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This paper presents a method using multiobjective particle swarm optimization (PSO) approach to improve the consistency matrix
in analytic hierarchy process (AHP), called PSOMOF.The purpose of this method is to optimize two objectives which conflict each
other, while improving the consistency matrix.They are minimizing consistent ratio (CR) and deviation matrix.This study focuses
on fuzzy preference matrix as one model comparison matrix in AHP. Some inconsistent matrices are repaired successfully to be
consistent by this method. This proposed method offers some alternative consistent matrices as solutions.

1. Introduction

One important issue in comparison matrix of AHP is the
consistency. Inmulticriteria decisionmaking (MCDM), deci-
sion makers (DMs) reveal their opinion to choose some
decision alternatives by a comparison matrix [1]. However,
the comparison matrix which is identified as inconsistent
cannot be used as a judgment. Meanwhile, the consistency
is hard to obtain, when evaluating a large number of criteria.

There are twomodels of a comparisonmatrix, multiplica-
tive preference relations [1] and fuzzy preference relations
[2, 3]. The element comparison matrix of multiplicative pref-
erence relation is stated as 𝑎

𝑖𝑗
which defines the dominance

of alternative 𝑖 over 𝑗, where 1 < 𝑎
𝑖𝑗

< 9 and 𝑎
𝑖𝑗

= 1/𝑎
𝑗𝑖
.

On fuzzy preference relations, element comparison matrix is
stated as 𝑎

𝑖𝑗
, which defines the preference of alternative 𝑖 over

𝑗, where 0 < 𝑎
𝑖𝑗

< 1 and 𝑎
𝑖𝑗

+ 𝑎
𝑗𝑖

= 1. This study focuses on
fuzzy preference relations.

The issues of consistency in fuzzy preference relation also
have received attention from researchers. Xu and Wang [4]
proposed a revised approach by using linear programming
models to generate the priority weights for additive interval

fuzzy preference relations. Xu and Chen [5] presented the
method to fulfill the element, which is incomplete on fuzzy
preference for group decision making based on additive
transitive consistency and accumulates the auxiliary value
into a group auxiliary relation.This research was extended by
Xu et al. [6], who deduced a function between the additive
transitivity fuzzy preference and its corresponding priority
vector. Xu et al. [7] proposed algorithm by eliminating the
cycles of length 3 to 𝑛 in the digraph of the incomplete
reciprocal preference relation and converted it to the one
with ordinal consistency. Liu et al. [8] proposed a method
to solve the incompleteness of fuzzy preference matrix and
also repair the inconsistency preference matrix. This method
calculated minimal of the squared error of the incomplete
fuzzy preference relation and its priority weight vector to
fulfill the missing values and generated the consistency fuzzy
preference such that the modified one is the closest to the
original one. Chen et al. [9] presented a method for group
decision making using incomplete fuzzy preference based
on additive consistency. Chiclana et al. [10] proposed a
functional equation to model the cardinal consistency in
the strength of preferences of reciprocal preference relations.
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Xia et al. [11] improved the consistency by using the geo-
metric consistency index in complete and incomplete fuzzy
preference.

A research using swarm intelligence was also used to
solve the inconsistent comparison matrix such as PSO which
combines Taguchi method [12]. It improved the previous
research using genetic algorithm [13] to solve the inconsistent
comparison matrix. Both researches used the same objective
function to solve the problem, that is, summing the CR and
deviation matrix. Although successful metaheuristic to solve
that problem, the variations of implemented metaheuristic,
is rarely conducted. Girsang et al. [14, 15] also already
implemented the ant colony optimization (ACO) approach in
our previous research to solve this problem with the different
objective function that uses Yang et al. [12] and Lin et al. [13].
In [14], besides repairing the inconsistent ratio, ACO is used
to enhance the minimal deviation matrix, while in [15] ACO
is used to enhance the minimal consistent ratio. It becomes
a promising research to consider both of the two objective
functions using swarm intelligence. Girsang et al. [16] also
implemented PSO with multiobjective approach; however,
it only focuses on repairing the multiplicative preference
matrix.

