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This paper combined with the adaptive principle to improve the genetic algorithms (GA) and applied it to optimal design of the
shape of the concrete face rock-fill dam (CFRD). Based on the improved GA, a mathematical model was established for the design
optimization of CFRD. CFRD utilizes dam cost as objective function and dam slope and geometries of the dam material partition
as design variables. Dam stability, stress, displacement, and stress level are used as the main condition constraints. The calculation
procedures were prepared, and the GA was used to optimize the design of Jishixia CFRD. Results show that the GA could solve the
global optimal solution problem of complex optimization design, such as the high degree of nonlinearity and the recessiveness of
constraint conditions, and using the GA to optimize the CFRD design can reduce the quantities of projects and engineering safety
costs.

1. Introduction

The objective function and constraint conditions for the
design optimization of a concrete face rock-fill dam (CFRD)
are nonlinear functions of design variables. Constraint con-
ditions are implicit functions of design variables; however,
deriving these constraint conditions is difficult [1]. The
current design optimizationmethods for CFRDmainly focus
onmathematical programming and criterionmethods,which
include the full stress criterion, complexmethod, and penalty
function method. These methods have several limitations,
such as slow convergence and low efficiency [2].

Holland [3] first proposed a genetic algorithm (GA) that
has main features operating directly on object structures.
The continuity of the GA derivatives and functions has no
limitations. GA has inherent implicit parallelism and good
global optimization capability. GA also uses the probability
optimization method, which can automatically access and
guide the optimized search space, can adjust the search
direction adaptively, and does not require rule determination.

Ackley [4] proposed a strategy called “stochastic iterated
genetic hill-climbing” (SIGH) that uses a complex probability
election mechanism composed of 𝑀 “voters” to decide the
value of the new individual (“𝑀” refers to the size of groups).

Experimental results show that four of the six test functions
of the SIGHwith single-point crossover, namely, the uniform
crossover neural GA, exhibited better performance than that
of other algorithms. Overall, the SIGH ismore competitive in
the speed of solving comparedwithmany existing algorithms.
In another study, Whitley et al. [5] proposed a crossover
operator on the basis of the cross field. This crossover
operator is specifically for crossing individuals by using
numbers to represent genes. The application of the crossover
operator to the travelling salesman problem (TSP) has been
verified by experiments [6].

Bersini and Seront [7] combined GA with the simplex
method and formed a single operation called “multi-parent
crossover operator.” This operator produces new individuals
through two maternal individuals and an additional indi-
vidual. The cross results are consistent with those of three
individuals with elections. Three crossover operators have
been compared with the subpoint crossover and uniform
crossover operators. Results show that the three crossover
operators have better performance than that of the other two
operators.

Many experts and scholars in China have improved
the crossover operator of GA. For instance, Dai et al. [8]
presented an algorithm of pattern extraction approach to
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the mutation mechanism for Genetic Algorithm. The direc-
tion of the mutation of individual is guided by two con-
secutive evolution directions of the individual, such as the
mutation probability, different mutation operators to search
for a variable space, and migration of operators among
populations to exchange genetic information and solve the
problems of the classical GA converging to a local optimum
value. Zhao et al. [9] proposed the building-block-coded
parallel GA, which is encoded by gene block. This GA is
utilized when the simple GA is used on large-scale combi-
natorial optimization problems with low searching efficiency.
This method is based on the coarse-grained parallel GA and
aims to identify possible gene block among the chromosome
population. The identified gene block is used as a new gene
block to recode the chromosome and to generate chromo-
someswith shorter lengths.The recoded chromosome groups
are then used as the initial population that progresses to
the next round of evolution. Jiang [10] utilized a flexible
strategy to maintain the diversity of groups for parallel
GA to solve the TSP, which enables the algorithm to cross
the local convergence obstacles and reach the evolution of
the global optimum direction. Zhang et al. [11] constructed
the analysis and inverse analysis system of temperature
stress simulation. The system realizes the automation and
intellectualization of complex data analysis and preparation
work in simulation process and complex data adjustment in
the inverse analysis process, which can facilitate the real-
time tracking simulation and feedback analysis of concrete
temperature stress in construction process. Gu et al. [12]
proposed a new method to inverse the actual initial zoning
deformation modulus and to determine the inversion objec-
tive function for the actual zoning deformation modulus,
based on the dam displacement measured data and finite
element calculation results. Furthermore, based on the chaos
genetic optimization algorithm, the inversion method for
zoning deformation modulus of dam, dam foundation, and
reservoir basin is proposed. Combined with the project
case, the feasibility and validity of the proposed method are
verified. The internal relation between concrete dam crack
behavior abnormality and statistical change point theory is
deeply analyzed by Li et al. [13] from the model structure
instability of parametric statistical model and change of
sequence distribution law of nonparametric statistical model.
And the nonparametric change point diagnosis method of
concrete dam crack behavior abnormality is used in the
actual project, demonstrating the effectiveness and scientific
reasonableness of the method established. Rezaiee-Pajand
and Tavakoli [14] introduced an efficient procedure for crack
detection in concrete gravity dams. A genetic algorithm
and finite element modeling are employed to perform the
optimization tasks. Moreover, a genetic algorithm approach
for crack identification is proposed, which can identify the
location andmagnitude of cracks in concrete gravity dams. By
minimizing the difference between the analytical responses
given by Rezaiee-Pajand and Tavakoli’s element and the
measured ones, the genetic algorithm identifies the crack.

