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Anomaly detection is critical for intelligent vehicle (IV) collaboration. Forming clusters/platoons, IVs can work together to
accomplish complex jobs that they are unable to perform individually. To improve security and efficiency of Internet of Vehicles,
IVs’ anomaly detection has been extensively studied and a number of trust-based approaches have been proposed. However, most
of these proposals either pay little attention to leader-based detection algorithm or ignore the utility of networked Roadside-
Units (RSUs). In this paper, we introduce a trust-based anomaly detection scheme for IVs, where some malicious or incapable
vehicles are existing on roads. The proposed scheme works by allowing IVs to detect abnormal vehicles, communicate with each
other, and finally converge to some trustworthy cluster heads (CHs). Periodically, the CHs take responsibility for intracluster trust
management. Moreover, the scheme is enhanced with a distributed supervising mechanism and a central reputation arbitrator to
assure robustness and fairness in detecting process.The simulation results show that our scheme can achieve a low detection failure
rate below 1%, demonstrating its ability to detect and filter the abnormal vehicles.

1. Introduction

Internet of Vehicles (IoV) is an open converged network
system supporting human-vehicles-environment coopera-
tion [1]. Fusing multiple advanced terms, such as VANET
[2], autonomous driving [3], cloud computing [4], and
multiagent system (MAS) [5], this hybrid concept plays
a fundamental role towards a cooperative and effective
intelligent transport system. An anomaly detection scheme
is desirable in an environment filled up with uncertainty.
Primarily, the security problem is motivated by the question
[6] “How can I trust the information content I receive?”
This issue is then decomposed into two subterms: “Is the
communication channel via which I receive messages from
a sender secure?” and “How can I trust the sender of the
messages I receive?” The decomposition allows us to tell the
difference between computational trust and behavioral trust.
Being a complementary part of computational trust (such as
encryption and tamper-proofing), the model of behavioral
trust admits information’s imperfection in an open system;
therefore, individuals need extra trust-related information in

decision-making [7]. Extra trust-related information could
be extracted from history reputation or could be elicited
from interaction experience between two individuals. Being
capable of providing a measurement of trustworthiness,
behavioral-based trust management enables intelligent vehi-
cles to improve collaborations by reducing false or malicious
behaviors. Anomaly detection technology is the key method
to build behavioral trust.

This paper aims to detect anomaly vehicles in autono-
mous driving environment. As commercial IVs are drawing
near, we have to face the facts that vehicles aremore andmore
intelligent. Meanwhile, cyber vehicles are unprecedented and
vulnerable when supported by an uncertain and dynamic
network [8]. Malicious attacks and information tampering,
along with system failures, will directly threaten human lives
and properties. Anomaly vehicles include malicious vehicles
and incapable vehicles. Malicious vehicles are entities with
intentions to make damage in driving environment. Inca-
pable vehicles are not intentionally to give negative influence;
however, they may disturb order due to their limited capa-
bility. For example, an incapable intelligent vehicle could not
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behave properly in a rigid and accurate-ordered automatic
driving platoon but may behave well in a normal driving pat-
tern. On the other hand, amalicious intelligent vehicle should
be forbidden in any situation. To highlight our motivations,
we present the following two illustrative scenarios. Scenario
1: in cluster/platoon-based driving, IVs frequently communi-
cate with each other to maintain lateral/longitudinal control.
Vehicles with incapability or malicious intention may join
the cluster or platoon. Their malicious or false behaviors are
very likely to temper/disturb collaboration. In this safety-
oriented case, local vehicles should be able tomaintain robust
intracluster trust to wipe out unqualified vehicles. Scenario 2:
in efficiency-oriented case, where IVs need to collaborate in a
broad area, they exchange message to presence traffic condi-
tions, request parking plot information through VANET, and
even negotiate routes to prevent traffic congestions. None of
these three functions would be efficient without trustworthy
collaboration. The above two scenarios suggest that a trust
management scheme with anomaly detection is urgently
need.

Solutions on IoV’s anomaly detection still facemany chal-
lenges raised by mobility including dynamic vehicle groups,
real-time constraints, and intrinsic dynamic property of trust
itself, which makes single or static trust measurement inef-
fective. Considering the mobile nature of vehicles, topology
is changing so rapidly that preestablished trust relationships
are likely to be invalid. As a result, two nodes need to build up
trust in a timely fashion. Moreover, trust is not constant but
changing along with different driving situations. An accurate
trust should capture the context of interaction and history
reputation. For example, a car with good reputation may
not be trustworthy when it is over speed. Trust management
system therefore calls for the ability to synthesize multiple
resources, either from roads or from cloud. The essence of
Internet of Vehicles is to obtain more safety and efficiency
by integratingmultiple infrastructures, networks, and vehicle
intelligence. In accordance with this idea, we propose a
hybrid approach called Cluster-Based Anomaly Detection
(CAD). Figure 1 describes the framework of CAD. CAD
is composed of two big components, namely, cluster-based
trust component and central reputation component. Cluster-
based trust component builds time-fashioned trust to reflect
dynamic situation while central reputation component is to
evaluate one’s trust from a long-term perspective. These two
components interact by evidence uploading and reputation
providing. Cluster-based trust component has two major
functions, namely, trust-based AP clustering and mutual
supervision to maintain the robustness of dynamic trust.

The major contribution of this paper lies in the following
two aspects:

(i) We identify cluster-based trust and reputation as two
major components of anomaly detection. To exploit
cluster-based trust, we propose a cluster-based trust
evaluation algorithm, which modifies Affinity Prop-
agation Clustering to generate the most trustworthy
cluster head based on evaluation and communication.
The algorithm runs in a distributed manner and
shows robustness to malicious/incapable vehicles.

Trust-based 
AP clustering

Mutual supervision

Cluster-based trust

Central reputation

Evidence 
uploading

Reputation
providing

Figure 1: Framework of CAD.

