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Amathematical framework is developedwhich integrates the reliability concept into topology optimization to solve reliability-based
topology optimization (RBTO) problems under uncertainty. Two typical methodologies have been presented and implemented,
including the performance measure approach (PMA) and the sequential optimization and reliability assessment (SORA). To
enhance the computational efficiency of reliability analysis, stochastic response surface method (SRSM) is applied to approximate
the true limit state function with respect to the normalized random variables, combined with the reasonable design of experiments
generated by sparse grid design, which was proven to be an effective and special discretization technique.The uncertainties such as
material property and external loads are considered on three numerical examples: a cantilever beam, a loaded knee structure, and a
heat conduction problem. Monte-Carlo simulations are also performed to verify the accuracy of the failure probabilities computed
by the proposed approach. Based on the results, it is demonstrated that application of SRSM with SGD can produce an efficient
reliability analysis in RBTO which enables a more reliable design than that obtained by DTO. It is also found that, under identical
accuracy, SORA is superior to PMA in view of computational efficiency.

1. Introduction

The subject for optimal structural topologies under uncer-
tainty is very important, challenging, and attractive for
researchers.The field of structural topology optimization has
become matured since the pioneering work by Bendsøe and
Kikuchi [1]. Details of various proposed methodologies can
be found in comprehensive reviews and text books [2–4].
The aim of the optimization process is to obtain a material
distribution within a fixed design domain, so as to optimize
the specified structural response subjected to prescribed
constraints. However, most of the optimization problems are
established in deterministic manner where the designs are
carried out without considering the variations observed in
geometry and material property as well as external loads
due to inherent uncertainty. Consequently, optimum design
obtained by the so-called deterministic topology optimiza-
tion (DTO) may represent unreasonable reliability level.

Hence, reliability-based topology optimization (RBTO) has
emerged which achieves optimal topologies while quanti-
tatively measuring the effects of uncertainty by means of
probability constraints.

The state-of-the-art topology optimization methodolo-
gies have been applied for obtaining optimized reliable
designs of structures andmechanisms considering uncertain-
ties. Density-based method taking into account loading and
material uncertainties has been demonstrated for microelec-
tromechanical systems (MEMS) [5], for geometrically non-
linear structures [6]. A level set based approach for compliant
mechanisms under uncertainties exhibited by loads, material
properties, and member geometries has been reported by
Zhang and Ouyang [7]. Recently, topology optimization with
uncertainties has been demonstrated for the bidirectional
evolutionary structural optimization (BESO) in the design for
electrothermal compliant mechanisms [8] and for a vehicle’s
hood reinforcement [9]. Although the RBTO is a rapidly
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expanding active research field, topology optimization inte-
gration with probability constraint is still quite challenging,
that is, the numerical difficulty for direct estimation failure
probability. Such difficulties have motivated the development
of various uncertainty propagation methods, such as Monte-
Carlo simulation (MCS) method [10], the first and second
order reliability methods (FORM/SORM) [11], response sur-
face method (RSM) [12], and the stochastic response surface
method (SRSM) [13].

MCS is the most comprehensively used samplingmethod
but the required time and resources can be expensive due
to a tremendous number of repeated analyses, especially for
general structures with low failure probability. In order to
improve efficiencymaintaining simplicity, two recommended
approaches based on FORM to the failure probability cal-
culation are developed, the reliability index approach (RIA)
[14] and its inverse, the more efficient performance measure
approach (PMA) [15]. In Maute and Frangopol [5], a robust
formulation of RBTO based on the PMA has been presented
to account for uncertainties. A comparison study between
RIA and PMA has been summarized for RBTO formulation
[16], where the results clearly show that PMA has better
convergence and efficiency than RIA. In general, the FORM-
based RBTO approaches estimate the structure reliability (via
reliability index) within the topology optimization algorithm
and are referred to as nested-loop (or double-loop) methods.
However, empirical evidence suggests that such double-loop
approaches lead to substantially high computational cost and
weak convergence stability, especially involving virtual simu-
lationmodels (i.e., finite element models). To overcome these
difficulties, some authors proposed differentmethods to solve
RBTO problems seeking for simplification and efficiency
formulations. The so-called hybrid (or concurrent) RBTO
method has been proposed by Kharmanda and Olhoff [17],
where reliability analysis is decoupled fromoptimization pro-
cedures and carried out at the beginning of the optimization
loops, followed by equivalent DTO. Luo et al. [18] introduced
the fuzzy set theory into multiobjective topology optimiza-
tion, in which the uncertainties of the objection function
and constraints are described by using nonlinearmembership
functions. A reliability-based topology optimization method
using a nonprobabilistic multiellipsoid convex model has
been proposed by Luo et al. [19], where the model represents
uncertainty of bounded parameters. The theories of a single-
loop method for component reliability-based topology opti-
mization (CRBTO) and system reliability-based topology
optimization (SRBTO) have been developed by Silva et al.
[20] and by Nguyen et al. [21], respectively. The proposed
methodology is compatible with existing topology optimiza-
tion software and suitable for practical applications.

