraction of photosyn-
thetically active radiation (FPAR) absorbed by the canopy,
the leaf area index (LAI), the canopy greenness fraction
(𝐺), the canopy roughness length (𝑍

0
), the canopy zero-

plane displacement (𝐷), a bulk boundary-layer resistance
coefficient (𝐶1), and the ground to canopy air space resistance
coefficient (𝐶2) for different land cover types. It is to be
noted that biophysical parameters do not exist over the inland
water class, and because the tundra class does not exist in the

selected domain it also does not have biophysical parameters
associated with it.

These biophysical parameters are computed directly from
the NDVI and the land cover classes derived from MODIS
using algorithms derived and explained in [30]. The compu-
tation of FPAR follows the procedure in which linearity is
assumed between the NDVI and FPAR. Because the relation-
ships betweenNDVI, FPAR, and the nonstressed canopy assi-
milation and conductance rates are quasi-linear, they should
be largely scale invariant. Spatial averages of NDVI can there-
fore be used to compute spatial integrals of canopy assimila-
tion and conductance rates and this holds true whether the
canopy varies in depth, in cover fraction, or in both. While
these relationships are fairly conservative, the relationship
between NDVI and LAI may vary widely between vegetation
classes [30]. LAI is nonlinearly related to FPAR. Its compu-
tation differs for broadleaf and needleleaf vegetations and
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Table 1: Land cover codes and nomenclature (adapted from [11]).
Fill value for all classes is 14.

Land cover Code Fraction Name
LC0 0 1.31 Inland water
LC1 1 0.26 Evergreen broadleaf
LC2 2 6.67 Deciduous broadleaf

LC3 3 6.43 Mixed forest
(broadleaf and needleleaf)

LC4 4 5.10 Evergreen needleleaf
LC5 5 0.03 Deciduous needleleaf
LC6 6 7.64 Savannas
LC7 7 27.91 Grassland
LC8 8 1.03 Urban and buildup
LC9 9 10.07 Shrubs with bare soil
LC10 10 0 Tundra
LC11 11 1.42 Barren
LC12 12 32.12 Croplands

uses a linear mixing model when both types are present [30].
FPAR is used directly in the computation of photosynthesis
which affects the stomatal conductance and the fluxes of
carbon and water. LAI is used in many components of the
energy and water balances such as albedo, transpiration,
and conductance. The greenness fraction (𝐺) modulates the
LAI between time periods and alters the fraction of green
versus dead vegetation. 𝑍

0
, 𝐷, 𝐶1, and 𝐶2 are used in the

aerodynamic computation of turbulent fluxes in LSMs and
are estimated from functional relationships based on satellite-
derived parameters, land cover dependent properties, and
standard bulk aerodynamic theory [13, 29]. We used the SiB2
preprocessor code (MAPPER) to map and georeference the
biophysical parameters onto each land cover type.

It is a challenge to assess or validate the data produced
in this paper as large scale observations of biophysical
parameters such as LAI, FPAR, greenness fraction, and
roughness length are uncommon and nearly absent. LAI is
the major biophysical parameter determining the amount of
light intercepted by the canopy for photosynthesis. Under
optimum growth conditions, its maximum value for a closed
canopy is related to the ability of the lower leaves in the
canopy to intercept enough light to sustain a positive carbon
balance. LAI is the primary biophysical parameter from
which FPAR,𝐺,𝑍

0
, and other parameters can be derived. It is

greatly variable with species and canopy structure, and values
estimated for large sample areas such as model grids include
the average of a range of point values often comprising
different species, canopy structure, and bare ground. As
such, large areas LAI values may display lower maxima
and lower variance than point measurements. For example,
the distribution of approximately 1000 historical estimates
of LAI, summarized by biome type, indicates that, for the
temperate deciduous broadleaf forest (LC2), the average LAI
peak over 130 records is about 5.0m2⋅m−2 with a standard
deviation sdev = 1.80m2⋅m−2, whereas for croplands the
historical average LAI estimated over more than 100 records
is about 4.25m2⋅m−2 with sdev = 3.1m2⋅m−2 [31].