(ii) We adopt a sparse RSU-enhanced reputation provi-
sion scheme. Central Arbitrator (CA) collects evi-
dences from sparse RSUs.Then, a reputation system is
established to evaluate global and history reputation
from accumulated data.

2. Related Work

Trust issues stem from secure and social psychology fields
and have been growing theoretically in organization man-
agement. More recently, as network technology is constantly
changing the way people interact, former stable and well-
structured organizations are likely to transform into another
paradigm featured by agile structures and ad hoc groups.
IoV, for example, is a typical agile structure that calls for
collaboration among agents. Ramchurn et al. [9] pointed
out that “trust pervades multiagent interaction at all levels,”
generally including (1) individual-level trust, whereby an
agent has some beliefs about the honesty or reciprocative
nature of its interaction partners, and (2) system-level trust,
whereby the agents in the system are forced to be trustworthy
by the rules of encounter that regulate the system. Although
various schemes have been investigated, the author noticed
that trust at these two levels has been dealt with separately
in most times. This insight inspired us to develop a hybrid
frameworkwhich takes both levels of trust into consideration.

Most existing systems in VANETs use distributed ap-
proach. Raya et al. [10] argue that the trust should be
attributed to data per se in ephemeral ad hoc networks and
proposed a framework for data-centric trust establishment.
Their scheme shows high resilience to attackers and could
converge to stable right decision. However, Raya’s trust
mechanism may make no contribution to reduce attackers
in system level; since there is no punishment for cheating,
attackers are seldom suppressed. Chen et al. [11] present
a decentralized framework combined with message prop-
agation and trust evaluation in VANET. Specifically, trust
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(2) Evaluation and iteration

(3) Generate trustworthy CH

(1) Initialize

(4) CH manages intracluster trust

Figure 2: Four steps of Peer Detecting-based trust establishment.

measurement consists of role-based trust and experience-
based trust. It is a good attempt to synthesize static priori trust
(role-based trust) with dynamic situational trust (experience-
based trust). Nonetheless, they did not take historical rep-
utation into consideration. Rostamzadeh et al. [12] focus
on trustworthy information dissemination by assigning trust
value to each road segment. The dissemination task is to find
a path which consists of a series of safe road segments. Their
work is featured by good scalability and thus potential in
many applications. DTM2 [13] is a distributed trust model
inspired by Job Market model. With the help of third party
hardware, system could incent good behaviors and punish
malicious behaviors by changing each vehicle’s signal value.
To conclude, the decentralized approach is developed under
the assumption that there is no centralized third party to
evaluate and maintain the trust value.

Recently, the RSU deployment is promoted by intelligent
transport system group. Centralized trust management is
not an ambiguous goal with the help of RSUs. Centralized
approach is able to evaluate trust value from a global and
historical view. Therefore, many works have preliminarily
emerged centralized trend as a complementary of distributed
system. Wang et al. [14] proposed a vertical handoff method,
which improves availability of network access. Their method
therefore makes contributions to building centralized trust
management system. Machado and Venkatasubramanian
[15] aim to aggregate advantages of both centralized and
distributed trust computation. The authors categorize the
messages exchanged in VANET into alerts and reports; alerts
are time-critical in response to an incident while reports
are evidence to evaluate quality of alerts. RSUs play Central
Authority (CA) who keep track of messages and accordingly
maintain a global reputation for each vehicle. Their central
grading system could efficiently distinguish dishonest nodes
in real-life scenarios. Huang et al. [16] utilize identity-based
cryptography to integrate entity-based trust and social trust
in proxy server.The email interactions among individuals are
mined to obtain social trust. Trust measurement should be

requested and acquired from this server. One disadvantage
of this system, as the author mentioned, is that service
may experience long delay due to network latency and
the management entities to mine the email source. Such
latency problem bothers centralized reputation system. The
author then proposes a situation-aware trust architecture for
VANETs [17]. A predictive trust setup system is designed to
reduce on-the-scene trust setup latency. They also envision
that the roadside infrastructure deserves more attention and
research.

3. Trust Establishment by Peer Detecting

In this section,we illustrate the establishment of cluster-based
trust. To establish trust among IVs, the key is to generate
the trustworthy CH. Cluster and its head are generated
after several rounds of iteration. The generated CH is an
authoritative node managing intracluster trust. One of the
cluster algorithms which works by passing messages between
nodes is Affinity Propagation (AP). To start, measures of
similarities are calculated for each pair; real-valued messages
are then exchanged between pairs of nodes until high quality
exemplars and corresponding clusters gradually emerge. The
schematic is shown in Figure 2.

AP works by passing messages between nodes, which is
naturally more suitable for trust establishment than other
clustering algorithms because of the following characteristics:
(1) transitivity: in trust theory, if 𝑛𝑜𝑑𝑒

𝐴
has no direct trust

with 𝑛𝑜𝑑𝑒
𝐶
, it could still build an indirect trust relation via

𝑛𝑜𝑑𝑒
𝐵
to 𝑛𝑜𝑑𝑒

𝐶
; likewise, in our AP, V𝑒ℎ𝑖𝑐𝑙𝑒

𝐴
makes a judge-

ment about V𝑒ℎ𝑖𝑐𝑙𝑒
𝐶
with the help of indirect judgement from

other nodes; the primitive AP clustering algorithm therefore
well-reflects transitivity,making it fit into trust establishment;
(2) asymmetry: trust is not symmetric; that 𝑛𝑜𝑑𝑒

𝐴
trusts

𝑛𝑜𝑑𝑒
𝐵
does not guarantee 𝑛𝑜𝑑𝑒

𝐵
trusts 𝑛𝑜𝑑𝑒

𝐴
. AP has the

ability to cluster by asymmetric “distance measurement”; (3)
distributed manner: AP runs in a completely distributed
manner, increasing robustness to attacks; (4) moreover, it
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achieves a much lower average squared error than normal
clustering method [18].