The available reliability analysis using FORM/SORM is
conveniently performed with known limit state function.
However, in many practical complex structures, the relation-
ship between output response and input date does not exist.
Therefore, several surrogate methods, such as the response
surface method (RSM) and the Kriging method, are used to
approximate the implicit limit state function by a surrogate
model. RBTO using standard response surface method has
been performed by Yoo et al. [22], where much fewer

experimental points are required compared to traditional
response surface method. A comparison study between the
standard response surface method and Kriging method can
be found in Eom et al. [23]. There are not many works
focusing on design of experiments (DOE), although it is a key
issue for surrogate methods implementation in RBTO.

In this paper, two RBTO methodologies are presented,
implemented on several numerical examples, including per-
formancemeasure approach (PMA) and sequential optimiza-
tion and reliability assessment (SORA). Topology optimiza-
tion method is solved by the solid isotropic microstructure
with penalty (SIMP) method. Reliability analysis is carried
out by FORM, where the limit state function is approximated
by the stochastic response surface method (SRSM). Design of
experiment (DOE) is generated by sparse grid design (SGD),
which was proven to be an effective and special discretization
technique. The proposed approaches are capable of solving a
wide range of problems, but the focus of this paper is to be
limited to minimum-volume optimization problems for a
detailed description. Monte-Carlo simulations are also per-
formed to verify the accuracy of the failure probabilities
computed by the proposed approach.

The paper is organized as follows. In Section 2, the basic
formulation of RBTO is presented, followed by the selected
methodologies including PMA and SORA. Descriptions of
the SRSM and SGD are briefly discussed in Sections 3 and 4,
respectively. The flowchart and procedure of PMA and
SORA are presented in Section 5. Numerical results and
discussion for RBTOmethodologies and DTO are illustrated
in Section 6. Finally, the conclusion of the paper is provided
in Section 7.

2. Reliability-Based Topology Optimization

In general, RBTO problems are formulated as follows:

min
𝜌

𝐶 (𝜌)

s.t. Pr [𝐺
𝑖
(𝜌,X) ≤ 0] ≤ 𝑃

𝑇

𝑓𝑖
𝑖 = 1, . . . , 𝑚

𝜌min ≤ 𝜌 ≤ 𝜌max,

(1)

where 𝜌 is the vector of design variables (i.e., the element
densities), defined as independent deterministic variables
with the upper bounds 𝜌max and lower bounds 𝜌min, X is the
vector of random variables (i.e., loads and material property)
with the realizations being noted x, 𝐶(⋅) is the objective
function, 𝐺

𝑖
(⋅), 𝑖 = 1, . . . , 𝑚, is the 𝑖th limit state function

or performance function, Pr[⋅] is the probability operator, 𝑃𝑇
𝑓𝑖

is the target failure probability for the 𝑖th constraint, and 𝑚

is the number of probabilistic constraints. To evaluate the
failure probability, the safe region is defined as 𝐺

𝑖
(𝜌,X) > 0,

the failure region as 𝐺
𝑖
(𝜌,X) < 0, and the limit state function

as 𝐺
𝑖
(𝜌,X) = 0. The failure probability for each constraint

may be obtained by evaluating the multidimensional integral
as follows:

𝑃
𝑓𝑖
= Pr [𝐺

𝑖
(𝜌,X) ≤ 0] = ∫ ⋅ ⋅ ⋅ ∫

𝐺𝑖(𝜌,X)≤0
𝑓X (x) 𝑑x, (2)
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where 𝑃
𝑓𝑖

is the failure probability and 𝑓X(x) is the joint
probability density function (PDF) of random variables X.
In practice, it is difficult and even impossible to compute
this integral exactly. In this paper, FORM is adopted for
reliability analysis because of its efficiency and simplicity.
The key concept of FORM is to find the most probable
point (MPP), which is defined as the point on the limit
state function closest to the origin in the normalized space
transformed from the physical space through the Rosenblatt
or the Nataf transformations. By FORM approximation, the
failure probability and the allowable failure probability are
evaluated by

