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This paper studies the robust adaptive fuzzy control design problem for a class of uncertain multiple-input and multiple-output
(MIMO) nonlinear systems in the presence of actuator amplitude and rate saturation. In the control scheme, fuzzy logic systems are
used to approximate unknown nonlinear systems. To compensate the effect of input saturations, an auxiliary system is constructed
and the actuator saturations then can be augmented into the controller.Themodified tracking error is introduced and used in fuzzy
parameter update laws. Furthermore, in order to deal with fuzzy approximation errors for unknown nonlinear systems and external
disturbances, a robust compensation control is designed. It is proved that the closed-loop system obtains𝐻

∞
tracking performance

through Lyapunov analysis. Steady and transient modified tracking errors are analyzed and the bound of modified tracking errors
can be adjusted by tuning certain design parameters. The proposed control scheme is applicable to uncertain nonlinear systems
not only with actuator amplitude saturation, but also with actuator amplitude and rate saturation. Detailed simulation results of
a rigid body satellite attitude control system in the presence of parametric uncertainties, external disturbances, and control input
constraints have been presented to illustrate the effectiveness of the proposed control scheme.

1. Introduction

In most practical control applications, such as those in
robot manipulation and aerospace industry, the performance
of the controller is directly related to the accuracy of the
mathematical model and external disturbances. However, it
is difficult to establish an appropriate mathematical model
for a large number of nonlinear systems when the systems
are complex and highly coupled nonlinear with structured
uncertainties and external disturbances [1]. To tackle with
this problem, fuzzy logic systems and neural networks have
been extensively used in complex and ill-defined nonlinear
systems due to their approximation ability of dealing with the
nonlinear smooth functions [2]. Many adaptive fuzzy control
and adaptive neural network control schemes have been
developed for single-input and single-output (SISO) non-
linear systems [3–7], MIMO nonlinear systems [8–17], and
SISO/MIMO nonlinear systems with immeasurable states
[18–20], respectively. Generally, these adaptive fuzzy and
neural network control approaches can achieve nice control

performance without control saturation. If physical actuators
saturation such as magnitude and rate constraints is consid-
ered, the adaptive intelligent control approaches mentioned
above can not be implemented [21].

As we know, in many practical dynamic systems, physical
actuators saturation on hardware indicates an inevitable
constraint of themagnitude and rate limitations of the control
signal. For example, due to physical limitation, momentum
exchange devices or thrusters as actuator for the satellite
attitude control system fail to render infinite control torque
and thus the actuator can only provide limited control torques
within a limited rate [22]. Control saturation is one of
the most common nonsmooth nonlinearity that should be
explicitly considered in the control design. The controllers
that ignore actuator limitations may give rise to undesirable
inaccuracy, severely degrade the performance of system, or
even damage the stability of system [23].Hence, the controller
design subjected to the control saturation while simulta-
neously achieving higher performance is a very practical
problem.
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The design of tracking controllers for uncertain MIMO
nonlinear systems with actuator constraints is a challenging
problem. During the past decades, there have been extensive
researches on the control of nonlinear systems with various
constraints. Analysis and design of control systems with con-
trol saturation have been widely studied in [24–42]. Farrell et
al. [24–26] have presented an adaptive backstepping approach
for unknown nonlinear systems with known magnitude,
rate, and bandwidth constraints on intermediate states or
actuators without disturbance. To tackle with the physical sat-
uration, an auxiliary systemwith the same order as that of the
plant was constructed to compensate the effect of saturation.
The control input saturation is investigated through online
approximation based control for uncertain nonlinear systems
in [26]. An adaptive control and the constrained adaptive
control in combination with the backstepping technique are
proposed in [29]. A direct adaptive fuzzy control approach
for uncertain nonlinear systems with input saturation is
presented in [30], in which a Nussbaum function is used
to compensate for the nonlinear term arising from the
input saturation. In [31], an adaptive fuzzy output feedback
control algorithm for a class of output constrained uncertain
nonlinear systems with input saturation is developed by
employing a barrier Lyapunov function and an auxiliary
system. Adaptive backstepping tracking control based on
fuzzy neural networks is investigated for unknown chaotic
systems in [32] and with control input constraints in [33].
Neural network based adaptive control schemeswith external
disturbances and actuator saturations are presented in [35],
in which auxiliary systems are added to attenuate the effects
of input saturation. It is apparent that the presence of input
saturation constraint substantially increases the complexity
of control system design for uncertain MIMO nonlinear
systems. In the constrained adaptive control, the key problem
is how to handle the constraint effect of the actuator’s physical
constraints. To this end, we introduce an auxiliary design
system to handle the constraint effect in this paper. Based
on the states of the auxiliary design system, constrained
adaptive control is investigated for a class of uncertainMIMO
nonlinear systems with input constraints using robust fuzzy
control technique.

In this paper, a robust adaptive fuzzy tracking control
scheme is presented to handle the external disturbances and
actuator physical constraints for uncertain MIMO nonlinear
systems. In control design, fuzzy logic systems are used to
approximate unknown nonlinear systems. Note that input
saturations are nonsmooth functions but the adaptive fuzzy
control technique requires all functions differentiable [6].
To compensate the effect of input saturations, an auxiliary
system is constructed and the actuator saturations then can
be augmented into the controller. The modified tracking
error is introduced and used in fuzzy parameter update laws.
Besides, in order to deal with fuzzy approximation errors
for unknown nonlinear systems and external disturbances,
a robust compensation control is designed. It is proved that
the proposed control approach can guarantee that all the
signals of the resulting closed-loop system are bounded, and
the closed-loop system obtains 𝐻

∞
tracking performance

through Lyapunov analysis. The transient modified tracking

errors performance is derived to be explicit functions of
design parameters and thus bounds of modified tracking
errors can be adjusted by tuning design parameters.

The rest of this paper is organized as follows.The descrip-
tion of the uncertain MIMO nonlinear system under consid-
eration and necessary preliminaries are given in Section 2. In
Section 3, the robust adaptive fuzzy control without control
saturation is firstly designed. When the actuators have phys-
ical limitations, this approach may not be able to be success-
fully implemented. In order to solve this problem, a robust
adaptive fuzzy control scheme with input saturation is inves-
tigated. The simulation results of satellite attitude control
are presented to demonstrate the effectiveness of proposed
controller in Section 4. Section 5 contains the conclusion.

2. Problem Formulation and Preliminary

2.1. Problem Formulation. Consider a class of uncertain
MIMO affine nonlinear system
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Note that G(x) is nonsingular at x = x
0
.

Using feedback linearization, the nonlinear system (1) can
be transformed into the following form [43]:

y(r) = F (x) + G (x) u + d, (4)
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In system (4), d still represents unknown bounded
external disturbance vector. The relative degree of the system
is assumed to be equal to the order of the system and is
expressed as ∑

𝑚

𝑖=1
𝑟
𝑖
= 𝑛, which implies that the system does

not have any zero dynamics.
Let the desired output trajectory be given by

y
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𝑇

. (9)

This paper aims to develop a robust adaptive fuzzy track-
ing control scheme such that all closed-loop system signals
asymptotically converge to a compact set in the presence of
input saturation, system uncertainties, and external distur-
bances and ensure the system outputs y track the desired
trajectory y

𝑑
. For system (4) to be controllable, the following

assumptions are made.

Assumption 1. The desired trajectory 𝑦
𝑑𝑖

and its 𝑛th order
derivatives are known and bounded.

Assumption 2. For x in certain controllability regionU
𝑐
∈ 𝑅
𝑛,

𝜎(G(x)) ̸= 0, where 𝜎(G(x)) denotes the minimum singular
value of the matrix G(x).