The AP algorithm works iteratively. The similarity 𝑠(𝑖, 𝑗)

is sent from 𝑛𝑜𝑑𝑒
𝑖
to 𝑛𝑜𝑑𝑒

𝑗
to measure “distance” between a

pair.The responsibility 𝑟(𝑖, 𝑗) is sent from 𝑛𝑜𝑑𝑒
𝑗
to 𝑛𝑜𝑑𝑒

𝑖
to tell

how eager 𝑖 wants 𝑗 to be CH. The availability 𝑎(𝑖, 𝑗) is sent
from 𝑛𝑜𝑑𝑒

𝑖
to 𝑛𝑜𝑑𝑒

𝑗
to tell how eager 𝑗 wants to be i’s CH.

The self-responsibility 𝑟(𝑖, 𝑖) and self-availability 𝑎(𝑖, 𝑖) both
represent accumulated evidence reflecting if 𝑖 is suitable to be
CH.Theupdating process for responsibility and availability in
every iteration procedure is illustrated below. More detailed
works are [18, 19], which have lain the foundation of ourwork.

Primitive AP Iteration Process is as follows:
𝑟 (𝑖, 𝑗) ←󳨀 𝑠 (𝑖, 𝑗) − max

𝑘 s.t.𝑘 ̸=𝑗

{𝑎 (𝑖, 𝑘) + 𝑠 (𝑖, 𝑘)} ,

𝑎 (𝑖, 𝑗) ←󳨀 min
{

{

{

0, 𝑟 (𝑗, 𝑗) + ∑
∀𝑘 ̸=𝑖,𝑗

max {0, 𝑟 (𝑘, 𝑗)}
}

}

}

,

𝑎 (𝑗, 𝑗) ←󳨀 ∑
𝑘 s.t.𝑘 ̸=𝑗

max {0, 𝑟 (𝑘, 𝑗)} .

(1)

To make real-valued message converge, messages are
damped by 𝜆, 𝑀𝑒𝑠𝑠𝑎𝑔𝑒

𝑛𝑒𝑤
= 𝜆𝑀𝑒𝑠𝑠𝑎𝑔𝑒

𝑜𝑙𝑑
+ (1 −

𝜆)𝑀𝑒𝑠𝑠𝑎𝑔𝑒
𝑛𝑒𝑤

, where 𝜆 is a weighing factor that ranges from
0 to 1. When messages converged, a CH is generated:

CH
𝑖
= max

𝑗

{𝑎 (𝑖, 𝑗) + 𝑟 (𝑖, 𝑗)} . (2)

3.1. UntrustDegree. Our proposed scheme uses the funda-
mental idea of Affinity Propagation from a trust perspective.
In general, AP could detect anomaly vehicles in a group. We
design anUntrustDegree function as “distance measurement”
for AP algorithm to find “the most trustworthy node,” that
is, to find the node which minimizes overall UntrustDegree.
The function 𝑈𝑛𝑡𝑟𝑢𝑠𝑡𝐷𝑒𝑔𝑟𝑒𝑒(𝑖, 𝑗) is automatically calculated
by IV. An IV can observe other vehicles’ behaviors and give
an UntrustDegree according to its knowledge:

𝑈𝑛𝑡𝑟𝑢𝑠𝑡𝐷𝑒𝑔𝑟𝑒𝑒 (𝑖, 𝑗)

= 𝐹
𝑖
(𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦,

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→
𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛,

󳨀󳨀󳨀󳨀󳨀󳨀󳨀→
𝐵𝑒ℎ𝑎V𝑖𝑜𝑟

𝑗
) ∈ [0, 1] .

(3)

Identity is one item from set 𝐼𝑑 = {𝑏𝑢𝑠, 𝑡𝑎𝑥𝑖, 𝑝𝑜𝑙𝑖𝑐𝑒,

𝑝𝑟𝑖V𝑎𝑡𝑒, . . .} denoting real identity of one car and could
be represented by a unique digital number. 󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→

𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛 is
a vector predefined as some basic values which gives
environmental context (e.g., the weather).

󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→
𝐵𝑒ℎ𝑎V𝑖𝑜𝑟

𝑗
is a

vector recording basic actions that 𝐼𝑉
𝑗
has done recently.

With the help of behavior detection technologies [20] or
interactive gaming [21], we reasonably assume that IVs
are intelligent enough to evaluate each other. The value,
𝑈𝑛𝑡𝑟𝑢𝑠𝑡𝐷𝑒𝑔𝑟𝑒𝑒(𝑖, 𝑗) ∈ [0, 1], is primarily positive but set
negative, namely, −𝑈𝑛𝑡𝑟𝑢𝑠𝑡𝐷𝑒𝑔𝑟𝑒𝑒(𝑖, 𝑗) ∈ [−1, 0], to fit AP
algorithm.

The self UntrustDegree,𝑈𝑛𝑡𝑟𝑢𝑠𝑡𝐷𝑒𝑔𝑟𝑒𝑒(𝑖, 𝑖), is initialized
to the same value. It should be noted that a higher self-
trust degree makes it more likely to become the cluster

Broadcast channel

?=

Primary calculation Supervising calculation 

Messages Messages 

IVi IVj

Result i
i Result j

i

Figure 3: Mutual supervisor model.

head. In our final model (discussed in Section 5.2), valid self-
trust is set at a value which balances IV’s evaluation and
historical reputation. Historical reputation can only be legally
announced by CA. When a group of IVs pass by a RSU, RSU
will proactively download/broadcast reputations to IVs.

3.2. Mutual Supervisor Model. Each 𝐼𝑉
𝑖
receives responsibil-

ity 𝑟(𝑖, 𝑗) from the neighborhood. Also, 𝐼𝑉
𝑖
broadcasts 𝑎(𝑖, 𝑗)

to the neighborhood to claim how suitable it is to become a
CH. However, a malicious/incapable node can cheat/mistake
in this message passing process by broadcasting a false 𝑎(𝑖, 𝑗).
For example, if 𝐼𝑉

𝑖
broadcasts very high 𝑎(𝑖, 𝑗) to other

nodes, it is more likely to be elected CH according to the AP
algorithm.We need a mechanism to prevent nodes broadcast
false availability or responsibility.