2. Related Work

2.1. Consistent Ratio in AHP. A simple illustration about
inconsistency is described as follows. The decision maker
(DM) has opinion that𝑋 is bigger than𝑌 and𝑌 is bigger than
𝑍. The consistent logic of this case is that 𝑋 should be bigger
than𝑍. Contrarily, it would be inconsistent if DM said that𝑍
is bigger than 𝑋. In AHP, the opinion of decision makers is
represented in a comparisonmatrix. An element comparison
matrix can reflect the subjective opinion that expose strength
of the preference and the feeling. In a fuzzy preferencematrix,
the element of comparison matrix,𝐴, can be expressed as 𝑎

𝑖𝑗
,

with a scale value (0 ⋅ ⋅ ⋅ 1) where 0 < 𝑎
𝑖𝑗

< 1, 𝑎
𝑖𝑗

+ 𝑎
𝑗𝑖

= 1,
and 𝑎

𝑖𝑖
= 0.5. Matrix 𝐴 as Fuzzy preference relation can be

depicted as follows:

𝐴 = (

0.5 1 − 𝑎
21

1 − 𝑎
31

1 − 𝑎
41

𝑎
21

0.5 1 − 𝑎
32

1 − 𝑎
42

𝑎
31

𝑎
32

0.5 1 − 𝑎
43

𝑎
41

𝑎
42

𝑎
43

0.5

) . (1)

To measure the multiplicative consistency in a compari-
son matrix, Saaty defined consistent ratio (CR). He proposed
that the threshold of CR inmultiplicative preferencematrixes
is 0.1. The CR is defined as

𝐴𝑊 = 𝜆max𝑊, (2)

CI =

𝜆max − 𝑛

𝑛 − 1

, (3)

CR =

CI
RI

, (4)

where 𝜆max and 𝑊 are the eigenvalue and eigenvector of
the matrix, respectively. Further, CI is the consistency index;

Table 1: Random consistency index (RI).

Number criteria 1 2 3 4 5 6 7 8 9
0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45

𝑛 represents number criteria or size matrix, and the RI
(random consistency index) is the average index of randomly
generated weights. The value of RI on each size matrices is
described in Table 1. A CR less than 0.1 can be categorized as
consistent matrix. Perfect consistency is obtained when the
maximum eigenvalue equal to the number criteria (𝜆max =

𝑛).
Herrera-Viedma et al. [17] proposed some definitions to

reveal the consistency in a fuzzy preference matrix. They
show that the additive consistency is more appropriate to
define the degree of consistency of fuzzy preference matrix.
The relation in matrix 𝐴 is consistent if the element matrix
can satisfy (5) and (6):

𝑎
𝑖𝑗

+ 𝑎
𝑗𝑘

+ 𝑎
𝑘𝑖

=

3

2

, ∀𝑖, 𝑗, 𝑘, (5)

where

𝑤
𝑖
=

∑
𝑛

𝑗=1
𝑎
𝑖𝑗

− 0.5

𝑛 (𝑛 − 1) /2

. (6)

Xu and Da [18] proposed determining the multiplicative
consistency in the fuzzy preference matrix. They used Xu’s
[19] approach to determine CI in multiplicative preference
matrix. Suppose 𝑏

𝑖𝑗
is the element of multiplicative of pref-

erence matrix. Xu [19] defined the CI in (7). This equation is
derived from (3). By knowing theweight of each criterion and
element of matrix, CI can be obtained:

CI =

1

𝑛 (𝑛 − 1)

∑

1≤𝑖≤𝑗≤𝑛

[𝑏
𝑖𝑗

⋅

𝑤
𝑗

𝑤
𝑖

+ 𝑏
𝑗𝑖

⋅

𝑤
𝑖

𝑤
𝑗

− 2] , (7)

where 𝑏
𝑖𝑗

is element matrix of multiplicative preference
matrix and 𝑤 = (𝑤

1
, 𝑤
2
, 𝑤
3
, . . . , 𝑤

𝑛
) is the weight of each

criterion. To determine the CI in a fuzzy preference matrix,
[4, 18] used convertingwith assumption 𝑏

𝑖𝑗
= 𝑎
𝑖𝑗
/𝑎
𝑗𝑖
, where 𝑎

𝑖𝑗

is element matrix of the fuzzy preference matrix. Therefore,
they proposed determining CI as in

CI =

1

𝑛 (𝑛 − 1)