To put our estimated LAI in perspective and given the
limitations, we compare it with that obtained directly from
the MODIS algorithm over the 5 × 5 km2 CMG. These two
model derived LAI estimates are then compared to historical
LAI measurements developed by [31] and compiled for the
eastern United States by [32]. It is important to recognize
the difference in approach used to estimate our LAI and
MODIS LAI. While MODIS LAI considers the heterogeneity
of canopy structure and NDVI in the CMG, our method
averages the NDVI for each land cover class within the CMG
and computes the LAI for each class assumed as standing
alone or “pure.” This difference in approach makes our LAI
estimates appear slightly higher than those obtained from
MODIS, especially outside the growing season where bare
ground can be predominant in the sample grid.

Figure 2 shows the annual cycle of SiB2 LAI, averaged
over the US, with that obtained from MODIS for the major
forest classes, the urban (LC8) and cropland (LC12) classes.
For the evergreen broadleaf class (LC1), the SiB2 estimated
LAI shows little variation over the year with a peak value,
of 5m2⋅m−2, within the observed historical average range of
4.8 to 5.8m2⋅m−2. For this class, MODIS values approach
4m2⋅m−2 during the growing season but drop to values
around 2m2⋅m−2 during winter. For LC2, while the peak
LAI for both estimates is within the standard deviation
obtained from the historical average (3.2 to 6.8m2⋅m−2) of
[31], the SiB2 LAI estimate is closer to the observed historical
average of 5.0m2⋅m−2. Outside the growing season, the SiB2
estimatedLAI value is slightly higher than that obtainedusing
theMODIS algorithm.This was expected asMODIS estimate
represents the LAI over the entire grid whereas SiB2 LAI
represents the LAI of the specific land cover type within the
grid. Similar results are obtained for the evergreen needleleaf
forest (LC4) with an average peak LAI estimated at 5m2⋅m−2
for SiB2 versus a peak LAI from MODIS slightly less than
3m2⋅m−2, with winter differences approaching 1.5m2⋅m−2.
For the mixed forest (LC3), containing broadleaf and needle-
leaf trees, SiB2 estimated peak LAI is around 6m2⋅m−2 while
MODIS estimate peak is around 4m2⋅m−2 with even larger
difference outside of the growing season when bare soil is
more apparent under deciduous trees and occupies a larger
fraction of the CMG. This effect is more evident in the
average LAI annual cycle of the urban class (LC8) where
the SiB2 estimate is based on “pure” impervious surface
whereas MODIS estimate includes a mosaic of urban lands
and vegetated areas contained within the coarser 500m ×
500m grid. In general, the difference between our estimates
and those from MODIS is smaller for short vegetations. To
further narrow down the assessment, we compare both LAI
estimates to LAI measurements reported by biome type over
the eastern US [32]. Table 3 shows the peak LAI values from
SiB2, MODIS, and estimates from historical measurements
averaged over the easternUS, as well as the LAI range defined
by the difference between the average peak and the average
value outside the growing season. Except for shrubs with
bare soil (LC9), the difference between the average LAI peaks
estimated by SiB2 and the observed LAI is much smaller
than 1m2⋅m−2. For land cover type 9, the SiB2 approach



Dataset Papers in Science 5

Table 2: Biophysical parameters in the data file for each land cover class.

Order Name Definition Unit Fill value
1 FPAR Fraction of photosynthetically active radiation Unitless −999
2 LAI Total leaf area index m2

⋅m−2 −999
3 𝐺 Canopy greenness fraction Unitless −999
4 𝑍

0

Canopy roughness length Meter (m) −999
5 𝐷 Canopy zero-plane displacement Meter (m) −999
6 𝐶1 Bulk boundary-layer resistance (m s−1)1/2 −999
7 𝐶2 Ground to canopy air-space resistance Unitless −999

Table 3: Average peak LAI and LAI range for the Eastern US estimated from MODIS algorithm, SiB2, and observations from Steyaert and
Knox (S&K) (2008) [32]. Roughness length estimates are from SiB2, S&K (2008) [32], and Borak et al. (2005) [34]. See text for details.