We proposed a supervisor model to alleviate cheat-
ing/mistaking in this process. The core of mutual supervisor
model is to match 𝐼𝑉

𝑖
with a supervisor 𝐼𝑉

𝑗
. Among moving

companions of one vehicle, a supervisor is another IV
which can receive almost the same broadcast information
by sharing the same wireless channel. A supervisor therefore
listens to the supervisee related message to validate availabil-
ity/responsibility by repeating the calculation of suspicious
𝐼𝑉

𝑖
. The result calculated by 𝐼𝑉

𝑖
itself is 𝑅𝑒𝑠𝑢𝑙𝑡𝑖

𝑖
. The supervi-

sor 𝐼𝑉
𝑗
’s calculation result for 𝐼𝑉

𝑖
is 𝑅𝑒𝑠𝑢𝑙𝑡

𝑗

𝑖
. If the two results

𝑅𝑒𝑠𝑢𝑙𝑡
𝑖

𝑖
and 𝑅𝑒𝑠𝑢𝑙𝑡

𝑗

𝑖
have large difference, then this means

𝐼𝑉
𝑖
is very likely to have cheated in message passing process.

The integral mechanism of supervisor model is illustrated in
Figure 3.

To assure a stable and honest supervisor, we apply
Algorithm 1. From this algorithm, we see that 𝐼𝑉

𝑖
has possi-

bility to supervise another 𝐼𝑉
𝑗
onlywhen (1) 𝐼𝑉

𝑖
does not tend

to believe 𝐼𝑉
𝑗
and (2) 𝐼𝑉

𝑖
and 𝐼𝑉

𝑗
have small relative mobility.

That is, they are stable driving companions. This mecha-
nism builds up mutual supervision relationship between two
adversary nodes so that supervisor and supervisee are not
likely to collude. More important, it can identify cheating
nodes in message passing process.
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Input: a supervisor 𝐼𝑉
𝑖
, nearby node’ states (position, speed)

Output: pair(supervisor, supervisee)
(1) For Node 𝐼𝑉

𝑗
in DSRC(Dedicated Short Range Communication) range

(2) 𝑀
𝑖,𝑗

= 𝑀𝑜𝑏𝑀𝑒𝑡𝑟((𝑃𝑜𝑠
𝑖
, 𝑃𝑜𝑠

𝑗
), (𝑆𝑝𝑒𝑒𝑑

𝑖
, 𝑆𝑝𝑒𝑒𝑑

𝑗
)) //calculate mobility metric

(3) If 𝐼𝑉
𝑗
has no supervisor and 𝑈𝑛𝑡𝑟𝑢𝑠𝑡𝐷𝑒𝑔𝑟𝑒𝑒(𝑖, 𝑗) ≤ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

(4) Then Add 𝐼𝑉
𝑗
in Supervisee Candidate List

(5) End For
(6) For 𝐼𝑉

𝑗
in Supervisee Candidate List

(7) If 𝑀
𝑖,𝑗

< 𝑀min Then 𝑘 = 𝑗 //find the most stable supervisee
(8) End For
(9) Returnmatched pair(𝐼𝑉

𝑖
, 𝐼𝑉

𝑘
) //𝑖 supervises 𝑘

Algorithm 1: Supervisor Matching algorithm.

Table 1: Neighbor and supervision field.

Neighbor field Supervision field
(𝑥, 𝑦)

𝑗
Position of 𝐼𝑉

𝑗 𝑎
󸀠
(𝑘, 𝑗) 𝐼𝑉

𝑘
’s last availability received from 𝐼𝑉

𝑗

(V
𝑥
, V

𝑦
)
𝑗

Speed of 𝐼𝑉
𝑗

𝑈𝑛𝑡𝑟𝑢𝑠𝑡𝐷𝑒𝑔𝑟𝑒𝑒 (𝑖, 𝑗) UntrustDegree from 𝐼𝑉
𝑖
to 𝐼𝑉

𝑗 𝑎
󸀠
(𝑗, 𝑘) 𝐼𝑉

𝑘
’s last availability sent to 𝐼𝑉

𝑗

𝑎(𝑖, 𝑗) Last availability received from 𝐼𝑉
𝑗

𝑎(𝑗, 𝑖) Last availability sent to 𝐼𝑉
𝑗 𝑟

󸀠
(𝑘, 𝑗) 𝐼𝑉

𝑘
’s last responsibility received from 𝐼𝑉

𝑗

𝑟(𝑖, 𝑗) Last responsibility received from 𝐼𝑉
𝑗

𝑟(𝑗, 𝑖) Last responsibility sent to 𝐼𝑉
𝑗

𝑟󸀠(𝑗, 𝑘) 𝐼𝑉
𝑘
’s last responsibility sent to 𝐼𝑉

𝑗𝐶𝐻
𝑐𝑛V𝑔,𝑗 Cluster head converge flag for 𝐼𝑉

𝑗

𝑆𝑈𝑃𝑉𝐸
𝑗

𝐼𝑉
𝑗
’s supervisee

The input of Algorithm 1 is IV’s state tuples (position,
speed). For 𝐼𝑉

𝑖
, running this algorithm will work out a

supervisee. For each 𝐼𝑉
𝑗
in DSRC range, 𝐼𝑉

𝑖
calculates

mobility metric 𝑀
𝑖,𝑗

(lines (1)-(2)); the smaller the metric
is, the more similar the two motions are. Thus, a small
metric indicates a stable driving companion. If any 𝐼𝑉

𝑗
has

no supervisor and 𝑈𝑛𝑡𝑟𝑢𝑠𝑡𝐷𝑒𝑔𝑟𝑒𝑒(𝑖, 𝑗) ≤ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (this
indicates that 𝑖 does not tend to trust 𝑗), 𝐼𝑉

𝑖
adds 𝐼𝑉

𝑗

in Supervisee Candidate List (Line (3)-(4)). After that, 𝐼𝑉
𝑖

chooses the most stable candidate (with the smallest mobility
metric) to be the supervisee (lines (6)–(8)). Finally, a pair
(𝐼𝑉

𝑖
, 𝐼𝑉

𝑗
) is returned (line (9)).