2.2. Fuzzy Logic Systems. In this paper, fuzzy logic systems
are used to approximate unknown nonlinear functions F(x)
and G(x). Following, the approximation presentation of
fuzzy logic systems is given. Without loss of generality, the
unknown uncertainty is assumed as 𝑓(x). A fuzzy logic sys-
tem consists of four parts: the knowledge base, the fuzzifier,

the fuzzy inference engine working on fuzzy rules, and the
defuzzifier. The fuzzy inference engine uses fuzzy IF-THEN
rules to perform a mapping from an input linguistic vector
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By introducing the concept of fuzzy basis function vector,
the final output of the fuzzy logic system can be expressed as
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Lemma 3. Let 𝑓(x) be a continuous function defined on a
compact set U

𝑐
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where 𝜃
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where 𝜀
𝑓𝑖
and 𝜀
𝑔𝑖𝑗

are the smallest approximation errors of the
fuzzy logic systems.

3. Adaptive Fuzzy Robust Control Designs

In this section, we first design the adaptive fuzzy approx-
imation based control problem without control saturation
and then consider the case where actuators have physical
limitations, such as magnitude and rate constraints.

3.1. Adaptive Fuzzy Robust Control. The tracking errors are
defined as
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If F(x) and G(x) are known, external disturbances are

ignored; then, according to nonlinear dynamic inversion
control techniques, the control law is given by
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Because F(x) and G(x) are unknown, 𝑑
𝑖
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control law (23) cannot be implemented in practice. Using
the approximation ofF(x) andG(x), and considering external
disturbances, the controller is modified as follows:

u = Ĝ−1 (x | 𝜃
𝐺
) [−F̂ (x | 𝜃

𝐹
) + u
𝑙
+ u
𝑑
] , (24)

where u
𝑑
is the robust compensation term, which is used to

attenuate the effect of external disturbances and approxima-
tion errors.

Substituting (24) into system (4) yields

y(𝑟) = F (x) − F̂ (x | 𝜃
𝐹
) + [G (x) − Ĝ (x | 𝜃

𝐺
)] u + u

𝑙

+ u
𝑑
+ d.

(25)

Considering (22), the 𝑖th subsystem of (25) can be rewrit-
ten as

ė
𝑖
= A
𝑖
e
𝑖
+ B
𝑖

{

{

{

[𝑓
𝑖
(x | 𝜃

𝑓𝑖
) − 𝑓
𝑖
(x)]

+

𝑚

∑

𝑗=1

[𝑔
𝑖𝑗
(x | 𝜃

𝑔𝑖𝑗
) − 𝑔
𝑖𝑗
(x)] 𝑢

𝑗

}

}

}

− B
𝑖
𝑢
𝑑𝑖

− B
𝑖
𝑑
𝑖
,

(26)

where 𝑢
𝑑𝑖
is the 𝑖th element of u

𝑑
and

A
𝑖
=

[
[
[
[
[
[
[
[
[

[

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 ⋅ ⋅ ⋅ 0

.

.

.
.
.
.

.

.

. d
.
.
.

0 0 0 ⋅ ⋅ ⋅ 1

−𝑘
𝑖1

−𝑘
𝑖2

−𝑘
𝑖3

⋅ ⋅ ⋅ −𝑘
𝑖𝑟𝑖

]
]
]
]
]
]
]
]
]

]

B
𝑖
=

[
[
[
[
[
[
[
[
[

[

0

0

.

.

.

0

1

]
]
]
]
]
]
]
]
]

]

e
𝑖
=

[
[
[
[
[
[
[
[
[
[

[

𝑒
𝑖

̇𝑒
𝑖

.

.

.

𝑒
(𝑟𝑖−2)

𝑖

𝑒
(𝑟𝑖−1)

𝑖

]
]
]
]
]
]
]
]
]
]

]

.

(27)

Define the minimum approximation error as

𝜔
󸀠

𝑖
= [𝑓
𝑖
(x | 𝜃

∗

𝑓𝑖
) − 𝑓
𝑖
(x)] +

𝑚

∑

𝑗=1

[𝑔
𝑖𝑗
(x | 𝜃

∗

𝑔𝑖𝑗
) − 𝑔
𝑖𝑗
(x)] 𝑢

𝑗
.

(28)
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According to fuzzy system theory, the following assump-
tion is reasonable.

Assumption 4. The minimum approximation error is square
integrable, that is, ∫𝑇

0

𝜔
󸀠𝑇

𝑖
𝜔
󸀠

𝑖
𝑑𝑡 < ∞.

Using the definition (28) and the optimal approximation
for 𝑓
𝑖
(x) and 𝑔

𝑖𝑗
(x), (26) can be rewritten in the following

form:

ė
𝑖
= A
𝑖
e
𝑖
+ B
𝑖

[

[

𝜃̃
𝑇

𝑓𝑖
𝜉
𝑓𝑖

(x) +

𝑚

∑

𝑗=1

𝜃̃
𝑇

𝑔𝑖𝑗
𝜉
𝑔𝑖𝑗

(x) 𝑢
𝑗

]

]

− B
𝑖
𝑢
𝑑𝑖

+ B
𝑖
𝜔
𝑖
,

(29)

where 𝜃̃
𝑓𝑖

= 𝜃
𝑓𝑖

− 𝜃
∗

𝑓𝑖
, 𝜃̃
𝑔𝑖𝑗

= 𝜃
𝑔𝑖𝑗

− 𝜃
∗

𝑔𝑖𝑗
, and 𝜔

𝑖
= 𝜔
󸀠

𝑖
− 𝑑
𝑖
.

Theorem 5. Consider the uncertain MIMO nonlinear system
presented by (4) with external disturbance. If the controller is
chosen as (24), the parameters update laws and 𝑢

𝑑𝑖
are adopted

as follows:

𝜃̇
𝑓𝑖

= −𝛾
𝑓𝑖
𝜉
𝑓𝑖

(x)B𝑇
𝑖
P
𝑖
e
𝑖

𝑖 = 1, . . . , 𝑚 (30)

𝜃̇
𝑔𝑖𝑗

= −𝛾
𝑔𝑖𝑗
𝜉
𝑔𝑖𝑗

(x)B𝑇
𝑖
P
𝑖
e
𝑖
𝑢
𝑗

𝑖, 𝑗 = 1, . . . , 𝑚 (31)

𝑢
𝑑𝑖

=
1

2𝜌
2

𝑖

B𝑇
𝑖
P
𝑖
e
𝑖

𝑖 = 1, . . . , 𝑚. (32)

Then the following 𝐻
∞

tracking performance can be
obtained

∫

𝑇

0

e𝑇Qe 𝑑𝑡 ≤ e𝑇 (0)Pe (0) +

𝑚

∑

𝑖=1

1

𝛾
𝑓𝑖

𝜃̃
𝑇

𝑓𝑖
(0) 𝜃̃
𝑓𝑖

(0)

+

𝑚

∑

𝑖,𝑗=1

1

𝛾
𝑔𝑖𝑗

𝜃̃
𝑇

𝑔𝑖𝑗
(0) 𝜃̃
𝑔𝑖𝑗

(0) +

𝑚

∑

𝑖=1

𝜌
2

𝑖
∫

𝑇

0

𝜔
2

𝑖
𝑑𝑡,

(33)

where 𝛾
𝑓𝑖

(𝑖 = 1, . . . , 𝑚) and 𝛾
𝑔𝑖𝑗

(𝑖, 𝑗 = 1, . . . , 𝑚) are positive
adaptive scalar, 𝜌

𝑖
(𝑖 = 1, . . . , 𝑚) are positive parameters

representing for prescribed disturbance attenuation levels,
e = [e𝑇

1
, . . . , e𝑇

𝑚
]
𝑇, Q = diag[Q

1
, . . . ,Q

𝑚
], and Q

𝑖
∈

R𝑚×𝑚 (𝑖 = 1, . . . , 𝑚) are arbitrary symmetric positive definite
matrices, and P = diag[P

1
, . . . ,P

𝑚
] and P

𝑖
∈ R𝑚×𝑚 (𝑖 =

1, . . . , 𝑚) are symmetric positive definite solution of the
following equations:

P
𝑖
A
𝑖
+ A𝑇
𝑖
P
𝑖
= −Q
𝑖
, (34)

where Q
𝑖

∈ R𝑚×𝑚 (𝑖 = 1, . . . , 𝑚) are arbitrary symmetric
positive definite matrices.