∑

1≤𝑖≤𝑗≤𝑛

[

𝑎
𝑖𝑗

𝑎
𝑗𝑖

⋅

𝑤
𝑗

𝑤
𝑖

+

𝑎
𝑗𝑖

𝑎
𝑖𝑗

⋅

𝑤
𝑖

𝑤
𝑗

− 2] . (8)

2.2. Deviation Matrix. While the consistent ratio is repaired,
the modified matrix automatically generates the deviation
matrix from the original. Ideally, the modified matrices are
kept closer to their original matrices in order to maintain
the original judgment. It means that the deviation matrix is
enriched to beminimal.There are somemethods to represent
the deviation, such as difference index (Di) [13] and 𝛿 and 𝜎.
Difference index (Di) is defined as the real difference between
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the same gene values in two genotypes.The other deviation is
defined as 𝛿 and 𝜎, which is denoted as

𝛿 = max
𝑖,𝑗

{






𝑎


𝑖,𝑗
− 𝑎
𝑖,𝑗






} , (9)

𝜎 =

√∑
𝑛

𝑖=1
∑
𝑛

𝑗=1
(𝑎


𝑖,𝑗
− 𝑎
𝑖,𝑗

)

2

𝑛

,

(10)

where 𝐴 is the original matrix [𝑎
𝑖𝑗
]; 𝐴 is the modified matrix

[𝑎
𝑖,𝑗
], and 𝑛 is the matrix size.
In the multiplicative preference matrix, the difference

index (Di) is generally used to measure the distance between
two matrices. However, in fuzzy preference matrix, 𝛿 and 𝜎

are considered as more appropriate to represent the deviation
matrix. Since the value preference will be 0.51 to 1 or 0 to
0.49, the division each all genes in Di will not be different
significantly. As a consequence, the difference of twomatrices
will not be significant as well. Therefore, in this study, instead
of using Di, 𝜎 is employed to define the deviation matrix for
the preference fuzzy matrix.

2.3. Particle Swarm Optimization. PSO was firstly proposed
by Kennedy and Eberhart [20]. It is population-based
stochastic optimization on the social behaviors observed in
animals or insects such as bird flocking, fish schooling, and
animal herding. In PSO, each particle of swarm represents the
solution which moves to search the optimal solutions. Each
particle also broadcasts its current position to neighbour
particles. The position of each particle is adjusted according
to its velocity and the best position it has found so far. A
particle 𝑖 starts moving with a velocity 𝑉𝑖(𝑡 + 1) from its
current position 𝑋𝑖(𝑡), to the next position 𝑋𝑖(𝑡 + 1), as in
(11). The velocity is influenced by three factors: (a) previous
velocity 𝑉𝑖(𝑡), (b) the best previous particle position 𝑋𝑝(𝑡),
and (c) the best previous swarmparticle position𝑋𝑔(𝑡). It can
be stated as (12):

𝑋𝑖 (𝑡 + 1) = 𝑋𝑖 (𝑡) + 𝑉𝑖 (𝑡 + 1) (11)

𝑉𝑖 (𝑡 + 1) = (𝑤 ∗ 𝑉𝑖 (𝑡)) + (𝐶
1
∗ 𝑅
1
(𝑋𝑝 (𝑡) − 𝑋𝑖 (𝑡))

+ (𝐶
2
∗ 𝑅
2
(𝑋𝑔 (𝑡) − 𝑋𝑖 (𝑡))) ,

(12)

where 𝑤 is the weight to control the convergence of the
velocity, 𝐶

1
the acceleration weight cognitive element, 𝐶

2

the weight of social parameter, and 𝑅
1
and 𝑅

2
are random

numbers in the range [0, 1].

3. Proposed Method

3.1. PSOMOF Algorithm. In PSO, each particle seeks the
best position by moving in the search space. The position
in PSO can represent an element in the comparison matrix.
As shown in previous section, encoding position of element
matrix can be encoded only from lower triangular matrix. If
matrix 𝐴 is identified as an inconsistent matrix and needs
to be repaired, then the scale value of matrix should be
changed with new value. To be efficient, the whole elements

of comparison matrix can be represented by lower triangular
matrix.Therefore, the position of PSO that should be changed
can be represented only by the lower triangular matrix.
When changing the value of each node to be consistent, it
also changes the rate consistent ratio (CR) and deviation
matrix. We use 𝜎 to represent the deviation matrix in this
method. Changing the value of each node means changing
the particle’s position. In PSO, the position is affected by a
particles historical best position (local best) and the swarms’
best position (global best). The solution (new value position)
is performed to chase the consistent rate. However, as previ-
ously mentioned, there is no one solution which can achieve
CR and 𝜎 minimal at the same time. PSOMOF algorithm is
proposed by constructing the nondominated solutions which
depicts the relation between 𝜎 andCR. Algorithm 1 shows the
outline of PSOMOFalgorithm. In thismethod, there are three
steps in which each step uses PSO to get the result matrices:

(1) Minimize 𝜎 Step. Firstly, each particle (there are 200
particles) generates its position and its velocity ran-
domly. The position particle means that the particle
generates randomly the candidate for the modified
matrix. The element matrix can be represented only
by the lower triangularmatrix elements consecutively.
The velocity particle means that the particle generates
the value as adding/diminishing the position of the
particles. The initial position of each particle 𝑋𝑖(𝑡)

is set the same as the original position. The initial
velocity of each particle 𝑉𝑖(𝑡) is set randomly but
lower than 0.1. The best historical particle is defined
as 𝑋𝑝, and the best position for all particles is
defined as 𝑋𝑔. Initially, 𝑋𝑝 is taken from the first
position particle generated, while 𝑋𝑔 is taken from
the best position from the first position of all particles
generated. In the next iteration, based on the previous
velocity information, 𝑋𝑝, 𝑋𝑔, and some variables
(𝑤,𝐶
1
, 𝐶
2
, 𝑅
1
, 𝑅
2
), the velocity of each particle is

updated as described in (12). To set the value of
variables, some experiments are conducted and the
new position will be obtained based on the updated
velocity, as described in (11). The evaluation of the
fitness function is minimizing. However, if a particles
𝜎 is worse than before, or CR > 0.1, the update
will be cancelled. The result of this fitness function
also updates the new best historical position of each
particle (𝑋𝑝) and the new best position of all particles
as a group (𝑋𝑔). This process is repeated until the
iteration maximum is reached.

(2) Minimize CR Step. It is almost the same as step (1). If
step (1) minimizes 𝜎 as its fitness function, then step
(2) minimizes CR as its fitness function.

(3) Obtain a Set of Nondominated CR-𝜎 Solutions Step. It
is also the same as the process to minimize 𝜎. Yet the
process adds some various CRs, which are decreased
gradually until CRmin is reached.

3.2. Encoding and Fractioning of Original Element Matrix.
The encoding of matrix can be assembled by picking all
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Initialize ()
Minimize 𝜎 ()
For each particle generates the position and velocity randomly.

Xp ← the initial position // Xp is the particles best historical
Xg ← the initial position // Xg is the best of all particles
Repeat
Determine velocity using (12).
Update new position particle using (11).
Determine 𝜎 of new position using (10). If the new position has a lower 𝜎 and CR < 0.1 updated new position is allowed
otherwise, update new position is canceled and keeping the current position.
Choosing the new Xp and Xg based on value 𝜎

Until max iterations is reached
Get minimal 𝜎

Minimize CR ()
For each particle generates the position and velocity randomly.

Xp ← the initial position // Xp is the particles best historical
Xg ← the initial position // Xg is the best of all particles
Repeat
Determine velocity using (12).
Update new position particle using (11).
Determine CR of new position using (4). If the new position has a lower CR and CR < 0.1 updated new position is allowed
otherwise, update new position is canceled and keeping the current position.
Choosing the new Xp and Xg based on value CR

Until max iterations is reached
Get minimal CR

Minimize CR-𝜎 ()
CRo ← 0.1
Xp ← the initial position // Xp is the particles best historical
Xg ← the initial position // Xg is the best of all particles
While CRmin < CRo
Repeat
Determine velocity using (12).
Update new position particle using (11).
Determine CR of new position using (4). If the new position has a lower CR and CR < 0.1 updated new position is allowed
otherwise, update new position is canceled and keeping the current position.
Choosing the new Xp and Xg based on value CR

Until max iterations is reached
Store the modified matrix and its CR, 𝜎
CRo ← CRo − k // k is small value, in this study 𝑘 = 0.001

EndWhile
Get matrices with their CR, 𝜎

Algorithm 1: PSOMOF algorithm.

elements in matrix. However, because the elements of fuzzy
preferencematrix (FPM) have a relation such that 𝑎

𝑖𝑗
+𝑎
𝑗𝑖

= 1

and 𝑎
𝑖𝑖

= 0.5, encoding node can only encode the lower
triangular elements of the matrix as nodes:

𝐴 = (

0.5 0.6 0.4 0.8

0.4 0.5 0.3 0.7

0.6 0.7 0.5 0.9

0.2 0.3 0.1 0.5

)

Encode 𝐴 = 0.4 − 0.6 − 0.7 − 0.2 − 0.3 − 0.1.