3.3. Generating CH by Message Passing. We try to use a
distributed algorithm to reach a consensus among large
amounts of opinions. Each 𝐼𝑉

𝑖
maintains a neighbor list 𝑁

𝑖
.

As Table 1 shows, the list consists of 𝑁
𝑗

𝑖
for each neighbor

𝐼𝑉
𝑗
. Additionally, 𝐼𝑉

𝑖
also maintains a supervision field for

a supervisee 𝐼𝑉
𝑘
.

Generating CH needs several iterations which are peri-
odically triggered by time. Besides, broadcasting and super-
vising also need a synchronous clock. Hello beacons are
broadcast and received to maintain local awareness.

Broadcast and Receive Hello Beacons Process is as follows:
(1) For every 𝑇

ℎ𝑒𝑙𝑙𝑜
, each 𝐼𝑉

𝑗
broadcast hello beacon is

⟨𝑗, (𝑥, 𝑦)
𝑗
, (V

𝑥
, V

𝑦
)
𝑗
, 𝐶𝐻

𝑗
, 𝑆𝑈𝑃𝑉𝐸

𝑗
⟩ . (4)

(2) Each receiving neighbor 𝐼𝑉
𝑖
calculates 𝑈𝑛𝑡𝑟𝑢𝑠𝑡𝐷𝑒-

𝑔𝑟𝑒𝑒(𝑖, 𝑗) if they are traveling in the same direction.
(3) 𝐼𝑉

𝑖
adds/updates 𝑁

𝑗

𝑖
in its neighbor list:

⟨𝑗, (𝑥, 𝑦)
𝑗
, (V

𝑥
, V

𝑦
)
𝑗
, 𝑈𝑛𝑡𝑟𝑢𝑠𝑡𝐷𝑒𝑔𝑟𝑒𝑒 (𝑖, 𝑗) , 𝐶𝐻

𝑗
,

𝑆𝑈𝑃𝑉𝐸
𝑗
⟩ .

(5)

Availability and responsibility messages should be broad-
cast periodically. We define this period as 𝑇

𝑚𝑒𝑠𝑠𝑎𝑔𝑒
. Each

𝐼𝑉
𝑖
will calculate 𝑎(𝑗, 𝑖) and 𝑟(𝑗, 𝑖) for each neighbor 𝐼𝑉

𝑗
.

This value is damped with the previous value stored in the
neighbor list. 𝐼𝑉

𝑗
then broadcasts 𝑎(𝑗, 𝑖) and 𝑟(𝑗, 𝑖) of all

neighbors 𝐼𝑉
𝑗
.

According to mutual supervisor model, the process of
calculating 𝑎(𝑗, 𝑖) and 𝑟(𝑗, 𝑖) should be supervised. Each IV
automatically chooses a supervisee by Supervisor Matching
algorithm. Supervisor checks supervisee’s calculation result
and releases alert on condition that supervisee’s message
is suspicious. The process enhanced by mutual supervisor
model is illustrated below.

Supervising and Message Passing Process. For every 𝑇
𝑚𝑒𝑠𝑠𝑎𝑔𝑒

,
each 𝐼𝑉

𝑖
will do the following:

(1) It will find a matching supervisee 𝐼𝑉
𝑘
which is

prepared for the next𝑇
𝑟𝑜𝑢𝑛𝑑

’s iteration. If found in this
𝑇
𝑚𝑒𝑠𝑠𝑎𝑔𝑒

, it is claimed by 𝑆𝑈𝑃𝑉𝐸
𝑗
. If failed, it will try

next 𝑇
𝑚𝑒𝑠𝑠𝑎𝑔𝑒

.
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(2) If it hears an alert about 𝐼𝑉
𝑛
, each 𝐼𝑉

𝑖
will ignore 𝐼𝑉

𝑛
’s

messages in this 𝑇
𝑟𝑜𝑢𝑛𝑑

.
(3) It will calculate responsibility 𝑟(𝑖, 𝑗) for each neighbor

𝐼𝑉
𝑗
.

(4) It will update with damping factor and store: 𝑟(𝑖, 𝑗) =

(1 − 𝜆)𝑟(𝑖, 𝑗)
𝑛𝑒𝑤

+ 𝜆𝑟(𝑖, 𝑗)
𝑜𝑙𝑑
.

(5) It will calculate availability 𝑎(𝑗, 𝑖) for each neighbor
𝐼𝑉

𝑗
.

(6) It will update with damping factor and store: 𝑎(𝑗, 𝑖) =

(1 − 𝜆)𝑎(𝑗, 𝑖)
𝑛𝑒𝑤

+ 𝜆𝑎(𝑗, 𝑖)
𝑜𝑙𝑑
.

(7) It will determine if itself is converged to CH: if 𝑟(𝑖, 𝑖)+
𝑎(𝑖, 𝑖) > 0, then set 𝐶𝐻

𝑐𝑛V𝑔,𝑗.
(8) It will broadcast Responsibility and Availability array,

𝑟(𝑖, 𝑗) and 𝑎(𝑗, 𝑖).
(9) It will supervise 𝐼𝑉

𝑘
: 𝐼𝑉

𝑖
updates and calculates

𝑟󸀠(𝑗, 𝑘) and 𝑎󸀠(𝑗, 𝑘) for 𝐼𝑉
𝑘
.

(10) 𝐼𝑉
𝑖
listens to I𝑉

𝑘
’s messages: 𝑟(𝑘, 𝑗) and 𝑎(𝑗, 𝑘); if

|𝑟(𝑘, 𝑗) − 𝑟󸀠(𝑘, 𝑗)| > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 or |𝑎(𝑘, 𝑗) − 𝑎󸀠(𝑘, 𝑗)| >

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, then it will broadcast alert about 𝐼𝑉
𝑘
.