GA has achieved great success in practical applications.
However, on a biological basis, the GA has mathematical
flaws [15, 16]. A number of defects exist when GA is used

in calculations, which include slow speed and immature
convergence. Moreover, GA encounters problems on search
efficiency and time [17–19]. These deficiencies seriously
impede the promotion and application of GA. In this paper,
GA was improved based on adaptive principle [20] and
applied for the design optimization of CFRD.

This paper combined with the adaptive principle, based
on the genetic algorithm, and applied it to optimal design of
the shape of the concrete face rock-fill dam.

2. Mathematical Models for the Design
Optimization of CFRD

2.1. Design Variables. In the cross-sectional design of CFRD,
the dam height, the width of the dam crest, and other data
are unchanged parameters that are determined in accordance
with the project planning requirements. However, these
parameters are generally not considered as design variables.
The angle of the upstream dam slope 𝑥

1
, the angle between

the dammaterial boundaries and the horizontal direction 𝑥
2
,

and the angle of the downstream dam slope 𝑥
3
are considered

as design variables of the CFRD cross section.

2.2. Objective Function. The CFRD sections consist of dif-
ferent material partitions. After considering different com-
prehensive factors, such as exploitation, transportation, and
construction, the unit price of volume formed by different
materials was determined. For the unit length section, the
unit price of each feed zone was compared. A material was
selected, and the unit price of the material was assumed as
1.0. The ratio of the unit price of the selected material to that
of the price of other materials is price proportional, which
is denoted as 𝐶

𝑖
. The objective function can be expressed as

follows:

𝑓 = ∑(𝐶
𝑖
× 𝑆
𝑖
) , (1)

where 𝑓 is the project cost of the dam and 𝑆
𝑖
is the area of the

material in the dam cross section.

2.3. Constraint Conditions. The water pressure on the
upstreampanel can be directly determined by considering the
structure and state of workability of CFRD. Thus, the sliding
force produced by the dead weight of the dam and the water
pressure on the panel significantly outweighs the horizontal
thrust. However, this phenomenon does not produce an
integral sliding problem. During design optimization, the
constraint conditions take the following forms:

(1) Geometric constraint conditions 𝑥
𝑙
≤ 𝑥 ≤ 𝑥

𝑢
.

(2) Maximum stress constraint conditions 𝜎 ≤ [𝜎].
(3) Preventive plastic shear failure conditions 𝑆

𝐿
≤ [𝑆
𝐿
].

(4) Dam slope stability constraint conditions 𝐹
𝑠
≥ [𝐹
𝑠
].

𝑥
𝑙
is the lower limit of variables, 𝑥

𝑢
is the upper limit of

variables, 𝜎 is the stress, 𝑆
𝐿
is the stress level, and 𝐹

𝑠
is the

safety coefficient of the dam slope stability.
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3. Improved GA with the Adaptive Principle

As a kind of stochastic optimization method, the basic GA
also have some shortcomings, like the weak local searching
ability, the nonhigh optimization accuracy, premature con-
vergence, andmany other shortcomings. In order to make up
for these deficiencies, this paper combined with the adaptive
principle to improve the GA and applied it to optimal design
of the shape of the concrete face rock-fill dam; the specific
improvement process is as follows.