𝑃
𝑇

𝑓𝑖
≈ Φ(−𝛽

𝑇

𝑖
) , 𝑃

𝑓𝑖
≈ Φ (−𝛽

𝑖
) , (3)

where Φ(⋅) is the standard cumulative distribution function
(CDF) and 𝛽

𝑇

𝑖
is the target reliability index for the 𝑖th

constraint and the reliability index𝛽 [24], which is a reliability
measurement defined as the distance between the MPP and
the origin. By applying the Rosenblatt or the Nataf transfor-
mations, random vector X is transformed to a vector of nor-
malized and independent Gaussian U (zero means and unit
variance), expressed as U = 𝑇(X) or X = 𝑇

−1
(U). Based on

the above transformation, the limit state function is corre-
spondingly defined as

𝐺
𝑖
(𝜌,X) = 𝐺

𝑖
(𝜌, 𝑇
−1
(U)) = 𝑔

𝑖
(𝜌,U) , (4)

where 𝑔
𝑖
is the 𝑖th limit state function in the normalized

space.

2.1. Performance Measure Approach (PMA) for RBTO. In this
paper, PMA is used as a reference comparison method for
SORA. By using PMA formulation, the RBTO is expressed
as

min
𝜌

𝐶 (𝜌)

s.t. 𝐺
𝑝

𝑖
(𝜌, x∗
𝑖
) ≥ 0 𝑖 = 1, . . . , 𝑚

𝜌min ≤ 𝜌 ≤ 𝜌max,

(5)

where 𝐺
𝑝

𝑖
is the target performance with respect to the 𝑖th

limit state function calculated at the MPP denoted as x∗
𝑖
in

physical space or u∗
𝑖
in normalized space, which can be found

by the inverse reliability analysis, given as

minu 𝑔
𝑖 (u)

s.t. ‖u‖ = 𝛽
𝑇

𝑖
.

(6)

As the inverse reliability analysis is an optimization pro-
cedure by itself, the RBTO is a typical double-loop strategy,
where the outer loop is an optimization problem in terms of
design variables 𝜌 and the inner loop for reliability analysis
in terms of random variables X.

2.2. Sequential Optimization and Reliability Assessment
(SORA) for RBTO. Initiated by Du and Chen [25], this

approach decouples the RBTO model into a series of cycles
of DTO and reliability analysis. In each cycle, DTO and reli-
ability analysis are decoupled from each other and reliability
analysis is only conducted after the DTO. SORA for RBTO
can be expressed as

min
𝜌

𝐶 (𝜌
𝑘
)

s.t. 𝐺
𝑖
(𝜌
𝑘
, x𝑘−1
𝑖

) ≥ 0 𝑖 = 1, . . . , 𝑚

𝜌min ≤ 𝜌
𝑘
≤ 𝜌max,

(7)

where 𝑘 indicates the end cycle of each deterministic topology
optimization and x𝑘−1

𝑖
is the MPP in physical space with

respect to the 𝑖th limit state in the (𝑘 − 1)th cycle, given by
the transformation of u∗(𝑘−1)

𝑖
. By the given current optimal

design 𝜌∗(𝑘), the next MPP u∗(𝑘)
𝑖

is obtained by the inverse
reliability analysis, defined as

minu 𝑔
𝑖
(𝜌
∗(𝑘)

, u)

s.t. ‖u‖ = 𝛽
𝑇

𝑖
.

(8)

The advantage of the SORA formulation is that the number
of reliability analyses will be significantly reduced as it is
equal to the number of cycles.The entire optimization process
is repeated until the deterministic topology optimization
becomes convergent and reliability requirements are satisfied.