𝑇
𝑚𝑒𝑠𝑠𝑎𝑔𝑒

must be small enough to allow algorithm con-
verged within a 𝑇

𝑟𝑜𝑢𝑛𝑑
. We have injected a supervision

mechanism into clustering process. Any node that broadcasts
false availability and responsibility would very likely be
discovered. The punishment to malicious nodes is twofold:
first, its message would be ignored by neighbors through
alert; second, a malicious behavior would be reported to CA.

In any 𝑟𝑜𝑢𝑛𝑑
𝑟
, there is a 𝐶𝐻

𝑟−1
generated from 𝑟𝑜𝑢𝑛𝑑

𝑟−1
.

𝐶𝐻
𝑟−1

will claim its role and broadcast Final Message, which
represents CH’s final evaluation to each cluster member 𝑉𝐼

𝑖
:

𝐹𝑖𝑛𝑎𝑙𝑀𝑒𝑠𝑠𝑎𝑔𝑒 = {𝑈𝑛𝑡𝑟𝑢𝑠𝑡𝐷𝑒𝑔𝑟𝑒𝑒 (𝐶𝐻
𝑟−1

, 𝑖)} . (6)

FinalMessage is trustworthy since it is sent from CH,
which is elected as “the most trustworthy node” by all group
members. Built upon FinalMessage, intracluster trust man-
agement is relatively reliable to support IVs’ collaborations.

4. Degrading Anomaly by Evidence Evaluation

Reputation-based method has been widely used in web
service [22, 23] and cloud computing [24] to enhance system
reliability and robustness. We believe this method could also
improve system performance in Internet of Vehicles. In this
scenario, IVs will observe and evaluate qualities of each other.
Moreover, they form evidences and report them to CA. CA
is supported by strong storage and computational resources,
thus being capable of computing reputation from a global
view. A global reputation is valuable for on-the-road IVs to
choose potential collaborators. More importantly, reputation
can be increased or degraded, as a system-level enforcement,
to incent good behaviors as well as to punish bad ones.

IVs leverage “store-upload” mechanism in delivering
evidences to a CA. Since RSUs are sparsely deployed, each IV
would store evidences in its storage firstly and then upload
them when moving into a RSU’s service range. Evidence
evaluation lies in the core of reputation. CA is able to make

a conclusion on certain behavior by evaluating and merging
different pieces of evidences from different individuals. Note
that not all evidences are consistent, and not all evidences
are trustworthy. For instance, in order to disturb reputation
system, a malicious node may report false evidences.

To mathematically model evidence evaluation, assume
CAhas to decide among several basic behaviors𝛽

𝑖
∈ Ω, based

on𝐾 pieces of evidences {𝑒
𝑗

𝑘
} to 𝐼𝑉

𝑗
which are uploaded from

different 𝑘 IVs. Let𝐵𝑗 denote the final judgement on behavior
type of 𝐼𝑉

𝑗
.The following threemethods are leveraged to get a

consensus evaluation, with the ability to filter false evidences.

(A) Majority Voting. The final evaluation accords with the
majority. Given counts of each type of observed behaviors,
𝑐𝑜𝑢𝑛𝑡

𝑖
, the behavior type of 𝑉𝐼

𝑗
is defined by

𝐵
𝑗
= 𝛽argmax(𝑐𝑜𝑢𝑛𝑡𝑖). (7)

(B) Weighted Voting. For each behavior, this method sums
up all the votes value supporting this behavior. The votes are
weighed by corresponding trust level 𝑟𝑖

𝑘
. Then, the type with

the highest value is final evaluation:

𝐵
𝑗
= 𝛽argmax((1/𝑐𝑜𝑢𝑛𝑡𝑖) ∑ 𝑟

𝑖

𝑘
)
. (8)

(C) Bayesian Inference. Among the data fusion techniques,
Bayesian Inference (BI) is themost popular one used for trust
building and managing. To use BI, the a priori probability
of each action 𝛽

𝑖
is firstly assigned. A posterior probability

of each action 𝛽
𝑖
is calculated given a set of evidences 𝑒 =

{𝑒
𝑗

1
, 𝑒
𝑗

2
, 𝑒
𝑗

3
, . . . , 𝑒

𝑗

𝑘
} using Bayes’ theorem. For 𝐼𝑉

𝑗
,

𝑃 [𝛽
𝑖
| 𝑒] =

𝑃 [𝛽
𝑖
] × ∏

𝐾

𝑘=1
𝑃 [𝑒

𝑗

𝑘
| 𝛽

𝑖
]

∑
𝐼

𝑙=1
(𝑃 [𝛽

𝑙
] × ∏

𝐾

𝑘=1
𝑃 [𝑒

𝑗

𝑘
| 𝛽

𝑙
])

. (9)

Final consensus is the actions type with the maximum
posterior probability:

𝐵
𝑗
= 𝛽argmax(𝑃[𝛽𝑖|𝑒]). (10)

Besides evidence evaluation, reputation evolution rule is
another critical issue. An effective reputation system requires
appropriate reputation evolving rules. We will discuss rules
in Section 5.1.

5. Performance and Analysis

To evaluate performance of our scheme, we ran an extensive
simulation in TransModeler with real map and high fidelity
data. We use a map of urban area of San Antonio, USA. We
feed realmacroscopic traffic data, which aremeasured in crit-
ical roads and sections, to reconstruct real traffic scenario.We
believe that macroscopic data could reflect traffic dynamic
to a high extent. We do not simulate the wireless medium
in this case since it is orthogonal to our evaluation. All
simulations were performed with approximately 400 vehicles
on a 6 miles’ expressway. Five RSUs are sparsely deployed
along the expressway as Figure 4. The DSRC range is set at
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Table 2: Three basic behaviors.