(13)

Equation (13) showsmatrix𝐴with 𝑛 = 4 and its encoding
for FPMby picking row by row sequentially in the elements of
the lower triangularmatrix.The number element of encoding

𝐴 can be determined (𝑛
2
− 𝑛)/2. To obtain consistent matrix,

of course, the value of each elementmatrix should be changed
to a new value. The new values are chosen from the values
of several candidates. Candidates elements are generated
using the original fractioned value. If the original element is
more than 0.5, the candidates will be between 0.5 and 1; if
the original element is less than 0.5, the candidates will be
between 0 and 0.5; if the original element is 0.5 (neutral),
the candidate is still 0.5, or the original data should not
be fractioned. This approach makes the candidate element
not change the judgment tendency but will only change the
judgment weight.The number of candidate elements is based
on the fraction factor (𝜓). For example, if 𝜓 = 0.01, then the
number candidate will be 50(= (1 − 0.5)/0.01). Suppose that
matrix 𝐴, 𝑎

𝑟
is one of the original elements on node 𝑟, and 𝑛
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Table 2: The original element and its candidate with 𝜓 = 0.01.

Origin element Candidate element
0.5 0.5
0, 0.1, 0.2, 0.3, 0.4 0, 0.01, 0.02, . . ., 0.48, 0.49
0.6, 0.7, 0.8, 0.9, 1 0.51, 0.52, 0.53, . . ., 0.99, 1

is the matrix size; thus, the sequence of nodes traveled, 𝐺
𝐴
,

can be defined as

𝐺
𝐴

= 𝑎
1
, 𝑎
2
, 𝑎
3
, . . . , 𝑎

(𝑛
2
−𝑛)/2

. (14)

Each element origin, 𝑎
𝑟
, is fractioned into several candi-

date elements 𝑎
𝑟𝑠
, where 𝑠 denotes the index of the candidate

element, as described in

𝑎
𝑟𝑠

= 𝑎
𝑟𝑠−1

+ 𝜓

𝑎
𝑟0

=

{

{

{

0, if 0 ≤ 𝑎
𝑟
< 0.5,

0.5, if 0.5 < 𝑎
𝑟
≤ 1,

(15)

where 𝑟 = 1, 2, 3, . . . , (𝑛
2
− 𝑛)/2; 𝑠 = 1, 2, 3, . . . , (1 − 0.5)/𝜓.

Table 2 shows the original element and its candidate as a
result of being fractioned if 𝜓 = 0.01. There are 50 candidates
to substitute for the origin element.

These fractioned elements can be used as candidate nodes
to travel by particle in PSOMOF.The particle will move from
the candidate in one node to the candidate in the next node.
However, it is possible that the particle preserves the original
element.

3.3. Determining CI in a Fuzzy Preference Matrix. Deter-
mining CI on fuzzy preference matrix by using (8) as a
transforming from (7) is not suitable. Transformation using
operation 𝑏

𝑖𝑗
= 𝑎
𝑖𝑗
/𝑎
𝑗𝑖

is not appropriate because it can
exceed the threshold of themultiplicativematrix element. For
example, suppose 𝑎

𝑖𝑗
= 0.95 and 𝑎

𝑗𝑖
= 0.05. By transforming

the above formula, 𝑏
𝑖𝑗
will be 19. The value 𝑏

𝑖𝑗
exceeds 9,

which is the threshold of the multiplicative element matrix.
Therefore, in this study, we use a method to transform the
fuzzy preference (𝑎

𝑖𝑗
) to the multiplicative preference (𝑏

𝑖𝑗
) as

introduced by Herrera-Viedma et al. [17] to determine the
multiplicative consistency as shown in

𝑏
𝑖𝑗

= 9
2∗𝑎
𝑖𝑗
, (16)

𝑎
𝑖𝑗

=

1

2

(1 + log
9
𝑏
𝑖𝑗
) . (17)