Proof. For the 𝑖th subsystem of (4), consider the following
Lyapunov function candidate

𝑉
𝑖
=

1

2
e𝑇
𝑖
P
𝑖
e
𝑖
+

1

2𝛾
𝑓𝑖

𝜃̃
𝑇

𝑓𝑖
𝜃̃
𝑓𝑖

+
1

2

𝑚

∑

𝑖=1

1

𝛾
𝑔𝑖𝑗

𝜃̃
𝑇

𝑔𝑖𝑗
𝜃̃
𝑔𝑖𝑗

. (35)

Differentiating (35) and considering (29) yield

𝑉̇
𝑖
=

1

2
ė𝑇
𝑖
P
𝑖
e
𝑖
+

1

2
e𝑇
𝑖
P
𝑖
ė
𝑖
+

1

𝛾
𝑓𝑖

̇̃
𝜃

𝑇

𝑓𝑖
𝜃̃
𝑓𝑖

+

𝑚

∑

𝑖=1

1

𝛾
𝑔𝑖𝑗

̇̃
𝜃

𝑇

𝑔𝑖𝑗
𝜃̃
𝑔𝑖𝑗

=
1

2
e𝑇
𝑖
(P
𝑖
A
𝑖
+ A𝑇
𝑖
P
𝑖
) e
𝑖
+

1

2
(−𝑢
𝑑𝑖

+ 𝜔
𝑖
) (B𝑇
𝑖
P
𝑖
e
𝑖
+ e𝑇
𝑖
P
𝑖
B
𝑖
)

+
1

𝛾
𝑓𝑖

[𝛾
𝑓𝑖
e𝑇
𝑖
P
𝑖
B
𝑖
𝜉
𝑇

𝑓𝑖
(x) +

̇̃
𝜃

𝑇

𝑓𝑖
] 𝜃̃
𝑓𝑖

+

𝑚

∑

𝑖=1

1

𝛾
𝑔𝑖𝑗

[𝛾
𝑔𝑖𝑗
e𝑇
𝑖
P
𝑖
B
𝑖
𝜉
𝑇

𝑔𝑖𝑗
(x) 𝑢
𝑗
+

̇̃
𝜃

𝑇

𝑔𝑖𝑗
] 𝜃̃
𝑔𝑖𝑗

.

(36)

Substituting (30)–(32) into (36), we obtain

𝑉̇
𝑖
= −

1

2
e𝑇
𝑖
Q
𝑖
e
𝑖
+

1

2
𝜔
𝑖
(B𝑇
𝑖
P
𝑖
e
𝑖
+ e𝑇
𝑖
P
𝑖
B
𝑖
) −

1

2𝜌
2

𝑖

e𝑇
𝑖
P
𝑖
B
𝑖
B𝑇
𝑖
P
𝑖
e
𝑖

= −
1

2
e𝑇
𝑖
Q
𝑖
e
𝑖
+

1

2
𝜌
2

𝑖
𝜔
2

𝑖
−

1

2
(

1

𝜌
𝑖

e𝑇
𝑖
P
𝑖
B
𝑖
− 𝜌
𝑖
𝜔
𝑖
)

2

≤ −
1

2
e𝑇
𝑖
Q
𝑖
e
𝑖
+

1

2
𝜌
2

𝑖
𝜔
2

𝑖
.

(37)

Integrating both sides of the above inequality from 0 to 𝑇

yields

1

2
∫

𝑇

0

e𝑇
𝑖
Q
𝑖
e
𝑖
𝑑𝑡 ≤ 𝑉

𝑖
(0) − 𝑉

𝑖
(𝑇) +

𝜌
2

𝑖

2
∫

𝑇

0

𝜔
2

𝑖
𝑑𝑡. (38)

Since 𝑉
𝑖
(𝑇) is nonnegative, according to the definition of

𝑉
𝑖
, the following inequality is obtained:

∫

𝑇

0

e𝑇
𝑖
Q
𝑖
e
𝑖
𝑑𝑡 ≤ e𝑇

𝑖
(0)P
𝑖
e
𝑖
(0) +

1

𝛾
𝑓𝑖

𝜃̃
𝑇

𝑓𝑖
(0) 𝜃̃
𝑓𝑖

(0)

+

𝑚

∑

𝑖=1

1

𝛾
𝑔𝑖𝑗

𝜃̃
𝑇

𝑔𝑖𝑗
(0) 𝜃̃
𝑔𝑖𝑗

(0) + 𝜌
2

𝑖
∫

𝑇

0

𝜔
2

𝑖
𝑑𝑡.

(39)

Considering the Lyapunov function 𝑉 = ∑
𝑚

𝑖=1
𝑉
𝑖
, it is

easy to obtain the 𝐻
∞

tracking performance index (55). This
completes the proof.

The controller proposed by (24) is able to guarantee the
Lyapunov stability of the closed-loop system and attenuate
the effect of system uncertainties and external disturbances.
However, no saturation on actuators is taken into account,
which is rather important for practical applications (includ-
ing satellite systems). Assume that the control input u is con-
straint by saturation functions; it can be readily shown that
the control law (24), the parameters update laws (30), (31),
and the robust compensation term (32) with saturation limits
cannot guarantee the stability of the closed-loop system.

It is expected that during saturation the magnitude of the
tracking error will increase, since the control signal is not
being achieved. This tracking error is not the result of func-
tion approximation error; therefore, we need to be careful so
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that the approximator does not cause “unlearning” during
the period when the actuators are saturated. Clearly, the
parameters update laws (30) and (31) depend on the tracking
error e

𝑖
, thus if the tracking error increases due to saturation,

the parameters update laws may cause a significant change in
theweights in response to the increase in tracking error. Next,
we develop a robust fuzzy adaptive control scheme to address
the input saturation problem.

3.2. Adaptive Fuzzy Control with Input Saturation. When the
actuators have physical constraints such as themagnitude and
rate limitations, the above approach may not be able to be
successfully implemented. Considering the magnitude and
rate limitations on the actuator, controller (24) is modified as

u
𝑐
= Ĝ−1 (x | 𝜃

𝐺
) [−F̂ (x | 𝜃

𝐹
) + u
𝑙
+ u
𝑎𝑤

+ u
𝑑
]

u = 𝑆
𝑀𝑅

(u
𝑐
) ,

(40)

where u
𝑐
is obtained by certainty equivalence principle; u

𝑎𝑤

is the auxiliary control term which is used to compensate the
effect of input saturation; 𝑆

𝑀𝑅
(⋅) is a function including the

magnitude and rate constraints which can produce a limited
output.