𝛽i Basic behavior type UntrustDegree Reputation change Example
𝛽
1

Life-critical events 0.9 Exponential degrade 27 (128) → 26 (64)

𝛽
2

Efficiency reduction events 0.5 Linear degrade 128 → 120

𝛽
3

Normality 0.1 No change 128 → 128

RSU1

RSU2

RSU3

RSU4

RSU5

0 0.15 0.3 0.45
(mi)

San Antonio

Figure 4: RSUs’ deployment.

300m. Each simulation ran for 600 s; however, only the last
400 s were used for performance metric calculations.

As noted earlier, an IV will be observed and evaluated by
neighbor IVs. We use the example with three Basic Behav-
iors in Table 2. Each behavior causes different interactive
trust. According to reputation evolution rules, one behavior
deserves change in reputation.

To depict complex malicious/inappropriate behaviors,
which are often mixed with different basic behaviors, we
simulate several behavior patterns in Table 3. An anomaly
node produces one behavior in every 𝑇

𝑟𝑜𝑢𝑛𝑑
. These patterns

are simplified to make simulation feasible. We believe they
could still well-reflect validity of our designed scheme.

5.1. The Effect of AP Algorithm. Ideally, AP clustering would
generate a CH for every on-the-road vehicle. However, a
small portion of vehicles, 𝑁

𝑙𝑒𝑓𝑡
, could be left alone when

iterations are finished. There are two major reasons for these
nodes: (1) the node could not find a converged CH candidate
in its neighborhood and (2) the node itself is the CH but
is the only member of cluster. Beside 𝑁

𝑙𝑒𝑓𝑡
, there are 𝑁

𝑖𝑛

nodes which form 𝑀 normal clusters. In anomaly node-free

Table 3: Five behavior patterns.

Scenario number Anomaly nodes behavior pattern
𝛽
1

𝛽
2

𝛽
3

1 100% 0 0
2 0 100% 0
3 50% 50% 0
4 30% 50% 20%
5 20% 30% 50%
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Figure 5: Effects of three merging techniques.

simulation, several results are shown in Table 2. Covered ratio
is a parameter describing how much the clustering results
could cover the whole participants:

𝐶𝑜V𝑒𝑟𝑅𝑎𝑡𝑖𝑜 =
𝑁
𝑖𝑛

𝑁
𝑖𝑛

+ 𝑁
𝑙𝑒𝑓𝑡

. (11)

In anomaly simulation, several results are shown in
Table 3. The simulations are ran several times so Figures 5,
6, 7, and 8 are averaged. A trade-off between Covered Ratio
andClusterMember Number could be found through Table 4.
The higher the Covered Ratio, the lower the Cluster Member
Number.

According to reference [18], Damping Factor is critical
for convergence. DifferentDamping Factors result in different
cluster outcomes. In general, a bigger Damping Factor leads
to a relatively higher Covered Ratio and a lower Cluster
Member Number. We recommend to set 𝜆 ∈ [0.6, 0.8] so
that algorithm tends to come out as an approximate but stable
solution.

Another important parameter not mentioned in [18]
is Iteration Cycle. Mathematically, the convergence of AP
clustering is only influenced by Damping Factor, because
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Table 4: The results of primary AP clustering.

Damping factor Iteration cycle DSRC range Average cover-ratio
Average
normal
cluster
number

Average
member
number

State

0.6 6 300m 85.8% 26.5 13.2 Underdamping
0.7 5 300m 38.9% 9.3 17.8 Underiteration
0.7 6 200m 91.5% 46.7 8.5 Ok
0.7 6 300m 94.3% 39.9 10.0 Ok
0.7 7 300m 95.5% 85.5 4.8 Overiteration
0.8 6 300m 74.3% 18.5 22.5 Overdamping
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Figure 6: Reputation evolution of four anomaly nodes.
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Figure 7: Percentage-Failure Rate curve.

the authors implicitly assume AP clustering could always
have enough time for iteration. However, we have modified
and applied this algorithm for anomaly detection where
the communicating topology is constantly changing. Thus,
the communication environment could not always provide
plenty of time for clustering. So Iteration Cycle should be
regarded as a critical parameter. If it is too short, clustering
process will not be able to produce enough CHs to cover
most nodes. On the other hand, if the cycle is too long,
over-iteration will generate too many CHs. To conclude,
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Figure 8: Percentage-Risk Degree curve.

modified AP clustering is oriented to real application other
than a pure math problem and several parameters should be
meticulously adjusted for real deployment, among which the
most important ones are Damping Factor and Iteration Cycle.

We use two metrics to measure effectiveness of modified
AP algorithm.

(1) Direct Influence. We define one Failure as an anomaly
node elected to be CH; Failure Rate is to measure direct
influence of one anomaly node, also called unsuccessful
anomaly detection rate:

𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑅𝑎𝑡𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟

𝑎𝑛𝑜𝑚𝑎𝑙𝑦-𝐶𝐻

𝑁𝑢𝑚𝑏𝑒𝑟
𝑎𝑛𝑜𝑚𝑎𝑙𝑦-𝑛𝑜𝑑𝑒

. (12)

(2) Indirect Influence. We define Risk Degree to feature how
much potential influence an anomaly 𝑉𝐼

𝑖
has when it is in

one cluster:

𝑅𝑖𝑠𝑘 𝐷𝑒𝑔𝑟𝑒𝑒 = (1 − 𝑈𝑛𝑡𝑟𝑢𝑠𝑡𝐷𝑒𝑔𝑟𝑒𝑒 (𝐶𝐻, 𝑖))

× 𝑁𝑢𝑚𝑏𝑒𝑟
𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑚𝑒𝑚𝑏𝑒𝑟𝑠

.
(13)

If an anomaly node becomes CH, UntrustDegree is 0;
otherwise, UntrustDegree is referred to CH’s Final Message,
which expresses CH’s opinion of each node. Risk Degree
could feature the indirect influence of an unqualified node
according to its role (CH or member) and UntrustDegree.
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Table 5: Prior distribution of behaviors and observed behaviors.