3. Stochastic Response Surface Method

The stochastic response surface method (SRSM) is the most
widely used surrogate method in structural reliability analy-
sis, which can be viewed as a conceptual extension of classi-
cal deterministic response surface method [26]. The SRSM
approximates the true limit state function through series
expansions of standard random variables which is typically
a 𝑘th order Hermite orthogonal polynomial with undeter-
mined coefficients. Consider

𝑔 (u) = 𝑎
0
Γ
0
+

𝑑

∑

𝑖1=1

𝑎
𝑖1
Γ
1
(𝑢
𝑖1
)

+

𝑑

∑

𝑖1=1

𝑖1

∑

𝑖2=1

𝑎
𝑖1𝑖2

Γ
2
(𝑢
𝑖1
, 𝑢
𝑖2
)

+

𝑑

∑

𝑖1=1

𝑖1

∑

𝑖2=1

𝑖2

∑

𝑖3=1

𝑎
𝑖1𝑖2𝑖3

Γ
3
(𝑢
𝑖1
, 𝑢
𝑖2
, 𝑢
𝑖3
) + ⋅ ⋅ ⋅ ,

(9)

where {𝑢
𝑖
}
𝑖=1

∞ is a set of independent normalized random
variables, 𝑎

0
, 𝑎
𝑖1
, . . . are deterministic coefficients to be esti-

mated, 𝑔(u) is the approximated limit state function, and Γ
𝑖

are Hermite polynomials of degree 𝑝, given by

Γ
𝑝
(𝑢
𝑖1
, . . . , 𝑢

𝑖𝑝
) = (−1)

𝑝
𝑒
1/2u𝑇u 𝜕

𝑃

𝜕𝑢
𝑖1
⋅ ⋅ ⋅ 𝜕𝑢
𝑖𝑝

𝑒
−1/2u𝑇u, (10)
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where u is the vector of 𝑝 independent normal random
variables {𝑢

𝑖
}
𝑖=1

𝑝, which represent the input uncertainties.
Furthermore, the Hermite polynomials defined on {𝑢

𝑖
}
𝑖=1

𝑝

are orthogonal with respect to an inner product defined as
the expectation of the product of two random variables [13].
Thus,

𝐸 ⌊Γ
𝑝
Γ
𝑞
⌋ = 0 iff Γ

𝑝
̸= Γ
𝑞
. (11)

Applying the least square method, the coefficients b =

[𝑎
0
, 𝑎
𝑖1
, . . . , 𝑎

𝑖𝑝
] can be calculated by minimizing the square

of error expressed as follows:

min 𝐽 (b) = 󵄩󵄩󵄩󵄩g − Ab󵄩󵄩󵄩󵄩
2
, (12)

where g(u) is the corresponding real function evaluated at
a set of sampling points. The analytical solution can be
expressed as

b = (A𝑇A)
−1

Α
𝑇g, (13)

whereA is the matrix of bases at the sampling points, defined
as

A =

[
[
[
[

[

Γ
0
(𝑢
1
) Γ
1
(𝑢
1
) ⋅ ⋅ ⋅ Γ

𝑃
(𝑢
1
)

Γ
0
(𝑢
2
) Γ
1
(𝑢
2
) ⋅ ⋅ ⋅ Γ

𝑃
(𝑢
2
)

.

.

.
.
.
. d

.

.

.

Γ
0
(𝑢
𝑁
) Γ
1
(𝑢
𝑁
) ⋅ ⋅ ⋅ Γ

𝑃
(𝑢
𝑁
)

]
]
]
]

]

. (14)

Therefore, one key issue when applying SRSM for structural
reliability analysis is to choose a suitable design of experiment
to generate sampling points.

4. Sparse Gird Design

The sparse grid design is a special discretization technique,
which can be traced back to the Smolyak algorithm [27]. It
is based on hierarchical basis, a representation of a discrete
function space which is equivalent to the conventional nodal
basis, and a sparse tensor product construction [28].The one-
dimensional difference quadrature formula is defined as

Δ
1

𝑘
(𝑓) = (𝑄

1

𝑘
− 𝑄
1

𝑘−1
) (𝑓) , with 𝑄

1

0
(𝑓) = 0. (15)

Then, the Smolyak quadrature formula for 𝑑-dimensional
functions 𝑓 with level 𝑙 ∈ 𝑁 is given by

𝑄
𝑑

𝑙
(𝑓) = ∑

|k|≤𝑙+𝑑
(Δ
1

𝑘1
⊗ ⋅ ⋅ ⋅ ⊗ Δ

1

𝑘𝑑
) (𝑓) . (16)

Note that |k| denotes the summation of the multi-indices
(|k| = 𝑘

1
+ ⋅ ⋅ ⋅ + 𝑘

𝑑
). Alternatively, the above formula can

be written as

𝑄
𝑑

𝑙
(𝑓) = ∑

𝑙+1≤|k|≤𝑙+𝑑
(−1)
𝑙+𝑑−|k|

⋅ (
𝑑 − 1

𝑙 + 𝑑 − |k|) ⋅ (𝑄
1

𝑘1
⊗ ⋅ ⋅ ⋅ ⊗ 𝑄

1

𝑘𝑑
) (𝑓) .