The state space representation of each component of u
𝑐
is

[

̇𝑟
𝑖1

̇𝑟
𝑖2

] = [

𝑟
𝑖2

𝑆
𝑅
(𝜔
𝑖
(𝑆
𝑀

(𝑢
𝑐𝑖
) − 𝑟
𝑖1
))

]

[

𝑢
𝑖

𝑢̇
𝑖

] = [

𝑟
𝑖1

𝑟
𝑖2

] ,

(41)

where 𝑢
𝑐𝑖
is the 𝑖th element of u

𝑐
, and 𝑢

𝑖
is the 𝑖th element

of u; 𝜔
𝑖
is the natural frequency; and 𝑆

𝑀
(⋅) and 𝑆

𝑅
(⋅) are the

saturation functions corresponding to magnitude and rate,
respectively. The function 𝑆

𝑀
(⋅) is defined as

𝑆
𝑀

(⋅) =

{{{{

{{{{

{

𝑀 if 𝑥 ≥ 𝑀

𝑥 if |𝑥| < 𝑀

−𝑀 if 𝑥 ≤ −𝑀

(42)

and 𝑆
𝑅
(⋅) has the same definition.

To compensate the effects of input limitations, an auxil-
iary system is introduced as follows [35]:

̇𝜉
𝑖1

= 𝜉
𝑖2

− 𝜆
𝑖1
𝜉
𝑖1

⋅ ⋅ ⋅ ̇𝜉
𝑖,𝑟𝑖−1

= 𝜉
𝑖𝑟𝑖

− 𝜆
𝑖,𝑟𝑖−1

𝜉
𝑖,𝑟𝑖−1

̇𝜉
𝑖𝑟𝑖

= −𝜆
𝑖𝑟𝑖
𝜉
𝑖𝑟𝑖

+

𝑚

∑

𝑗=1

𝑔
𝑖𝑗
(x | 𝜃

𝑔𝑖𝑗
) (𝑢
𝑗
− 𝑢
𝑐𝑗
) 𝑖 = 1, 2, . . . , 𝑚,

(43)

where 𝜆
𝑖𝑗

(𝑖 = 1, . . . , 𝑚; 𝑗 = 1, . . . , 𝑟
𝑖
) are positive design

parameters.

Define the modified tracking error as

𝑒
𝑖
= 𝑦
𝑑𝑖

− 𝑦
𝑖
− 𝜉
𝑖1

𝑖 = 1, 2, . . . , 𝑚. (44)

From (4), (40), and (43), we obtain

𝑒
(𝑟𝑖)

𝑖
+

𝑟𝑖

∑

𝑗=1

𝑘
𝑖𝑗
𝑒
(𝑟𝑖−1)

𝑖

= 𝑓
𝑖
(x | 𝜃

𝑓𝑖
) − 𝑓
𝑖
(x) +

𝑚

∑

𝑗=1

[𝑔
𝑖𝑗
(x | 𝜃

𝑔𝑖𝑗
) − 𝑔
𝑖𝑗
(x)] 𝑢

𝑗

− 𝑢
𝑎𝑤𝑖

− 𝑢
𝑑𝑖

− 𝑑
𝑖
− 𝜉
(𝑟𝑖)

𝑖1
−

𝑟𝑖

∑

𝑗=1

𝑘
𝑖𝑗
𝜉
(𝑗−1)

𝑖1

+

𝑚

∑

𝑗=1

𝑔
𝑖𝑗
(x | 𝜃

𝑔𝑖𝑗
) (𝑢
𝑗
− 𝑢
𝑐𝑗
) ,

(45)

where 𝑢
𝑎𝑤𝑖

is the 𝑖th element of u
𝑎𝑤
.

From (43), the term 𝜉
(𝑟𝑖)

𝑖1
can be expressed as

𝜉
(𝑟𝑖)

𝑖1
= −

𝑟𝑖

∑

𝑗=1

𝜆
𝑖𝑗
𝜉
(𝑟𝑖−𝑗)

𝑖𝑗
+

𝑚

∑

𝑗=1

𝑔
𝑖𝑗
(x | 𝜃

𝑔𝑖𝑗
) (𝑢
𝑗
− 𝑢
𝑐𝑗
) . (46)

Let

𝑢
𝑎𝑤𝑖

=

𝑟𝑖

∑

𝑗=1

(𝜆
𝑖𝑗
𝜉
(𝑟𝑖−𝑗)

𝑖𝑗
− 𝑘
𝑖𝑗
𝜉
(𝑗−1)

𝑖𝑗
) . (47)

With (46) and (47), (45) becomes

𝑒
(𝑟𝑖)

𝑖
+

𝑟𝑖

∑

𝑗=1

𝑘
𝑖𝑗
𝑒
(𝑟𝑖−1)

𝑖

= 𝑓
𝑖
(x | 𝜃

𝑓𝑖
) − 𝑓
𝑖
(x) +

𝑚

∑

𝑗=1

[𝑔
𝑖𝑗
(x | 𝜃

𝑔𝑖𝑗
) − 𝑔
𝑖𝑗
(x)] 𝑢

𝑗

− 𝑢
𝑑𝑖

− 𝑑
𝑖
.

(48)

Define e
𝑖

= [𝑒
𝑖
, ̇𝑒
𝑖
, . . . , 𝑒

(𝑟𝑖−1)

𝑖
]
𝑇 and using the optimal

approximation for 𝑓
𝑖
(x) and 𝑔

𝑖𝑗
(x), (48) can be rewritten as

ė
𝑖
= A
𝑖
e
𝑖
+ B
𝑖

[

[

𝜃̃
𝑇

𝑓𝑖
𝜉
𝑓𝑖

(x) +

𝑚

∑

𝑗=1

𝜃̃
𝑇

𝑔𝑖𝑗
𝜉
𝑔𝑖𝑗

(x) 𝑢
𝑗

]

]

− B
𝑖
𝑢
𝑑𝑖

+ B
𝑖
𝜔
𝑖
.

(49)

Theorem 6. Consider the uncertain MIMO nonlinear system
presented by (4) with external disturbance and input satura-
tion, if the controller is chosen as (40), the auxiliary control
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term u
𝑎𝑤
, the parameters update laws, and 𝑢

𝑑𝑖
are adopted as

follows:

̇𝜉
𝑖1

= 𝜉
𝑖2

− 𝜆
𝑖1
𝜉
𝑖1

⋅ ⋅ ⋅ ̇𝜉
𝑖,𝑟𝑖−1

= 𝜉
𝑖𝑟𝑖

− 𝜆
𝑖,𝑟𝑖−1

𝜉
𝑖,𝑟𝑖−1

̇𝜉
𝑖𝑟𝑖

= −𝜆
𝑖𝑟𝑖
𝜉
𝑖𝑟𝑖

+

𝑚

∑

𝑗=1

𝑔
𝑖𝑗
(x | 𝜃

𝑔𝑖𝑗
) (𝑢
𝑗
− 𝑢
𝑐𝑗
) 𝑖 = 1, 2, . . . , 𝑚

(50)

u
𝑎𝑤

= [

[

𝑟1

∑

𝑗=1

(𝜆
1𝑗
𝜉
(𝑟1−𝑗)

1𝑗
− 𝑘
1𝑗
𝜉
(𝑗−1)

1𝑗
)

⋅ ⋅ ⋅

𝑟𝑚

∑

𝑗=1

(𝜆
𝑚𝑗

𝜉
(𝑟𝑚−𝑗)

𝑚𝑗
− 𝑘
𝑚𝑗

𝜉
(𝑗−1)

𝑚𝑗
)]

]

𝑇

(51)

𝜃̇
𝑓𝑖

= −𝛾
𝑓𝑖
𝜉
𝑓𝑖

(x)B𝑇
𝑖
P
𝑖
e
𝑖

𝑖 = 1, . . . , 𝑚 (52)