3.1. Parameter Coding. Coding is the most important issue
concerning GA application. Several types of coding methods
have been proposed, which can be divided into three cate-
gories: binary codingmethod, floating-point codingmethod,
and symbol coding method. The optimization of CFRD
has many design variables. If the binary coding method is
used, the coding strings will be long, and the coding and
decoding processes will be complex, which may affect the
computational efficiency.Therefore, the simple floating-point
coding with high accuracy and simple process was chosen for
this study.

3.2. Generation of the Initial Group. To solve the constrained
initial group, an initial feasible individual 𝑥

1
can be randomly

generated if the individual is a boundary point of a feasible
region.The regeneration is conducted until the initial feasible
individual 𝑥

1
is produced, which is the interior point of the

feasible region. Thus, another initial individual 𝑥
2
can be

randomly generated, as expressed in the following equation:

𝑥
2
= 𝑎 + 𝑟

2
× (𝑏 − 𝑎) , (2)

where 𝑎 = (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)
𝑇, 𝑟
2
= (𝑟
21
, 𝑟
22
, . . . , 𝑟

2𝑛
)
𝑇, and 𝑏 =

(𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
)
𝑇.

We need to determine whether the individual 𝑥
2
, which

is generated by (2), can satisfy the constraint conditions.
If the condition is met, then a new initial individual 𝑥

3

will be generated. Otherwise, the value of 𝑥
2
continually

approximates that of 𝑥
1
; that is, an iteration will be conducted

by using the following equation:

𝑥
2
= 𝑥
1
+ 𝛼 (𝑥

2
− 𝑥
1
) , (3)

where 𝛼 is a coefficient greater than 0 but less than 1 and is
generally taken as 0.5.

𝑥
2
can become a feasible individual after the constant

iterations. The individual 𝑥
3
can be generated by using the

samemethod as that of 𝑥
2
. 𝑥
3
can be converted into an initial

feasible individual; the iteration continues until𝑚 individuals
are generated.

3.3. Treatment of Fitness Function and Constraint Conditions.
To meet the requirements of GA, the fitness function should
be nonnegative and the problems should be maximum opti-
mization problems. In the optimization problem of CFRD,
the upper and lower limit constraints of design variables
are considered during coding. The other constraint condi-
tions are used to deal with the penalty function. Therefore,

the objective function in the optimization problem of CFRD
is expressed as follows:

𝐹 (𝑥) =

{

{

{

𝐶max − 𝑓 (𝑥) 𝑓 (𝑥) < 𝐶max

0 𝑓 (𝑥) ≥ 𝐶max,
(4)

where 𝐶max is a large number greater than 𝐹(𝑥) and is taken
as 50 000.

3.4. Genetic Operation

3.4.1. Selection Operation. The basic idea of selection propor-
tion is that the probability of each individual being selected
is proportional to the degree of its fitness. Individuals with
a higher degree of fitness have greater probability of passing
their characteristics to the next generation.

3.4.2. Crossover Operation. The arithmetic crossover opera-
tor was used; that is, two individuals were randomly selected
and then combined linearly to generate two new individuals:

𝐴 = 𝛾
0
𝑋
𝑗1
+ (1 − 𝛾

0
)𝑋
𝑗2
,

𝐵 = 𝛾
0
𝑋
𝑗2
+ (1 − 𝛾

0
)𝑋
𝑗2
,

(5)

where 𝛾
0
is a random number uniformly distributed between

0 and 1. Consider

𝑃
𝑐
=

{{{{{

{{{{{

{

𝑘
13


𝑓

− 𝑓max


≤ Vfix

𝑘
1
(𝑓max − 𝑓


)

𝑓max − 𝑓ave
𝑓

≥ 𝑓ave

𝑘
3

𝑓

< 𝑓ave.

(6)

Here, 𝑓max is the maximum fitness value among groups, 𝑓 is
the fitness value of the variation individual,𝑓ave is the average
fitness value of the groups of each generation, and 𝑓

 is the
larger fitness value between two individuals conducting the
interlace operation.

To improve the quality of crossover, the crossover proba-
bility was generated by using (6) and 𝑃

𝑐
was controlled by the

degree of evolution. Here, 𝑘
1
= 1, 𝑘
3
= 0.9, 𝑘

13
= 0.5, and Vfix =

0.001.