(17)

To compute 𝑄
𝑑

𝑙
(𝑓), specific tensor product rules of sparse

grid are needed, defined as

𝑈
𝑑

𝑙
= ⋃

𝑙+1≤|k|≤𝑙+𝑑
(𝑈
1

𝑘1
⊗ ⋅ ⋅ ⋅ ⊗ 𝑈

1

𝑘𝑑
) , (18)

where 𝑈
𝑖

1
denote the one-dimension support nodes, which

can be obtained by univariate quadrature algorithms, such as
Newton-Cotes, Gauss quadrature, andClenshaw-Curtis rules
[29].

In this paper, the Clenshaw-Curtis type sparse grid design
𝐻

CC is constructed, with equidistant nodes for polynomial
interpolation. Here, the 𝑢𝑖

𝑘
are defined as

𝑢
𝑖

𝑘
=
{

{

{

(𝑖 − 1)

(𝑚
𝑘
− 1)

for 𝑖 = 1, . . . , 𝑚
𝑘
, if 𝑚

𝑘
> 1

0.5 for 𝑖 = 1, if 𝑚
𝑘
= 1,

(19)

where

𝑚
𝑘
= {

1 if 𝑘 = 1

2
𝑘−1

+ 1 if 𝑘 > 1.
(20)

Figure 1 illustrates the grids 𝐻CC obtained using the Clen-
shaw-Curtis rule of dimensions 𝑑 = 2 and 𝑑 = 3 with level
𝑙 = 2.

5. Flowchart and Procedure of RBTO

The flowcharts of the RBTO/PMA and RBTO/SORA meth-
ods are provided in Figure 2. For example, the strategy of
SORA contains two parts: “equivalent” deterministic opti-
mization and independent reliability analysis. At first, the
topology optimization problem is formulated based on SIMP
method and solved by using the method of moving asymp-
totes (MMA) with standard settings [30]. To ensure manu-
facturability andmesh independence, the mesh-independent
density filtering is applied to eliminate the appearance of
numerical instabilities [31]. Then, the reliability analysis is
implemented at the deterministic optimum solution to locate
the MPP that satisfies the desired target reliability index,
where the SRSM approximates the true limit state function by
regression analysis of the least squaremethod, combinedwith
SGM adopted to generate the experimental sample points
based on random variables. The new deterministic optimiza-
tion model is constructed based on the MPP while the stop
criterion is not satisfied.Next procedure cycle is running until
the stopping criterion is convergent.

6. Numerical Examples

6.1. The MBB Beam. In the first example, consider the pop-
ular MBB beam depicted in Figure 3. The dimensions of the
beam are 𝐿 = 90mm and 𝐻 = 30mm and the thickness is
𝑡 = 1mm.Young’smodulus𝐸

0
= 2.10×10

5MPaandPoisson’s
ratio V = 0.30 are assumed. An external load 𝐹 = 100N is
applied. Design domain is discretized by 2700 (90 × 30) four-
node bilinear finite elements. Random variables are chosen
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Figure 1: The Clenshaw-Curtis type sparse grid design.

Table 1: Comparison of topology optimization design results.

Approach Volume/volume fraction (mm2)/% Reliability index (𝛽) Computing time (s) Design point
𝐸
0
/MPa F/N

DTO 1047.19/38.78 — 314.74 — —
PMA 1351.48/50.05 3.002 1655.11 1.59 × 105 117.68
SORA 1351.48/50.05 3.002 493.58 1.59 × 105 117.68

as Young’s modulus 𝐸
0
and external load 𝐹. Each variable

is assumed to be normally distributed and has 10% standard
deviation of the mean value.