𝜃̇
𝑔𝑖𝑗

= −𝛾
𝑔𝑖𝑗
𝜉
𝑔𝑖𝑗

(x)B𝑇
𝑖
P
𝑖
e
𝑖
𝑢
𝑗

𝑖, 𝑗 = 1, . . . , 𝑚 (53)

𝑢
𝑑𝑖

=
1

2𝜌
2

𝑖

B𝑇
𝑖
P
𝑖
e
𝑖

𝑖 = 1, . . . , 𝑚. (54)

Then the following 𝐻
∞

tracking performance can be
obtained:

∫

𝑇

0

e𝑇Qe 𝑑𝑡 ≤ e𝑇 (0)Pe (0) +

𝑚

∑

𝑖=1

1

𝛾
𝑓𝑖

𝜃̃
𝑇

𝑓𝑖
(0) 𝜃̃
𝑓𝑖

(0)

+

𝑚

∑

𝑖,𝑗=1

1

𝛾
𝑔𝑖𝑗

𝜃̃
𝑇

𝑔𝑖𝑗
(0) 𝜃̃
𝑔𝑖𝑗

(0) +

𝑚

∑

𝑖=1

𝜌
2

𝑖
∫

𝑇

0

𝜔
2

𝑖
𝑑𝑡,

(55)

where 𝛾
𝑓𝑖

(𝑖 = 1, . . . , 𝑚) and 𝛾
𝑔𝑖𝑗

(𝑖, 𝑗 = 1, . . . , 𝑚) are positive
adaptive scalar, 𝜌

𝑖
(𝑖 = 1, . . . , 𝑚) are positive parameters rep-

resenting for prescribed disturbance attenuation levels, e =

[e𝑇
1
, . . . , e𝑇

𝑚
]
𝑇, Q = diag[Q

1
, . . . ,Q

𝑚
], and Q

𝑖
∈ R𝑚×𝑚 (𝑖 =

1, . . . , 𝑚) are arbitrary symmetric positive definite matrices,
and P = diag[P

1
, . . . ,P

𝑚
] and P

𝑖
∈ R𝑚×𝑚 (𝑖 = 1, . . . , 𝑚)

are symmetric positive definite solution of the following
equations:

P
𝑖
A
𝑖
+ A𝑇
𝑖
P
𝑖
= −Q
𝑖
. (56)

Proof. For the 𝑖th subsystem of (4), consider the following
Lyapunov function candidate:

𝑉
𝑖
=

1

2
e𝑇
𝑖
P
𝑖
e
𝑖
+

1

2𝛾
𝑓𝑖

𝜃̃
𝑇

𝑓𝑖
𝜃̃
𝑓𝑖

+
1

2

𝑚

∑

𝑖=1

1

𝛾
𝑔𝑖𝑗

𝜃̃
𝑇

𝑔𝑖𝑗
𝜃̃
𝑔𝑖𝑗

. (57)

Differentiating (57) and considering (49) yield

𝑉̇
𝑖
=

1

2
ė𝑇
𝑖
P
𝑖
e
𝑖
+

1

2
e𝑇
𝑖
P
𝑖
ė
𝑖
+

1

𝛾
𝑓𝑖

̇̃
𝜃

𝑇

𝑓𝑖
𝜃̃
𝑓𝑖

+

𝑚

∑

𝑖=1

1

𝛾
𝑔𝑖𝑗

̇̃
𝜃

𝑇

𝑔𝑖𝑗
𝜃̃
𝑔𝑖𝑗

=
1

2
e𝑇
𝑖
(P
𝑖
A
𝑖
+ A𝑇
𝑖
P
𝑖
) e
𝑖
+

1

2
(−𝑢
𝑑𝑖

+ 𝜔
𝑖
) (B𝑇
𝑖
P
𝑖
e
𝑖
+ e𝑇
𝑖
P
𝑖
B
𝑖
)

+
1

𝛾
𝑓𝑖

[𝛾
𝑓𝑖
e𝑇
𝑖
P
𝑖
B
𝑖
𝜉
𝑇

𝑓𝑖
(x) +

̇̃
𝜃

𝑇

𝑓𝑖
] 𝜃̃
𝑓𝑖

+

𝑚

∑

𝑖=1

1

𝛾
𝑔𝑖𝑗

[𝛾
𝑔𝑖𝑗
e𝑇
𝑖
P
𝑖
B
𝑖
𝜉
𝑇

𝑔𝑖𝑗
(x) 𝑢
𝑗
+

̇̃
𝜃

𝑇

𝑔𝑖𝑗
] 𝜃̃
𝑔𝑖𝑗

.

(58)

Substituting (52)–(54) into (58), we obtain

𝑉̇
𝑖
= −

1

2
e𝑇
𝑖
Q
𝑖
e
𝑖
+

1

2
𝜔
𝑖
(B𝑇
𝑖
P
𝑖
e
𝑖
+ e𝑇
𝑖
P
𝑖
B
𝑖
) −

1

2𝜌
2

𝑖

e𝑇
𝑖
P
𝑖
B
𝑖
B𝑇
𝑖
P
𝑖
e
𝑖

= −
1

2
e𝑇
𝑖
Q
𝑖
e
𝑖
+

1

2
𝜌
2

𝑖
𝜔
2

𝑖
−

1

2
(

1

𝜌
𝑖

e𝑇
𝑖
P
𝑖
B
𝑖
− 𝜌
𝑖
𝜔
𝑖
)

2

≤ −
1

2
e𝑇
𝑖
Q
𝑖
e
𝑖
+

1

2
𝜌
2

𝑖
𝜔
2

𝑖
.

(59)

Integrating both sides of the above inequality from 0 to 𝑇

yields

1

2
∫

𝑇

0

e𝑇
𝑖
Q
𝑖
e
𝑖
𝑑𝑡 ≤ 𝑉

𝑖
(0) − 𝑉

𝑖
(𝑇) +

𝜌
2

𝑖

2
∫

𝑇

0

𝜔
2

𝑖
𝑑𝑡. (60)

Since 𝑉
𝑖
(𝑇) is nonnegative, according to the definition of

𝑉
𝑖
, the following inequality is obtained:

∫

𝑇

0

e𝑇
𝑖
Q
𝑖
e
𝑖
𝑑𝑡 ≤ e𝑇

𝑖
(0)P
𝑖
e
𝑖
(0) +

1

𝛾
𝑓𝑖

𝜃̃
𝑇

𝑓𝑖
(0) 𝜃̃
𝑓𝑖

(0)

+

𝑚

∑

𝑖=1

1

𝛾
𝑔𝑖𝑗

𝜃̃
𝑇

𝑔𝑖𝑗
(0) 𝜃̃
𝑔𝑖𝑗

(0) + 𝜌
2

𝑖
∫

𝑇

0

𝜔
2

𝑖
𝑑𝑡.

(61)

Considering the Lyapunov function 𝑉 = ∑
𝑚

𝑖=1
𝑉
𝑖
, it is

easy to obtain the 𝐻
∞

tracking performance index (55). This
completes the proof.