3.4.3. Mutation Operation. A nonuniform mutation oper-
ation was used; that is, every variable can be mutated
independently according to the following equation:

𝑋
𝑖
=

{

{

{

(𝑋
𝑖max − 𝑋

𝑖
) (1 − 𝑟

(1−𝑡/𝑇)
𝐵

) rad = 0

(𝑋
𝑖
− 𝑋
𝑖min) (1 − 𝑟

(1−𝑡/𝑇)
𝐵

) rad = 1,

(7)

where 𝑡 is algebra of evolution; 𝑟 is a randomnumber between
0 and 1; 𝑇 is the maximum evolution algebra; 𝐵 is the system
parameter, which is generally taken as 2.

To improve the quality of mutation, the mutation proba-
bility was generated by using (8); that is, 𝑃

𝑚
was controlled by
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the degree of evolution. Here, 𝑘
2
= 0.5, 𝑘

4
= 0.065, 𝑘

24
= 0.07,

and Vfix = 0.001. Consider

𝑃
𝑚
=

{{{{{

{{{{{

{

𝑘
24


𝑓

− 𝑓max


≤ Vfix

𝑘
2
(𝑓max − 𝑓


)

𝑓max − 𝑓ave
𝑓

≥ 𝑓ave

𝑘
4

𝑓

< 𝑓ave.

(8)

4. Optimal Design Program of CFRD Based on
the Improved GA

4.1. Overall Design of the Program Structure. The program
includes three modules, namely, the module of inputting the
original data, the module of calculating the optimal design,
and the module of outputting the results. The entire program
is written by using FORTRAN. The initial data are read in
the form of documents and stored in the form of program
variables. The final optimization results can be obtained
through cycle calculation and the output in the form of
files.

4.2. Function Design of Each Program Module

4.2.1. Module of Inputting the Original Data. The original
data can be divided into three parts. The first part is used
to calculate the geometry of CFRD, which includes two
aspects, (1) the operation parameters of genetic operation,
which include the size of group 𝑀 and the maximum time
of iterations 𝑇, and (2) the structural dimensions of CFRD,
which include the thickness of panels and cushions, the
level of thickness of transition layers, the dam height, and
the water level. The second part is used to calculate the
stability of the dam slope, which includes the physical and
mechanical indexes of dam materials, the upstream and
downstreamwater levels during the construction period, and
the earthquake coefficient. The third part is used to calculate
the stress and deformation of the dam, which included the
load series, the number of structure partitions, and the
calculation parameters of Duncan-Chang stress-dependent
bulk modulus (E-B) model of each dam material.

4.2.2. Module of the Optimal Design Calculation. Themodule
of the optimal design calculation is the core of the entire
program. Given that CFRD has many material partitions, the
calculation of the structural reanalysis requires a significant
amount of work. Therefore, when writing the program that
calculates the optimal design of CFRD, the calculations of
slope stability and dam stress deformation must be treated as
subprograms, whereas the improved GA must be treated as
the main program.

(1) Calculation of Slope Stability. The calculation program of
the slope stability utilizes the Bishop method for the analysis
of the circular-slip surface. This program can be used not
only in analyzing the stability of any designated slip-out point
and arbitrary designated sliding arc but also in determining

the stability of all possible slide-out points as artificially
designated density interpolates between any two slide-out
points of the dam slope.

(2) Calculation of Stress Deformation. The nonlinear finite
element method is used to analyze the characteristics of
the dam stress deformation. The dam materials utilize the
nonlinear Duncan-Chang E-B constitutive model during
simulation. The simulation construction process calculates
and applies loads layer by layer. The filling layer and the
filling soil are calculated; however, the resulting displacement
and strain are changed to zero, thus leaving the stresses in
the equation. The load increment should have the smallest
possible value to reflect the nonlinear characteristics of the
dam material.

(3) Calculation of Genetic Manipulation. The module of
genetic manipulation is the main program of the improved
GA optimization program. The genetic manipulation
includes selection operation, crossover operation, and muta-
tion operation. Figure 1 shows the calculation flow chart.

4.2.3. Module of Outputting Results. The output data of this
optimization program are as follows:

(1) The optimal solution and the value of its objective
function, in which the solution has to meet the con-
straint condition, include stability and stress deforma-
tion.

(2) The safety factor of slope stability, which meets the
constraint condition and is under the specified calcu-
lation condition, corresponds to the optimal solution.

(3) The calculation results of stress and deformation on
the dam and panel, in which the results are under
the specified calculation condition, must correspond
to the optimal solution and must meet the constraint
condition. The horizontal displacement is positive
when it moves toward the dam downstream, whereas
the vertical displacement is positive when it moves
toward the dam upstream. Stress is positive when it
is compressive and negative when it is tensile.