Land cover Peak LAI LAI range Roughness
MODIS SiB2 S&K 2008 [32] MODIS SiB2 S&K 2008 [32] SiB2 S&K 2008 [32] Borak et al. 2005 [34]∗

LC1 3.28 5.04 5.00 1.92 0.20 1.00 2.80 2.30 NA
LC2 3.52 5.05 5.00 3.14 3.95 4.00 0.90 1.50 1.60
LC3 3.50 6.20 5.50 2.83 3.49 2.50 1.20 1.20 1.60
LC4 2.09 5.17 5.50 1.55 2.70 1.00 1.20 1.35 1.36
LC5 1.29 5.40 NA 1.23 4.25 NA 1.20 NA NA
LC6 2.46 3.46 3.13 1.88 1.96 2.13 0.10 0.60 0.09
LC7 1.36 2.56 2.00 1.07 1.89 1.50 0.10 0.02 0.06
LC8 0.71 0.07 0.00 0.63 0.02 0.00 2.50 2.00 NA
LC9 1.10 2.66 0.70 0.88 1.91 0.60 0.07 0.05 0.08
LC11 0.35 0.38 0.70 0.27 0.25 0.60 0.08 NA NA
LC12 2.66 4.07 5.00 2.33 3.24 4.50 0.10 0.06 0.08
∗Values estimated using the normalized mean 𝑍

0
/ℎ developed by Borak et al. (2005) [32] and the height allocated to similar biomes in SiB2.

overestimates the peak LAI by about 2m2⋅m−2 compared
to observations, while difference between MODIS estimated
LAI and observation is only 0.4m2⋅m−2. Overall peak LAI
values obtained in this study are closer to observations than
those estimated using the MODIS algorithm, especially for
forests, although both estimates remain within the observed
variance. Differences in range of up to 1.7m2⋅m−2 are noted
between LAI estimated using the SiB2 algorithm and obser-
vations for evergreen needleleaf forest (LC4). For cropland
(LC12), this difference is about 1.3m2⋅m−2 for SiB2 and about
2.2m2⋅m−2 for MODIS (Table 3).

Overall there is a fair agreement between the LAI esti-
mates from SiB2 and those obtained from the MODIS algo-
rithm, and both estimates are within the variance of historical
values obtained as average over large number of site observa-
tions. It is well recognized that misclassification of the land
cover, which is an input to the LAI algorithm in both SiB2 and
MODIS, is one of the major sources of errors in estimating
LAI [33].

As stated earlier, the dataset presented here has the advan-
tage of being continuous in time and space with no missing
data and is therefore suitable for land surface and ecological
modeling.Thediscrepancy in LAI outside the growing season
hasminimal effect inmodeling the carbon cycle as the latter is
additionally constrained by cold temperatures in most LSMs.

Virtually all recent LSMs require knowledge of the
aerodynamic roughness length to compute the turbulent

exchanges of momentum, energy, water, and carbon. The
turbulent exchanges between the surface and the atmosphere
determine not only the local scale momentum transfer but
also the transport of sensible and latent heat away from
the surface. Two fundamental momentum aerodynamic vari-
ables are of importance for the turbulent exchanges: the
roughness length, 𝑍

0
, and the zero-plane displacement, 𝐷.

𝑍
0
is defined as the height above the surface at which the

mean logarithmic wind profile theoretically reaches zero and
𝐷 is the height above the land surface to which roughness
elements (e.g., vegetation) have effectively displaced the
momentum-absorbing properties of the surface [34].The tur-
bulent submodel of SiB2 calculates 𝑍

0
and 𝐷 based on static

parameters specific to land cover types such as the canopy top
and base heights and other biophysical parameters defining
the seasonality such as LAI, cover fraction, and leaf dimen-
sion. Over the normal range of LAI values, SiB2 estimates of
𝑍
0
show a weak exponential dependence on LAI [30].
Most published values of𝑍

0
aremodel derived and actual

observations at the scale of the CMG are virtually inexistent.
Again to put the values of 𝑍

0
estimated using the SiB2

aerodynamic submodel into context, we compare them to
those of [32] averaged over the Eastern US for canopies
with comparable heights and morphological properties. For
example, for the deciduous broadleaf forest (LC2), the SiB2
estimated 𝑍