From the above analysis, it is concluded that, in the case
of no control saturations, the signals 𝜉

𝑖𝑗
(𝑖 = 1, . . . , 𝑚; 𝑗 =

1, . . . , 𝑟
𝑖
) remain zeros and the control law becomes the same

as the standard robust adaptive control law described in the
previous section. In the presence of control saturations, 𝜉

𝑖𝑗

is nonzero, thus giving rise to a modified tracking error
𝑒
𝑖
= 𝑦
𝑑𝑖

− 𝑦
𝑖
− 𝜉
𝑖1
, which is used in fuzzy parameter update

laws. The auxiliary control term u
𝑎𝑤

in (40) will be used
to compensate the effects of control saturations. Note that
the fuzzy parameter update laws (52) and (53) are similar to
the corresponding update laws (30) and (31) derived in the
standard fuzzy approximation based control problem with
tracking error 𝑒

𝑖
being replaced by the modified tracking

error 𝑒
𝑖
. The use of the modified tracking error in the fuzzy

update laws is crucial in preventing actuator constraints in
online approximation schemes.
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Corollary 7. For the 𝑖th subsystem of (4), it is assumed that
∫
𝑇

0

𝑑
2

𝑖
𝑑𝑡 < ∞. If the control law (40), the auxiliary control term

(51), and the parameter update laws (52)–(54) are adopted,
then the following statements hold.

(i) The closed loop system is stable, and the signals e
𝑖
, 𝜃
𝑓𝑖
,

𝜃
𝑔𝑖𝑗
, and 𝑢

𝑖
are bounded.

(ii) Thesteadymodified tracking error satisfies lim
𝑡→∞

𝑒
𝑖
=

0, and the bound of the transient modified tracking
error will be given as follows:

󵄩󵄩󵄩󵄩𝑒𝑖
󵄩󵄩󵄩󵄩

2

≤

2 [(1/𝛾
𝑓𝑖
) 𝜃̃
𝑇

𝑓𝑖
(0) 𝜃̃
𝑓𝑖

(0) + ∑
𝑚

𝑖=1
(1/𝛾
𝑔𝑖𝑗

) 𝜃̃
𝑇

𝑔𝑖𝑗
(0) 𝜃̃
𝑔𝑖𝑗

(0)]

𝜆min (Q
𝑖
)

+

2e𝑇
𝑖
(0)P
𝑖
e
𝑖
(0) + 𝜌

2

𝑖
∫
𝑇

0

𝜔
2

𝑖
𝑑𝑡

𝜆min (Q
𝑖
)

.

(62)

Proof. From (59), it can be obtained that

𝑉̇
𝑖
≤ −𝑐
𝑖
𝑉
𝑖
+ 𝜇
𝑖
, (63)

where 𝑐
𝑖

= min{𝜆V, 1/𝛾𝑓𝑖 , 1/𝛾𝑔𝑖𝑗}, 𝜆V = min{inf 𝜆min(Q𝑖)/
sup 𝜆max(Q𝑖)}, 𝑀

𝑖
= max(𝜃

𝑓𝑖
), 𝑀
𝑖𝑗

= max(𝜃
𝑔𝑖𝑗

), 𝜇
𝑖

=

𝑀
2

𝑖
/2𝛾
𝑓𝑖

+ ∑
𝑚

𝑗=1
(1/2𝛾
𝑔𝑖𝑗

)𝑀
2

𝑖𝑗
+ (1/2)𝜌

2

𝑖
𝜔
2

𝑖
, 𝜔
𝑖

= sup ‖𝜔
𝑖
‖,

and 𝜆min(Q𝑖) and 𝜆max(Q𝑖) are the minimum and maximum
eigenvalue ofQ

𝑖
, respectively.

From inequality (63), all the signals e
𝑖
, 𝜃
𝑓𝑖
, 𝜃
𝑔𝑖𝑗
, and 𝑢

𝑖
are

bounded by using Barbalat’s lemma [8].
On the other hand, from (59), it can be obtained that

𝑉̇
𝑖
≤ −

1

2
𝜆min (Q

𝑖
)
󵄩󵄩󵄩󵄩e𝑖

󵄩󵄩󵄩󵄩

2

+
1

2
𝜌
2

𝑖
𝜔
2

𝑖
. (64)

From the above inequality, one obtains

󵄩󵄩󵄩󵄩𝑒𝑖
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩e𝑖

󵄩󵄩󵄩󵄩

2

≤
−2𝑉̇
𝑖
+ 𝜌
2

𝑖
𝜔
2

𝑖

𝜆min (𝑄)
. (65)

Hence,

󵄩󵄩󵄩󵄩𝑒𝑖
󵄩󵄩󵄩󵄩

2

= ∫

𝑇

0

𝑒
2

𝑖
𝑑𝑡 ≤

2 [𝑉
𝑖
(0) − 𝑉

𝑖
(𝑇)] + 𝜌

2

𝑖
∫
𝑇

0

𝜔
2

𝑖
𝑑𝑡

𝜆min (Q
𝑖
)

≤

2𝑉
𝑖
(0) + 𝜌

2

𝑖
∫
𝑇

0

𝜔
2

𝑖
𝑑𝑡

𝜆min (Q
𝑖
)

.

(66)

According to the definition of 𝑉
𝑖
, (62) is obtained.

Assumption 4 implies ∫
𝑇

0

𝜔
󸀠2

𝑖
𝑑𝑡 < ∞; then ∫

𝑇

0

𝜔
2

𝑖
𝑑𝑡 =

∫
𝑇

0

(𝜔
󸀠

𝑖
− 𝑑
𝑖
)
2

𝑑𝑡 < ∞. Therefore, 𝜔
𝑖
∈ 𝐿
2
. From (66) we can

conclude that 𝑒
𝑖
∈ 𝐿
2
. Using Barbalat’s lemma, it follows that

lim
𝑡→∞

𝑒
𝑖
(𝑡) = 0. This completes the proof.

Remark 8. According to Theorem 6, the 𝑖th subsystem of
(4) achieves a 𝐻

∞ tracking performance with a prescribed
disturbance attenuation level 𝜌

𝑖
; that is, the 𝐿

2
gain from 𝜔

𝑖

to the modified tracking error 𝑒
𝑖
is equal or less than 𝜌

𝑖
.

Remark 9. As indicated from Corollary 7, the steady modi-
fied tracking error 𝑒

𝑖
will converge to zero. The bound of the

transient modified tracking error 𝑒
𝑖
is an explicit function

of the design parameters and the external disturbance and
fuzzy approximation error 𝜔

𝑖
. The bound can be decreased

by choosing the initial estimates 𝜃
𝑓𝑖
(0), 𝜃

𝑔𝑖𝑗
(0) closing to

the true values 𝜃∗
𝑓𝑖
, 𝜃∗
𝑔𝑖𝑗
. The effects of parameter initial

estimate errors on the transient tracking performance can
be reduced by increasing the adaptive gain values 𝛾

𝑓𝑖
, 𝛾
𝑔𝑖𝑗
,

and 𝜆min(Q𝑖). Furthermore, the effect of external disturbance
and fuzzy approximation error 𝜔

𝑖
on the transient tracking

performance can be reduced by decreasing 𝜌
𝑖
and increasing

𝜆min(Q𝑖). Small 𝜌
𝑖
implies high disturbance attenuation level.