5. Example Analyses

5.1. Project Profile. Jishixia CFRD is a large (II) type of
hydraulic complex project, in which the dam is a single-
level building with crest elevation of 1861m, crest width of
10m, and maximum dam height of 100m. The minimum
excavation height of the toe slab is 1761m, the slope ratio
of the upstream dam slope is 1 : 1.4, the comprehensive slope
ratio of the downstream dam slope is 1 : 1.71, the normal high
water level is 1856m, and the corresponding downstream
water level is 1783.26m. The grade zones of material in the
dam from upstream to downstream consist of the following:
concrete face slab, cushion zone, transition zone, main rock-
fill area, and downstream rock-fill zone. Figure 2 shows the
diagram of the dam design optimization variables.
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No

Yes

Inputting the original

Generating the initial 
group

The evaluation of each 
individual

Finding out and saving the
individual with the maximal 
fitness 

Finding out and saving the individual 
with the maximal fitness

Selection operation

Crossover operation

Mutation operation

Individual evaluation

Outputting the results

Individual evaluation

gen = gen + 1

gen ≤ maxgen

data and parameters

Checking the stability of the slope and 
the stress and deformation and using
penalty function to deal with individual
according to the degree to which the
individual meets the constraint conditions

Checking the stability of the slope and 
the stress and deformation and using
penalty function to deal with individual
according to the degree to which the
individual meets the constraint conditions

Figure 1: Module flow chart of GA.

5.2. Basic Information. The comprehensive parities of the
dammaterials include the downstream rock-fills, main rock-
fills, transition materials, cushion material, and panel con-
crete, with ratio of 1 : 1.42 : 1.81 : 2.13 : 18.68.

Geometric Constraints. Consider 2.486 ≤ 𝑥
1
≤ 2.61, 𝑥

1
≤ 𝑥
2
≤

𝑥
3
, and 0.532 ≤ 𝑥

3
≤ 0.656.

Condition Constraints. The allowable stability safety factor
is [𝐹
𝑠
] = 1.35, the allowable tensile stress is [𝜎

𝐿
] = 1.0MPa,

the allowable pressure stress is [𝜎
𝑐
] = 10.0MPa, and the

maximum allowable stress level is [𝑆
𝐿
] = 1.0.

The geometric constraints were selected based on the
experience of completed domestic and international con-
structions.The safety factor of stability was selected based on
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Table 1: Material parameters simulated by using the Duncan-Chang E-B model.

Material 𝜌/(kg⋅m−3) 𝜑/(∘) Δ𝜑/(∘) C K 𝐾ur 𝐾
𝑏

n 𝑅
𝑓

m
Cushion 2200 50.6 7 0 400 800 520 0.35 0.78 0.22
Transition layer 2180 52.5 10 0 850 1700 550 0.3 0.77 0.20
Main rock-fill zone 2135 56.5 13 0 1070 1300 260 0.36 0.82 0.40
Secondary rock-fill zone 2121 56.5 11 0 310 700 110 0.39 0.59 0.30

Table 2: Comparative results of the initial design and the optimal program.

Program Iterative step Design variables/rad Objective function
𝑥
1

𝑥
2

𝑥
3

𝐹(𝑥)

Initial design — 2.521 1.373 0.620 23946.91
Complex algorithm 535 2.500 1.560 0.656 22819.05
GA 157 2.497 1.560 0.653 22803.83

Transition zone
Cushion zone

Panel

Main rock-fill zone

Downstream
rock-fill zone

x1 x2 x3

Figure 2: Diagram of the optimal design variables.

the relevant provisions of China in Design Code for Concrete
Face Rock-Fill Dams (SL228-98).

Structure analysis must be performed to establish the
condition constraints. Dam slope stability analysis, which is
conducted by using the Swedish slice method and the finite
element analysis of CFRDdeformation and stress, should also
be conducted.The condition for water storage calculation for
the upstream water level is 1856m, whereas the condition for
the downstream water level is 1783.26m.

The linear elastic constitutive model was used to simulate
the concrete face. 𝜀 (elastic modulus) = 2 × 10

10 pa, 𝜇
(Poisson’s ratio) = 0.167, and 𝜌 (density) = 2450 kg/m3. The
Duncan-Chang E-B constitutive model was used to simulate
the dam materials, as shown in Table 1.