RBTO problems are formulated as follows:

min
𝜌

𝑉

s.t. Pr [𝐺 (𝜌,X) ≤ 0] ≤ 𝑃
𝑇

𝑓
= 0.135%

𝜌min ≤ 𝜌 ≤ 𝜌max,

(21)

where 𝑉 is the volume and the limit state function is defined
as 𝐺 = 𝛿max − 𝛿. 𝛿 is the actual displacement and 𝛿max is the
allowable displacement assigned as 0.140mm.Theprobability
of constraint violation is less than 0.135%, which means that
the target reliability index is equal to 3.0.

The optimal topologies obtained by DTO and RBTO
approaches are presented in Figures 4 and 5, respectively.
The optimization results obtained from each approach are
summarized in Table 1, including volume/volume fraction,
reliability index, computing time, and design point.The relia-
bility index is calculated by 10,000 Monte-Carlo simulations.
And the coefficients of SRSM to construct limit state func-
tions at some iteration during PMA and SORA procedures
are given in Tables 2 and 3, respectively, where 𝑢

1
and 𝑢

2
are

the normalized values of Young’s modulus 𝐸
0
and applied

load 𝐹, respectively.

Table 2: Approximated limit state function constructed by SRSM in
PMA.

Iteration 𝑎
0

𝑎
1

𝑎
2

𝑎
3

𝑎
4

𝑎
5

1 −2.5006 0.3782 −0.3661 −0.0381 0.0381 −0.0004

2 −0.3879 0.1500 −0.1451 −0.0151 0.0151 −0.0001

3 0.2686 0.0790 −0.0765 −0.0080 0.0080 −0.0001

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

101 0.2484 0.0812 −0.0786 −0.0082 0.0082 −0.0001

102 0.2484 0.0812 −0.0786 −0.0082 0.0082 −0.0001

103 0.2484 0.0812 −0.0786 −0.0082 0.0082 −0.0001

Approximated limit state function: 𝑔(u) = 𝑎0 + 𝑎1𝑢1 + 𝑎2𝑢2 + 𝑎3(𝑢12 − 1) +
𝑎4𝑢1𝑢2 + 𝑎5(𝑢2

2
− 1).

Table 3: Approximated limit state function constructed by SRSM in
SORA.

Iteration 𝑎
0

𝑎
1

𝑎
2

𝑎
3

𝑎
4

𝑎
5

1 −0.0102 0.1092 −0.1057 −0.0110 0.0110 −0.0001
2 0.2484 0.0812 −0.0786 −0.0082 0.0082 −0.0001

From the comparison of the results, the optimal solutions
obtained by RBTOs have different topologies from those
obtained by DTO with the application of SRSM with SGD in
reliability analysis, as shown in Figures 4 and 5. As the results
listed in Table 1 show, RBTOs usemorematerial thanDTOby
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Figure 2: The flowchart of RBTO.
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Table 4: Comparison of topology optimization design results.

Approach Volume/volume fraction (mm2)/% Reliability index (𝛽) Computing time (s) Design point
𝐸
0
/MPa 𝐹

𝑥
/N 𝐹

𝑦
/N

DTO 918.59/25.52 — 971.31 — — —
PMA 1345.49/37.37 3.003 8266.06 5.62 × 104 171.53 116.15
SORA 1345.49/37.37 3.003 2296.5 5.62 × 104 171.53 116.15

Table 5: Approximated limit state function constructed by SRSM in PMA.

Iteration 𝑎
0

𝑎
1

𝑎
2

𝑎
3

𝑎
4

𝑎
5

𝑎
6

𝑎
7

𝑎
8

𝑎
9

1 −1.9135 0.3228 −0.2885 −0.3034 −0.0326 0.0306 −0.0144 0.0000 −0.0152 0.0322
2 −0.2137 0.1345 −0.1099 −0.1366 −0.0136 0.0117 −0.0055 0.0000 −0.0068 0.0145
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

170 0.3517 0.0718 −0.0624 −0.0693 −0.0073 0.0066 −0.0031 −0.0000 −0.0035 0.0073
171 0.3517 0.0718 −0.0624 −0.0693 −0.0073 0.0066 −0.0031 −0.0000 −0.0035 0.0073
Approximated limit state function: 𝑔(u) = a0 + a1u1 + a2u2 + a3u3 + a4(𝑢12 − 1) + a5u1u2 + a6(𝑢22 − 1) + a7u2u3 + a8(𝑢32 − 1) + a9u1u3.

F

L

H

Figure 3: The design domain of the MBB beam.

Figure 4: Resulting topology of DTO.