Therefore, if the element fuzzy preference matrix 𝑎
𝑖𝑗

=

0,95, it can be transformed to be the element multiplicative
matrix 𝑏

𝑖𝑗
= 7.22. This transformation value is not higher

than the maximum scale of 9. By using (16), a new formula
is proposed to determine the CI, as shown in

CI

=

1

𝑛 (𝑛 − 1)

∑

1≤𝑖≤𝑗≤𝑛

[9
2⋅𝑎
𝑖𝑗
−1

⋅

𝑤
𝑗

𝑤
𝑖

+ 9
2⋅𝑎
𝑗𝑖
−1

⋅

𝑤
𝑖

𝑤
𝑗

− 2] .

(18)

Table 3: Parameter settings for the PSOMOF, NSGA-2, and
MOPSO.

Parameter Value
PSOMOF:

𝑊 0.1
𝐶
1

0.2
𝐶
2

0.3
𝑅
1

0.4
𝑅
2

0.5
NSGA-2
Population size 100
Generation 200
Rate crossover 0.9
Rate mutation 0.1

MOPSO
Number of particle 20
Number of cycles 1000

To prove this formula, the consistent ratio rate of one
sample matrix as shown in (13) is determined. This sample
matrix is selected from Xu et al. [6]. According to (5),
obviously, matrix 𝐴 can be verified as a consistent matrix.
Contrarily, matrix 𝐴 is identified as an inconsistent matrix
with CR = 0.11 when it is determined by (4) and (7).
However, if (4) and (18) are used, CR will be 0.05 and
therefore will be a consistent matrix as in the result of (5).
Therefore, in this research, (18) is used to define the CI value.

4. Experimental Results

4.1. Parameter Setting. Table 3 shows the parameter settings
for the proposed and compared methods. The inconsistent
matrix can be taken from the real life application which
needs the decision maker opinions of comparing several
criteria to get some alternatives. Once the matrix is identified
as inconsistent, PSOMOF is able to be used to repair the
inconsistent matrix. To see the performance of proposed
methods in repairing inconsistent matrices, there are 15
inconsistent fuzzy preference matrices which need to be
repaired as shown in Table 4. Some matrices come from the
other papers, but some matrices are created randomly.

4.2. Generating Nondominated Solutions. As aforemen-
tioned, there are two objectives for this proposed method,
that is, the best CR and deviation matrix. Both objectives will
conflict each other. When the CR is lowest (good consistent
ratio), it leads to the highest (the worst) deviation, and vice
versa. However, in order to get the acceptable matrix, the CR
of modified matrix is limited below 0.1. It makes the solution
consist of some relations (“CR-deviation”) which can be
identified as nondominated solutions. Equations (19a), (19b),
and (19c) display the performance of PSOMOF to get the
best CR-𝜎 for 𝐴

5
, respectively. The origin matrix 𝐴

5
(19a)

can be transformed to the modified matrices which have the
best CR (19b) and 𝜎(19c), respectively:
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Table 4: The dataset inconsistency matrices.