Observed Behavior
𝛽
1

𝛽
2

𝛽
3

𝛽
1 0.7 0.15 0.1

𝛽
2 0.2 0.7 0.1

𝛽
3 0.1 0.15 0.8

For example, if an unqualified is admitted into a 20-member
cluster, and CH’s final message claims its UntrustDegree is
0.5, then itsRisk Degree is 10. If it is admitted into a 5-member
cluster, Risk Degree is 2.5. The later risk is much smaller
because the anomaly node has fewer potential partners and
thus may have fewer threats.

5.2. Comparison of Four Models. Our performance evalu-
ation is based on four models: Primary AP model (PAP),
Tempering AP model (TAP), Tempering&Supervising AP
model (TSAP), and Converged AP model (CAP). PAP is
directly derived from AP clustering algorithm. TAP models
the clustering scenario where anomaly nodes could tem-
per/disturb message passing process. In short, TAP considers
tempering/disturb behaviors over PAP. To alleviate influence
of tempering/disturbing, TSAP model injects Mutual Super-
vision Model into PAP to identify anomaly nodes. Finally,
CAP is a converged model which enhanced TSAP with
historical reputation.

As a converged model, CAP combines historical reputa-
tion with real-time cluster-based trust. CA collects uploaded
evidences from on-road vehicles and uses three techniques
to fuse evidences: (1) Majority Voting, (2) Weighted Voting,
and (3) Bayesian Inference. For Bayesian Inference, the prior
distribution of behaviors and observed results are defined in
Table 5.

We assume that anomaly nodes use a random reporting
strategy, which means they generate evidences randomly
regardless of what other nodes really have done. Normal
nodes will always report true evidences. Figure 5 describes
the effects of different evidence merging techniques. In this
simulation, three techniques are almost equally effective.
However, MV and WV are more suitable for data merging
since they have less computation overhead. Figure 6 shows
four anomaly nodes’ reputation evolves in system. Anomaly
nodes would be distinguished and punished by CA.

In a process of iteration, IVs with larger values of Self-
UntrustDegree are more likely to be chosen as CH. These
values are “preferences.” In PAP/TAP/TSAP, 𝐼𝑉

𝑛
preference

is set as median of 𝑈𝑛𝑡𝑟𝑢𝑠𝑡𝐷𝑒𝑔𝑟𝑒𝑒(𝑖, 𝑛). However, in CAP
where historical reputation is considered by algorithm, 𝐼𝑉

𝑛
’s

preference is calculated by

𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
𝑛

= 𝑃𝑢𝑛𝑖𝑠ℎ𝐹𝑎𝑐𝑡𝑜𝑟
𝑛

× 𝑀𝑒𝑑𝑖𝑎𝑛 (𝑈𝑛𝑡𝑟𝑢𝑠𝑡𝐷𝑒𝑔𝑟𝑒𝑒 (𝑖, 𝑛)) .
(14)

When 𝐼𝑉
𝑛
’s reputation is low, 𝑃𝑢𝑛𝑖𝑠ℎ𝐹𝑎𝑐𝑡𝑜𝑟

𝑛
∈ [1, 2]

is big; preference therefore becomes small (preference is a
negative real number), indicating 𝐼𝑉

𝑛
is not suitable to beCH.

Figure 7 shows the comparison of four models. We set
unqualified node percentage as variable. We simulate with
different percentages ranges from [0, 0.25] because too high
percentage is not realistic.

Generally, when anomaly nodes percentage is low (≤5%),
Failure Rate is 0%. As percentage goes up, Failure Rate also
goes higher. TAP is a model with tempering/disturbing and
no supervision mechanism, so it performs worse than PAP
(no tempering/disturbing) and TSAP (tempering/disturbing,
supervision model). In contrast, CAP is a converged model
(tempering/disturbing, supervision model, and reputation)
with a strong defense to anomaly nodes, so it shows the
highest robustness among four models. Furthermore, either
model could limit failure rate below 1% even when anomaly
nodes percentage is up to 25%.

Risk Degree features how much potential influence an
anomaly node has when it is in one cluster. Figure 8 shows
the Anomaly Percentage-Risk Degree curve for four models.
Risk Degree is firstly low when Anomaly Node Percentage
is low. However, it suddenly goes to peak when Percentage
slightly increases. Finally, it stably declines with increasing
percentage. The explanation for this curve is as follows: (1)

when Percentage is very low (≤1%), tempering/disturbing is
few, and anomaly nodes therefore are easily distinguished
by normal nodes. As a result, anomaly nodes are very likely
to be left alone. That is, they are excluded from big clusters
by AP algorithm. So the overall Risk Degree is low. (2)

When Percentage goes higher but not that high (≤5%), this
percentage still indicates a “safe environment”; IVs tend to
form “big clusters.” However, with more anomaly nodes
percentage, more anomaly nodes have chances to join big
clusters bymore tempering/disturbing. According to formula
(13), even one anomaly node in a big cluster would cause
a big risk degree. (3) When Percentage increases over 5%,
our algorithms tend to be conservative and form “small
clusters,” which have fewer cluster members. Fewermembers
render lower Risk Degree. According to Figure 8, CAP could
limit Risk Degree under 4, demonstrating that our trust
management is effective on risk control.

6. Conclusion and Future Work

Our system aims to build a trustworthy platform to detect
abnormal vehicles. To this end, we modified Affinity Propa-
gation to elect a most trustworthy node, called cluster head,
among vehicles. CH maintains trust management during
a period until a new CH is elected. We also considered
that AP is executed in a distributed manner thus easily
tempered by malicious nodes. So we presented a mutual
supervision model to tackle tempering behaviors. Lastly,
we blend another component, CA, into our system. CA
consisted of servers and sparse RSUs and is able to provide
historical reputation for better decision-making. Overall, this
trust management system could detect and filter anomaly
nodes.

In the future, great efforts are needed on both the in-
vehicular system and RSUs to strengthen our secure sys-
tem. These efforts include deploying mobile and local CA
using cloud computing techniques, improving intelligence of
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mutual trust evaluation, and reducing overhead of detection
process.
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