11.27%, improving the reliability index up to 3.002. It can also
be seen from the results listed in Table 1 that SORA seems to
be more efficient than PMA, with the evidence in computing
time and the number of reliability analyses, as presented in
Tables 1, 2, and 3.

6.2. The Loaded Knee Structure. Next, the loaded knee struc-
tures with multiple load cases are depicted in Figure 6. The
dimensions of the structure are 𝐿 = 60mm and the thickness
is 𝑡 = 1mm. Young’s modulus 𝐸

0
= 7.10 × 10

4MPa and
Poisson’s ratio V = 0.33 are assumed. Two external load cases,
𝐹
𝑥
= 150N and 𝐹

𝑦
= 100N, are applied on the midpoint

of the right edge, respectively. Design domain is discretized
by 3600 (60 × 60) four-node elements. Random variables are
chosen as Young’s modulus 𝐸

0
and external loads 𝐹

𝑥
and 𝐹

𝑦
.

Each variable is assumed to be normally distributed and has

10% standard deviation of the mean value. It should be noted
that sampling points generated by SGD are extended to three
dimensions in this example.

In this example, the objective function is volume, and the
limit state function is defined as 𝐺 = 𝑐max − 𝑐. 𝑐 is the sum of
compliance for the two load cases, and 𝑐max is the allowable
compliance and is assigned to 40N⋅mm.The target reliability
index is set to 3.0.

The optimal topologies obtained by DTO and RBTO
approaches are presented in Figures 7 and 8, respectively.
The optimization results obtained from each approach are
summarized in Table 4, including volume/volume fraction,
reliability index, computing time, and design point. The reli-
ability index is calculated by Monte-Carlo simulations. And
the coefficients of SRSM to construct limit state functions
at some iteration during PMA and SORA procedures are
given in Tables 5 and 6, respectively, where 𝑢

1
and 𝑢

2
are the

normalized values of Young’s modulus 𝐸
0
and applied loads

𝐹
𝑥
and 𝐹

𝑦
, respectively.

From the comparison of the results, the application of
SRSM with SGD in RBTO enables different topologies from
that obtained by DTO, as shown in Figures 7 and 8. RBTOs
use more material by 11.85% than DTO, corresponding with
the reliability index rising to 3.003, as the results listed
in Table 4. It can also be seen from the results listed in
Table 4 that there is practically no difference in the optimum
volume obtained by SORA and PMA. However, the number
of reliability analyses for SORA significantly reduces to 3,
compared with that for PMA which rises to 171. Based on the
result, it also concluded that SRSM has good performance in
reliability analysis and that SGD is able to generate reasonable
sampling points.

6.3. Heat Conduction Problem. Here, the extended heat
conduction problem is considered, as shown in Figure 9.The
dimensions of the structure are 𝐿 = 80mm and the thickness
is 𝑡 = 1mm.The thermal conductivity 𝑘

0
= 0.4W/(mm⋅K) is
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(a) (b)

Figure 5: Resulting topologies of RBTO: (a) PMA; (b) SORA.

L

Fx

Fy

L/2

L/2L/2
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Figure 6: Design domain of the loaded knee structure.

Figure 7: Resulting topology of DTO.

Table 6: Approximated limit state function constructed by SRSM in SORA.

Iteration 𝑎
0

𝑎
1

𝑎
2

𝑎
3

𝑎
4

𝑎
5

𝑎
6

𝑎
7

𝑎
8

𝑎
9

1 −0.0199 0.1130 −0.0971 −0.1101 −0.0114 0.0103 −0.0048 −0.0000 −0.0055 0.0117
2 0.3531 0.0717 −0.0623 −0.0691 −0.0072 0.0066 −0.0031 0.0000 −0.0035 0.0073
3 0.3517 0.0718 −0.0624 −0.0693 −0.0073 0.0066 −0.0031 −0.0000 −0.0035 0.0073
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(a) (b)

Figure 8: Resulting topologies of RBTO: (a) PMA; (b) SORA.

Distributed heatingT = 0 L

L

Figure 9: Design domain of the loaded knee structure.

assumed. The square plate is evenly heated by constant heat
source 𝑄 = 0.001W/mm2 and the temperature of the center
of the left edge is set to 0. Design domain is discretized by
6400 (80 × 80) four-node elements. Random variables are
chosen as thermal conductivity 𝑘

0
and constant heat source

𝑄. Each variable is assumed to be normally distributed and
has 10% standard deviation of the mean value.