0
is 0.90m compared to the reported average

value of 1.50m. On the other hand, the SiB2 evergreen
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Figure 2: Leaf area index estimates from SiB2 and MODIS averaged over the continental US for major forests (LC1–LC4), the urban class
(LC8), and cropland class (LC12). Note that the MODIS estimates are obtained from LAI values representing an average over an entire
500m × 500m pixel, whereas SiB2 estimates are obtained for a specific class (see text for details). Different land cover classes (LCs) are
described in Table 1.

needleleaf forest (LC4) 𝑍
0
estimate of 1.20m is remarkably

close to the average 1.35m value reported in [32]. In general,
roughness length values obtained using the SiB2 algorithm
are comparable to those reported in the literature for the
eastern US and the differences do not exceed 0.5m for any
land cover type. These estimates are also comparable to
those obtained by another approach that used wind-tunnel

and field data to fit the mathematical formulation of the
normalized roughness length𝑍

0
/ℎ, with ℎ being the height of

the roughness element [34]. Canopy top heights of SiB2 land
cover classes [30] are used in the model of [34] to provide
a second approach to roughness estimates (Table 3). This
assessment indicates that roughness estimates from SiB2 and
those estimated by [32, 34] are in close agreement.
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3. Dataset Description

The dataset associated with this Dataset Paper consists of 4
items which are described as follows.

Dataset Item 1 (Binary Data). It shows 13 different land
cover classes, classes 0 to 12 (Table 1 and Figure 3). Each
class contains two files representing the land cover type
(LC<type> types.data) and the land cover type fraction
(LC<type> fractions.data), where “<type>” is the land cover
type (0 to 12), and 46 files, for each of the time periods,
labeled “biophys<period>,” namely, biophys1 to biophys46,
where<period> is the 8-day time period varying from 1 to 46,
each containing 7 biophysical parameters for that land cover
class. For example, to obtain the biophysical parameters for
the Deciduous Broadleaf class (LC2) for the 18th time period
in 2001, access the LC2 biophys18 file. As an example, Table 4
illustrates the land cover class, the fraction (%), and the LAI
(m2⋅m−2) of all 10 classes coexisting in the CMG defined by
(row = 208, column = 992) for period 18. To determine the
latitude and longitude from the row/column of a point, one
can use the following relationship: Latitude = NL − (row-
1) ∗ gridsize and Longitude = WL + (column-1) ∗ gridsize,
where the NL is the northernmost latitude (49.475∘), WL
is the westernmost longitude (125.025∘), and the gridsize is
equal to 0.05∘. Using these calculations, the point (row = 208,
column = 992) should be at latitude 39.125∘ north and lon-
gitude 75.475∘ west. For each class, the LC<type> types.data
file shows the code of that particular cover type in the CMG

(Table 1) wherever the class exists with a fraction greater
than 1% and fill value (−999.0) elsewhere. The threshold
fraction of 1% is chosen to build the land cover types and is
supposed to represent the error in classification emanating
from the MCD12Q1. Users are encouraged to choose their
own threshold fraction to build land cover type masks based
on the land cover fractions. The LC<type> fractions.data file
contains the coregistered fraction of the particular land cover
type for all pixels (Figure 4). Each data file contains 1160
columns and 490 rows. The land cover types and fractions
are floating point values from 0 to 12 for the types and from 0
to 100% for the fractions. Though we have included “tundra”
as a land cover class, there is no tundra recorded in the
contiguousUS and its land cover fraction is not provided. For
portability and general access, the format storing data using
the American Standard Code for Information Interchange
(ASCII) is provided for scientists who prefer to write their
own code to manipulate the information. Data files are 2-
dimensional array with the longitude varying from west
(125.025W) to east (67.075W) and then the latitude varying
from north (49.475N) to south (25.025N) with an equal
grid spacing of 0.05 degrees. The biophysical parameters are
written in 46 data files corresponding to 46 8-day periods
over which MODIS data have been composited with period
1 corresponding to day 1 to day 8 of the calendar year and
period 2 corresponding to day 9 to day 16, and so on. Each
file contains seven biophysical parameters for that 8-day
period written as seven appended layers in the order shown
in Table 2. Similar to the land cover types and fractions, the
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Figure 4: Geographical distribution of selected land cover classes (left) and corresponding fractions in percent (right) over the contiguous
US.

biophysical parameters are also written in ASCII format. The
biophysical data files are presented as a 3-dimensional array
with the longitude varying first, then the latitude, and then the
biophysical parameters changing in the sequence shown in
Table 2.Note that biophysical parameters are not defined over
inland water (class 0) and tundra (class 10). Figure 5 shows
an example of the temporal profile of the seven biophysical
parameters associated with cropland in one grid cell.