Matrix Elements of lower triangular matrix CR
Size 4 × 4

𝐴
1

0.9-0.4-0.2-0.3-0.6-0.1a 0.687
𝐴
2

0.8-0.4-0.1-0.1-0.3-0.7 0.364
𝐴
3

0.4-0.6-0.4-0.7-0.4-0.3b 0.183
𝐴
4

0.4-0.3-0.4-0.3-0.1-0.9 0.427
Size 5 × 5

𝐴
5

0.4-0.3-0.4-0.7-0.8-0.2-0.4-0.4-0.6-0.2 0.319
𝐴
6

0.1-0.2-0.3-0.9-0.6-0.8-0.7-0.4-0.6-0.3 0.343
𝐴
7

0.7-0.2-0.1-0.3-0.8-0.8-0.7-0.1-0.6-0.4 0.359
𝐴
8

0.1-0.3-0.1-0.8-0.8-0.4-0.6-0.8-0.6-0.7 0.479
Size 6 × 6

𝐴
9

0.8-0.2-0.1-0.4-0.8-0.9-0.4-0.2-0.4-0.7-0.9-0.8-0.7-0.4-0.3 0.440
𝐴
10

0.3-0.1-0.8-0.8-0.3-0.7-0.2-0.4-0.4-0.7-0.7-0.6-0.4-0.8-0.1 0.531
𝐴
11

0.2-0.8-0.1-0.7-0.8-0.4-0.4-0.6-0.7-0.6-0.1-0.4-0.6-0.3-0.7 0.437
Size 7 × 7

𝐴
12

0.7-0.2-0.4-0.7-0.3-0.6-0.4-0.3-0.9-0.2-0.7-0.4-0.6-0.8-0.8-0.8-0.3-0.9-0.2-0.7-0.9 0.315
𝐴
13

0.7-0.8-0.3-0.4-0.6-0.7-0.2-0.7-0.2-0.3-0.8-0.3-0.3-0.2-0.6-0.4-0.7-0.3-0.2-0.1-0.7 0.353
Size 8 × 8

𝐴
14

0.8-0.8-0.8-0.3-0.6-0.8-0.7-0.7-0.4-0.7-0.7-0.9-0.7-0.4-0.4-0.4-0.3-0.3-0.4-0.7-0.2-0.6-0.2-0.2-0.8-0.7-0.2.0.7 0.313
𝐴
15

0.7-0.8-0.7-0.3-0.8-0.6-0.4-0.7-0.2-0.2-0.7-0.3-0.8-0.7-0.3-0.1-0.3-0.1-0.2-0.8-0.8-0.3-0.8-0.1-0.6- 0.2-0.1-0.4 0.457
Data on a and b is picked from [8, 18].

CR = 0.319

(

(

(

0.5 0.6 0.7 0.3 0.6

0.4 0.5 0.6 0.2 0.6

0.3 0.4 0.5 0.8 0.4

0.7 0.8 0.2 0.5 0.8

0.4 0.4 0.6 0.2 0.5

)

)

)

. (19a)

CR = 0.003 and 𝜎 = 0.161

(

(

(

0.5 0.5146 0.5072 0.4923 0.5190

0.4854 0.5 0.5088 0.4504 0.5097

0.4928 0.4912 0.5 0.5177 0.4882

0.5077 0.5496 0.4823 0.5 0.5312

0.4810 0.4903 0.5112 0.4688 0.5

)

)

)

. (19b)

CR = 0.099 and 𝜎 = 0.073

(

(

(

0.5 0.5717 0.6188 0.3855 0.6477

0.4283 0.5 0.52 0.26 0.5982

0.3812 0.4473 0.5 0.6630 0.4645

0.6145 0.6554 0.3370 0.5 0.7341

0.3523 0.4018 0.5355 0.2659 0.5

)

)

)

. (19c)

PSOMOF splits the method into three steps. These are
to find the optimal deviation, optimal CR, and the optimal
deviation with the particular value of CR. Figure 1 shows

the process convergence to find the optimal deviation, while
Figure 2 shows process convergence to find the optimal CR.
Both of them are conducted on 𝐴

5
.

After obtaining the minimal CR and 𝜎, the third step
of the PSOMOF is executed to get the nondominated CR-
deviation nodes. By using PSOMOF, for each CR, the
optimal deviation can be obtained. This proposed method
thus successfully generates some nodes as solutions. Figure 3
shows the Pareto graph which depicts the relation of CR and
deviation of matrix.The sample matrices for fuzzy preference
matrix are 𝐴

1
, 𝐴
5
, 𝐴
9
, 𝐴
12
, and 𝐴

14
. It shows clearly that

they will be contradictory to each other. In case of matrices,
when 𝜎 is minimized, CR is maximized. Likewise, when CR
is minimized, 𝜎 is maximized.

4.3. Comparison with Other Methods. To evaluate the per-
formance of PSOMOF, this study uses the metric analysis
[21, 22]. The performance is represented by the Pareto graph
10 times. The Pareto graph is then compared with Pareto
graphs of two other algorithms, NSGA-2 [23] and MOPSO
[24]. The Pareto-optimal set is generated by merging all of
the Pareto graphs of all algorithms (PSOMOF, NSGA-2, and
MOPSO) into a single Pareto solution. The nondominated
solutions for each algorithm are generated by executing each
algorithm once on a sample inconsistent matrix (𝐴

1
, 𝐴
5
,

𝐴
9
, 𝐴
12
, and 𝐴

14
). There are 3 metrics to measure the

performance of nondominated solutions achieved using the
proposed method. Suppose a set of nondominated solutions
𝑋 ⊆ 𝑋.