4. Simulation Examples

The attitude tracking control problem of a rigid body satellite
system is simulated in this section to illustrate the effective-
ness of the robust adaptive fuzzy controllers proposed in
this paper. The mathematical model of the satellite attitude
system can be reformulated to the general form of uncertain
nonlinear MIMO system as follows [42, 44]:

ÿ = F (x) + G (x) u + d, (67)

where x = [q,𝜔]𝑇 is the state vector, where q =

[𝑞
0
, 𝑞
1
, 𝑞
2
, 𝑞
3
]
𝑇 is the attitude quaternion in the body-fixed

reference frame relative to the inertial frame satisfying 𝑞
2

0
+

𝑞
2

1
+ 𝑞
2

2
+ 𝑞
2

3
= 1, here 𝑞

0
is chosen as 𝑞

0
= √1 − 𝑞

2

1
− 𝑞
2

2
− 𝑞
2

3
;

𝜔 = [𝜔
𝑥
, 𝜔
𝑦
, 𝜔
𝑧
]
𝑇 is the angular velocity of the body-fixed

reference relative to the inertial frame. y = [𝑞
1
, 𝑞
2
, 𝑞
3
]
𝑇 is the

output vector, u = [𝑢
1
, 𝑢
2
, 𝑢
3
]
𝑇 is the control torque vector,

d󸀠 ∈ R3 denotes the bounded external disturbance torques,
and d ≜ G(x)d󸀠. F(x) and G(x) are expressed as follows:

𝑓
1
(x) = −

1

4
𝑞
1
(𝜔
2

𝑥
+ 𝜔
2

𝑦
+ 𝜔
2

𝑧
) +

𝐼
𝑥
− 𝐼
𝑦

2𝐼
𝑧

𝑞
2
𝜔
𝑥
𝜔
𝑦

+
𝐼
𝑥
− 𝐼
𝑧

2𝐼
𝑦

𝑞
3
𝜔
𝑥
𝜔
𝑧
+

𝐼
𝑦
− 𝐼
𝑧

2𝐼
𝑥

𝑞
0
𝜔
𝑦
𝜔
𝑧

𝑓
2
(x) = −

1

4
𝑞
2
(𝜔
2

𝑥
+ 𝜔
2

𝑦
+ 𝜔
2

𝑧
) +

𝐼
𝑦
− 𝐼
𝑥

2𝐼
𝑧

𝑞
1
𝜔
𝑥
𝜔
𝑦

+
𝐼
𝑧
− 𝐼
𝑥

2𝐼
𝑦

𝑞
0
𝜔
𝑥
𝜔
𝑧
+

𝐼
𝑦
− 𝐼
𝑧

2𝐼
𝑥

𝑞
3
𝜔
𝑦
𝜔
𝑧
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𝑓
3
(x) = −

1

4
𝑞
3
(𝜔
2

𝑥
+ 𝜔
2

𝑦
+ 𝜔
2

𝑧
) +

𝐼
𝑥
− 𝐼
𝑦

2𝐼
𝑧

𝑞
0
𝜔
𝑥
𝜔
𝑦

+
𝐼
𝑧
− 𝐼
𝑥

2𝐼
𝑦

𝑞
1
𝜔
𝑥
𝜔
𝑧
+

𝐼
𝑧
− 𝐼
𝑦

2𝐼
𝑥

𝑞
2
𝜔
𝑦
𝜔
𝑧

G (x) =

[
[
[
[
[
[
[

[

𝑞
0

2𝐼
𝑥

−
𝑞
3

2𝐼
𝑦

𝑞
2

2𝐼
𝑧

𝑞
3

2𝐼
𝑥

𝑞
0

2𝐼
𝑦

−
𝑞
1

2𝐼
𝑧

−
𝑞
2

2𝐼
𝑥

𝑞
1

2𝐼
𝑦

𝑞
0

2𝐼
𝑧

]
]
]
]
]
]
]

]

,

(68)

where 𝐼
𝑥
, 𝐼
𝑦
, and 𝐼

𝑧
are the principal central moments of

inertia of the satellite.
Within this simulation, the nonlinear functions F(x) and

G(x) are assumed completely unknown, that is, the fuzzy
adaptive controllers do not require the knowledge of the
system’s model. In fact, the dynamic model of the satellite
attitude system is only required for simulation purpose.

Since the components of F(x) and G(x) are assumed
unknown, three fuzzy logic systems in the form of (12) are
used to approximate the elements of F(x), and nine are used
to approximate the elements ofG(x). The fuzzy logic systems
used to describe F(x) have 𝑞

1
, 𝑞
2
, 𝑞
3
, 𝜔
1
, 𝜔
2
, and 𝜔

3
as inputs,

and the ones used to describe G(x) have 𝑞
1
, 𝑞
2
, and 𝑞

3
as

inputs. For each state variable x = [𝑞
1
, 𝑞
2
, 𝑞
3
, 𝜔
1
, 𝜔
2
, 𝜔
3
]
𝑇, we

define seven Gaussian membership functions as

𝜇
𝐹
1
𝑖
(𝑥
𝑖
) =

1

1 + exp (−5 (𝑥
𝑖
+ 0.6))

,

𝜇
𝐹
2
𝑖
(𝑥
𝑖
) = exp (−0.5 (𝑥

𝑖
+ 0.4)

2

)

𝜇
𝐹
3
𝑖
(𝑥
𝑖
) = exp (−0.5 (𝑥

𝑖
+ 0.2)

2

) ,

𝜇
𝐹
4
𝑖
(𝑥
𝑖
) = exp (−0.5𝑥

𝑖

2

)

𝜇
𝐹
5
𝑖
(𝑥
𝑖
) = exp (−0.5 (𝑥

𝑖
− 0.2)

2

) ,

𝜇
𝐹
6
𝑖
(𝑥
𝑖
) = exp (−0.5 (𝑥

𝑖
− 0.4)

2

)

𝜇
𝐹
7
𝑖
(𝑥
𝑖
) =

1

1 + exp (−5 (𝑥
𝑖
− 0.6))

,

𝑖 = 1, 2, 3, 4, 5, 6.

(69)

The fuzzy basis function vectors are chosen as follows:

𝜉
𝑓𝑖

= [

[

∏
6

𝑖=1
𝜇
𝐹
1
𝑖
(𝑥
𝑖
)

∑
7

𝑗=1
∏
6

𝑖=1
𝜇
𝐹
𝑗

𝑖

(𝑥
𝑖
)

, . . . ,

∏
6

𝑖=1
𝜇
𝐹
7
𝑖
(𝑥
𝑖
)

∑
7

𝑗=1
∏
6

𝑖=1
𝜇
𝐹
𝑗

𝑖

(𝑥
𝑖
)

]

]

𝑇

𝑖 = 1, 2, 3

𝜉
𝑔𝑖𝑗

= [

[

∏
3

𝑖=1
𝜇
𝐹
1
𝑖
(𝑥
𝑖
)

∑
7

𝑗=1
∏
3

𝑖=1
𝜇
𝐹
𝑗

𝑖

(𝑥
𝑖
)

, . . . ,

∏
3

𝑖=1
𝜇
𝐹
7
𝑖
(𝑥
𝑖
)

∑
7

𝑗=1
∏
3

𝑖=1
𝜇
𝐹
𝑗

𝑖

(𝑥
𝑖
)

]

]

𝑇

𝑖, 𝑗 = 1, 2, 3.

(70)

Then we obtain fuzzy logic systems

𝑓
𝑖
(x | 𝜃

𝑓𝑖
) = 𝜃
𝑇

𝑓𝑖
𝜉
𝑓𝑖

(x) 𝑖 = 1, 2, 3

𝑔
𝑖𝑗
(x | 𝜃

𝑔𝑖𝑗
) = 𝜃
𝑇

𝑔𝑖𝑗
𝜉
𝑔𝑖𝑗

(x) 𝑖, 𝑗 = 1, 2, 3.

(71)

Using (71) approximate the unknown functions𝑓
𝑖
and𝑔
𝑖𝑗
,

respectively.
For the given coefficients 𝑘

𝑖1
= 0.25 (𝑖 = 1, 2, 3) and 𝑘

𝑖2
=

0.5 (𝑖 = 1, 2, 3), we have

A
1
= A
2
= A
3
= [

0 1

−0.25 −0.5
] B

1
= B
2
= B
3
= [

0

1
] .