Dataset Item 2 (Source Code). A simple code (test read bio-
physical ascii.f) written in standard FORTRAN is also
included with the dataset to help read the provided ASCII
data files.

Dataset Item 3 (Binary Data). For portability and general
access, we also provided the same dataset in binary form

which is readable by some remote sensing and geographical
information systems (GIS) software such as ENVI andArcgis.
For example, users can use the parameters listed in Table 5 to
read the data within this item in ENVI.

Dataset Item 4 (Source Code). We also provide a simple code
(test read biophysical binary.f) written in standard FOR-
TRAN to help read the provided binary data files.

4. Concluding Remarks

This dataset was developed in response to a demand by differ-
ent land surface and ecological modeling groups to provide
a phase coherent, internally consistent, space and time con-
tinuous description of land surface cover elements and their
biophysical characterization. The dataset is at continental
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Figure 5: Example of the biophysical parameter annual cycle for a cropland.

Table 4: Land cover class, fraction (%), and LAI (m2
⋅m−2) of all

classes coexisting in CMG defined by row = 283, column = 992 for
time period 18.The −999.0 means that the class does not exist in the
CMG.

Class Fraction LAI
1 −999.0 −999.0
2 5.43 2.71
3 1.36 6.15
4 2.71 0.99
5 2.71 0.85
6 10.18 3.62
7 1.36 1.40
8 2.27 0.06
9 5.43 0.55
11 3.39 0.50
12 45.47 1.47

scale with a spatial and temporal resolution capable of captur-
ing the physics of changes in canopy-scale physiology and
urban metabolism. Here, we provide the dataset for the year
2001 and for the contiguous US at a spatial resolution of 0.05∘
and temporal resolution of 8 days, but we recognize the need
to develop it at global scale.

In addition to providing a common platform for land
surface and ecological modelers, the dataset is the first of
its kind to gather all parameters required to characterize
land surface cover from plot to continental-scale in one
single location. The dataset is critical for the assessment of
surface fluxes over land and is expected to be widely used in
different applications and research related to the modeling
and diagnostic studies of carbon, water, and energy fluxes,
including interactions with the atmospheric boundary layer.
This dataset, thoughwith slightly different format, will be also
built into the NASA Land Information System [35], which

Table 5: Parameters to use when using ENVI to open Dataset item
3 (Binary data). ∗For all land cover type and fraction files, the band
(layer) is 1. For the biophysical parameters, the band (layer) is 7.

Samples 1160
Lines 490
Bands (Layers) 1/7∗

Data type Floating point
Interleave bsq

is designed to perform customized land surface data assim-
ilation at different spatial resolutions. Not only do the LAI
values presented here compare well with those obtained from
theMODIS algorithmbut also peak values are closer to obser-
vations. Both the SiB2 and MODIS LAI values are within the
range of observed variance. Similarly, the estimated rough-
ness length is in close agreement with observed historical
averages obtained over the eastern US and with estimates
obtained from a different approach found in the literature.

Dataset Availability

The dataset associated with this Dataset Paper is dedicated
to the public domain using the CC0 waiver and is avail-
able at http://dx.doi.org/10.1155/2015/564279/dataset. In addi-
tion, it is available for download from theTerrestrial Informa-
tion Systems Laboratory at Goddard Space Flight Center
(GSFC). The data can be accessed using the file transfer pro-
tocol (ftp) at the following location: ftp://landsc1.nascom
.nasa.gov/outgoing/BIOPARAM LSM (for Firefox) or ftp://
landsc1.nascom.nasa.gov/pub/outgoing/BIOPARAM LSM (for
Internet Explorer).
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