In this example, the objective function is volume, and the
limit state function is defined as 𝐺 = 𝜑max − 𝜑. 𝜑 is the
dissipation of heat transport potential capacity, and 𝜑max is
the allowable dissipation of heat transport potential capacity
and is assigned to 500W. The target reliability index is set to
3.0.

The optimal topologies and temperature contours
obtained by DTO and RBTOs are presented in Figures 10 and
11, respectively. The optimization results obtained from each
approach are summarized in Table 7, including volume/vol-
ume fraction, reliability index, computing time, and design

point. The reliability index is calculated by Monte-Carlo
simulations. And the coefficients of SRSM to construct limit
state functions at some iteration during PMA and SORA
procedures are given in Tables 8 and 9, respectively, where
𝑢
1
and 𝑢

2
are the normalized values of thermal conductivity

𝑘
0
and constant heat source 𝑄, respectively.
It can be found that the application of SRSM with SGD

in RBTO also has well-behaved heat conduction problem.
From the comparison of the results, the optimal solutions
obtained by RBTO have different topologies from those
obtained by DTO, as shown in Figure 10. As the results listed
in Table 7 show, RBTOs use more material than DTO by
6.84%, improving the reliability index by up to 3.003. It
can also be seen from the results listed in Table 7 that the
optimum volume obtained by SORA and PMA is identical.
However, SORA seems to be more efficient than PMA, as
the number of reliability analyses significantly reduces, as
presented in Tables 8 and 9.
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(a) (b)

(c)

Figure 10: Resulting topologies: (a) DTO; (b) PMA; (c) SORA.

Table 7: Comparison of topology optimization design results.

Approach Volume/volume fraction (mm2)/% Reliability index (𝛽) Computing time (s) Design point
𝑘
0
/W/(mm⋅K) 𝑄/W/mm2

DTO 1112.7409/17.39 — 144.75 — —
PMA 1551.0111/24.23 3.003 2697.55 0.332 1.25 × 10−3

SORA 1551.0111/24.23 3.003 400.45 0.332 1.25 × 10−3

Table 8: Approximated limit state function constructed by SRSM in PMA.

Iteration 𝑎
0

𝑎
1

𝑎
2

𝑎
3

𝑎
4

𝑎
5

1 −0.6505 0.1861 −0.3425 −0.0188 0.0356 −0.0174
2 −0.1788 0.1329 −0.2446 −0.0134 0.0254 −0.0124
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

203 0.3762 0.0703 −0.1294 −0.0071 0.0135 −0.0066
204 0.3762 0.0703 −0.1294 −0.0071 0.0135 −0.0066
Approximated limit state function: 𝑔(u) = a0 + a1u1 + a2u2 + a3(𝑢12 − 1) + a4u1u2 + a5(𝑢22 − 1).
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Figure 11: Resulting temperature contour: (a) DTO; (b) PMA; (c) SORA.

Table 9: Approximated limit state function constructed by SRSM in
PMA.

Iteration 𝑎
0

𝑎
1

𝑎
2

𝑎
3

𝑎
4

𝑎
5

1 −0.0182 0.1148 −0.2113 −0.0116 0.0220 −0.0107
2 0.3762 0.0703 −0.1294 −0.0071 0.0135 −0.0066

7. Conclusion

This paper presents amathematical framework that integrates
the reliability concept into topology optimization to solve
RBTO problems under uncertainty. Typically, two RBTO
methodologies are implemented on several numerical exam-
ples including PMA and SORA. To enhance the computa-
tional efficiency, reliability analysis is carried out by SRSM
and SGD. From the comparison of the numerical results, the
following conclusions are obtained.

(1) SRSM with SGD can produce an efficient reliability
analysis in RBTO, where the limit state function
is approximated by SRSM, combined with SGD to
generate the reasonable sampling points.

(2) The optimal solutions of RBTO are more reliable
than those obtained by DTO, where more material is
used and different topologies may be obtained. SORA
seems to be more efficient than PMA, as the number
of reliability analyses significantly reduces.

(3) It should be noticed that the computation cost of
RBTO is still a challenge, because repeated reliability
analysis is required for different sets of variables, espe-
cially when involving complex practical structures.
One possible extension is integrating more efficient
surrogatemodels and reasonable DOE to improve the
numerical efficiency of reliability analysis.
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