(72)

SelectingQ
𝑖
= diag[0.5, 0.5] and solving (34), we obtain

P
𝑖
= [

1.625 0.5

0.5 3
] 𝑖 = 1, 2, 3. (73)

The parameters of the adaptive fuzzy controllers are
chosen as 𝛾

𝑓𝑖
= 1 × 10

−3, 𝛾
𝑔𝑖𝑗

= 1 × 10
−3, and 𝜌

𝑖
= 0.5,

𝑖, 𝑗 = 1, 2, 3.
The initial attitude quaternion is q(0) = [0.9014, 0.25,

0.25, 0.25]
𝑇, and the initial value of the angular velocity

is 𝜔(0) = [0.005 0.005 0.005]
𝑇 rad/s. The parameters

of system are given as 𝐼
𝑥

= 187.5 kg⋅m2, 𝐼
𝑦

= 468.5 kg⋅m2,
and 𝐼

𝑧
= 468.5 kg⋅m2. The external disturbance torque

vector is given by d󸀠 = [0.3 sin(0.05𝑡), 0.3 cos(0.05𝑡),
−0.3 sin(0.05𝑡)]𝑇N⋅m. The initial values of the parameters
𝜃
𝑓𝑖
and 𝜃

𝑔𝑖𝑗
are set to random values uniformly distributed

between [0, 1]. The desired output trajectory is chosen as
y
𝑑

= [0.5 sin(0.005𝑡), 0.5 sin(0.005𝑡), 0.5 sin(0.005𝑡)]𝑇. The
control objective is to force the system output y to track the
desired output trajectory y

𝑑
.

4.1. Without Input Saturation. In this section, the tracking
control problem is simulated to demonstrate the effective-
ness of robust adaptive fuzzy controller (24) proposed in
Section 3.1.

Using the control law (24) and (30)–(32), simulation
results are presented in Figures 1 and 2. Figure 1 shows the
curves of the system outputs and its reference trajectories,
which indicates that the robust adaptive fuzzy controller
achieves a good performance in tracking control problem
and the effects of fuzzy approximation errors and external
disturbances on tracking errors are effectively attenuated.
Figure 2 shows that the control inputs can be carried out
feasibly without any constraints. The control signals are
obtained by certainty equivalence principle. Therefore, they
do not satisfy the control input limitations naturally.
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Figure 1: Trajectories of outputs without saturation.

4.2. Actuator Amplitude Saturation. In order to demonstrate
that the proposed adaptive control scheme (40) can work
effectively under actuator amplitude saturation, numerical
simulations have been performed and presented in this
section.

Consider satellite attitude model (67) with the same dis-
turbances and system initial conditions mentioned above.
The control input vector u = [𝑢

1
, 𝑢
2
, 𝑢
3
]
𝑇 has amplitude lim-

its |𝑢
𝑖
| ≤ 1N⋅m, 𝑖 = 1, 2, 3.The auxiliary system is constructed

as follows:
̇𝜉
𝑖1

= 𝜉
𝑖2

− 𝜆
𝑖1
𝜉
𝑖1

̇𝜉
𝑖2

= − 𝜆
𝑖2
𝜉
𝑖2

+

3

∑

𝑗=1

𝑔
𝑖𝑗
(x | 𝜃

𝑔𝑖𝑗
) (𝑢
𝑗
− 𝑢
𝑐𝑗
) 𝑖 = 1, 2, 3,

(74)

where 𝜆
𝑖𝑗

= 1 (𝑖 = 1, 2, 3; 𝑗 = 1, 2) and 𝜉
𝑖𝑗
(0) = 0 (𝑖 =

1, 2, 3; 𝑗 = 1, 2).
Using the control law (40), the auxiliary control term

(51), the parameters update laws (52)-(53), and the robust
compensation term (54), we can get the simulations in
Figures 3 and 4.

The system outputs and its reference trajectories are
shown in Figure 3, which indicate that the outputs track
their reference trajectories well in spite of the external
disturbances, system uncertainties, and actuator amplitude
saturation. Figure 4 shows the trajectories of the control
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Figure 2: Trajectories of control inputs without saturation.
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Figure 3: Trajectories of outputs with amplitude saturation.
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Figure 4: Trajectories of control inputs with amplitude saturation.

inputs with actuator amplitude saturation. From these sim-
ulations, it is obvious that proposed control scheme (40)
can achieve a good tracking performance when the actuator
amplitude limits are considered.

4.3. Actuator Amplitude and Rate Saturation. For further
analysis, actuator amplitude and rate saturations are con-
sidered. The control input vector u = [𝑢

1
, 𝑢
2
, 𝑢
3
]
𝑇 has the

amplitude and rate limitation |𝑢
𝑖
| ≤ 1, |𝑢̇

𝑖
| ≤ 2, 𝑖 = 1, 2, 3.

The other initial parameters are the same as mentioned in
Section 4.2.

According to (41), the dynamics of control inputs are
expressed as follows:

𝑢̇
𝑖
= 𝑆
1
(𝜔
𝑖
𝑆
1
(𝑢
𝑐𝑖
) − 𝑢
𝑖
) 𝑖 = 1, 2, 3, (75)

where 𝜔
𝑖
= 20.5 (𝑖 = 1, 2, 3).

Using control law (40), the actuator amplitude and rate
constraints (41), the auxiliary control term (51), the parame-
ters update laws (52)-(53), and the robust compensation term
(54), simulation results are presented in Figures 5–8. Figure 5
shows the curves of outputs and their reference trajectories,
which indicate that a good tracking control performance is
still achieved under actuator amplitude and rate constraint
conditions.The control signals and their derivatives are given
in Figures 6 and 7. It is observed that the control signals satisfy
the amplitude and rate limitations. That is, the proposed
robust control scheme for the satellite attitude control system
can prevent the control signals from reaching amplitude and
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Figure 5: Trajectories of outputs with amplitude and rate saturation.
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Figure 6: Trajectories of control inputs with amplitude and rate
saturation.
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rate saturation limits. Figure 8 shows the signals 𝑢
𝑐𝑖

(𝑖 =

1, 2, 3). Obviously, they do not satisfy the control input
limitations.

From the aforementioned simulations, it is demonstrated
that the robust adaptive fuzzy tracking controller proposed
in this paper not only can generate control inputs that
satisfy actuator amplitude and rate saturations but also can
effectively attenuate the effects of approximation error and
extern disturbance on tracking errors. Thus, the proposed
robust adaptive control scheme is valid for satellite attitude
control system with actuator amplitude and rate saturation.

5. Conclusions

In this work, a robust fuzzy tracking control approach has
been presented for a class of uncertain nonlinear MIMO
systems in the presence of input saturation and external
disturbances. Fuzzy logic systems are used to approximate
the unknown system nonlinear terms. An auxiliary system is
constructed to compensate the effects of actuator saturations,
and then the actuator saturations can be augmented into the
controller. The modified tracking error is introduced and
used in fuzzy parameter update laws. A robust compensation
control is designed to attenuate the effects of external distur-
bances and fuzzy approximation errors. The stability prop-
erties and tracking performance of the closed-loop system
are obtained through Lyapunov analysis. Steady and transient
modified tracking errors are analyzed and the bound of
modified tracking errors can be adjusted by tuning certain
design parameters.Theproposed control scheme is applicable
to uncertain nonlinear systems not only with actuator ampli-
tude saturation, but also with actuator amplitude and rate
saturation. The simulation results of satellite attitude control
system are presented to demonstrate the effectiveness of pro-
posed controller. In this paper, the control system relies on the
output derivatives, up to 𝑟

𝑖
− 1 order as in (22), which is also

practically restrictive for high order systems. Future research
will be concentrated on an observer-based robust adaptive
fuzzy control of uncertain nonlinear systems with actuator
saturations based on the results of [18–20] and this paper.
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