𝑀
1
Metric. This metric measures the average distance of the

resulting nondominated set solutions to the Pareto-optimal
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Figure 1: The process convergence to find the optimal deviation on 𝐴
5
.

0 50 100
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74,0025
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Figure 2: The process convergence to find the optimal CR on 𝐴
5
.

set solutions.The better value should be a lower𝑀
1
. It can be

defined as desribed in

𝑀
1
(𝑋

) =

1

𝑋


∑

𝑎

∈𝑥


min {






𝑎

− 𝑎







𝑎 ∈ 𝑋} . (20)

𝑀
2
Metric. This metric measures the number of distribution

nondominated solutions which are covered by a neighbour-
hood parameter 𝑑 > 0.03. A bigger 𝑀

2
indicates better

performance. 𝑀
2
can be defined as

𝑀
2
(𝑋

) =

1





𝑋

− 1






∑

𝑎

∈𝑥







{𝑏

∈ 𝑥

;






𝑎

− 𝑏




𝑎 > 𝑑}





 (21)

𝑀
3
Metric.This metric measures the extent of nondominated

sets obtained. Awide range of values should be covered by the

nondominated solutions. The bigger 𝑀
3
is better. 𝑀

3
can be

defined as

𝑀
3
(𝑋

) = √

𝑚

∑

𝑖=1

max {




𝑎


𝑖
− 𝑏


𝑖





; 𝑎

, 𝑏

∈ 𝑋

}. (22)

The comparison results are shown inTable 5. It shows that
PSOMOF 𝑀

1
metric is minimal in all of matrices compared

to MOPSO and NSGA-2. These results show that most of the
Pareto graphs of PSOMOF are closer to the Pareto-optimal
front than both algorithms (NSGA-2 and MOPSO). For 𝑀

2

metric, the PSOMOF result is larger than both of the other
algorithms except for 𝐴

12
. This indicates that the solutions

of the proposed method are more distributed than both
algorithms. In the 𝑀

3
metric, the proposed algorithm also

outperforms as compared to the NSGA-2 and MOPSO. The
proposed method returned nondominated solutions further
than both of the other algorithms. Regarding this result, the
proposed method, PSOMOF, can be claimed as the better
algorithm compared to the two algorithms (NSGA-2 and
MOPSO).

5. Conclusions

This paper presents a study to use the multiobjective PSO
to solve the inconsistent fuzzy preference matrix in AHP,
called PSOMOF. There are two objectives (consistent ratio
and deviation matrix) considered in rectifying the matrix
in order to be consistent. However, they are conflicting in
that process. Therefore, the proposed algorithms offer some
nondominated solutions which also satisfied the acceptable
consistent matrices. The process in PSOMOF is split into
three parts in which each part applies the PSO process. To
see the performance, 15 inconsistent comparisonmatrices are
repaired by the proposed methods. Besides repairing incon-
sistent comparison matrices, the proposed method also can
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Figure 3: The Pareto graph solutions which show relation CR-𝜎.

generated some nondominated solution which can be classi-
fied as optimal solutions.This result shows the PSO algorithm
is the potential approach to solve the inconsistent compar-
ison matrix in AHP. The other intelligent algorithm also
might be used to solve this problem. Further, this proposed
method might be a potential method to combine with other
method metaheuristic (hybrid)𝑛 to improve the quality of
results.
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Table 5: Comparison of the metric performance of NSGA-2, MOPSO, and MOBAF.

Method 𝐴
1

𝐴
5

𝐴
9

𝐴
12

𝐴
14

NSGA-2
𝑀
1

0.000896 0.000913 0.00127 0.00146 0.00133
𝑀
2

24.0 26.2 15.9 20.4 14.1
𝑀
3

1.76 1.50 1.34 1.21 1.11
MOPSO

𝑀
1

0.000830 0.000701 0.00110 0.000930 0.00122
𝑀
2

28.7 27.9 19.6 26.1 17.7
𝑀
3

1.89 1.64 1.60 1.39 1.29
PSOMOF

𝑀
1

0.000728 0.000688 0.000957 0.000926 0.000998
𝑀
2

32.5 27.9 20.6 25.7 19.0
𝑀
3

1.98 1.92 1.65 1.58 1.48
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