5.3. Optimizing Results

5.3.1. Analysis of the Optimal Program. The paper uses the
genetic algorithm and the complex algorithm to conduct
the optimizing design of Jishixia concrete face rock-fill
dam, respectively, and the calculation results of these two
optimizing design programs are compared with the initial
design by listing. The design variables and the results of
objective function of the design with genetic algorithm and
complex algorithm and the initial design are compared in
Table 2. The comparative figure about optimal program with
genetic algorithm and the initial design are shown in Figure 3.

(1) Table 2 and Figure 3 show that, after optimization,
the upstream and downstream slopes of the dam became
steeper, the angle of the upstream slope of the dam decreased
from 2.521 rad to 2.497 rad, and the angle of the downstream

Improved GA
Initial design

Figure 3: Comparison of the dam section between the initial design
and the GA.

slope of the dam increased from 0.620 rad to 0.653 rad.
Consequently, the area of the dam section decreased, thus
decreasing the dam cost.The angle between the dammaterial
boundaries and the horizontal direction increased from
1.373 rad to 1.560 rad. This increase in angle increased the
content of the downstream rock-fill, thereby reducing the
dam cost. Compared with the initial design scheme, the dam
cost was reduced by 4.8% after optimization.

(2) From the comparison optimized results of the com-
plex algorithm and the genetic algorithm, it can be seen that
the two optimal results of optimization method are basically
the same; it is also shown that the two methods are suitable
for the optimization design of the face rock-fill dam. The
generation number of the complex algorithm converging to
the optimal solution is 535. However, the generation number
of genetic algorithm converging to the optimal solution is 157;
the consumed time of genetic algorithm is below one-third
of complex algorithm.Thereby, the genetic algorithm is more
efficient and speedy.

(3) The convergence process for objective function
according to generation number is reflected in Figure 4; we
can see that the objective function decreases rapidly and then
the speed of decrease is reduced and gradually comes to
stability in the top 15 generation numbers. Figures 5–7 show
the changing process for three parameters of 𝑥

1
, 𝑥
2
, and 𝑥

3

according to generation number. The trend of parameter 𝑥
1

and objective function are basically the same in Figure 5.
We can see that parameter 𝑥

2
and parameter 𝑥

3
rise rapidly
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Table 3: Comparative program results before and after optimization.

Program Conditions Behavior indicators
𝜎
𝐿
/MPa 𝜎

𝑐
/MPa 𝑆

𝐿
𝛿/m 𝐹

𝑠

Before optimization Completion period 0.43 1.69 0.68 0.11 1.79
Impounding period 0.50 1.84 0.58 0.22

After optimization Completion period 0.43 1.72 0.83 0.16 1.35
Impounding period 0.51 1.85 0.72 0.27

Note: 𝐹𝑠 is the dam slope safety factor of stability under normal operating conditions.
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Figure 4: Evolution of objective function along generation number.

x
1

20 40 60 80 100 120 140 1600
Generation number

2.45

2.47

2.49

2.51

2.53

2.55

2.57

2.59

Figure 5: Evolution of 𝑥
1
along generation number.

and then the speed of rise is reduced and gradually comes
to stability with increase in the top 15 generation numbers in
Figures 6 and 7.

5.3.2. Stress Deformation Analysis of the Dam. Table 3 shows
the results, optimum solution, optimal value, and main
condition index of the genetic optimization algorithm.

(1) Results and Analysis of the Displacement Calculation.
The vertical displacements of the dam during completion
and impoundment periods are reflected in Figures 8 and 9,
respectively.

20 40 60 80 100 120 140 1600
Generation number

x
2

1.2

1.3

1.4

1.5

1.6

Figure 6: Evolution of 𝑥
2
along generation number.

20 40 60 80 100 120 140 1600
Generation number

x
3

0.60

0.61

0.62

0.63

0.64

0.65

0.66

Figure 7: Evolution of 𝑥
3
along generation number.

Y

X

−0.85

−0.72

−0.64
−0.56
−0.48
−0.40
−0.32

Figure 8: Contour map of the vertical displacement during the
completion period (unit: m).
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Figure 9: Contour map of the vertical displacement during the
impoundment period (unit: m).
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Figure 10: Contour map of the horizontal displacement during the
completion period (unit: m).

After optimization, the largest settlement of the dam
during the completion period was 0.85m, which accounts for
about 0.85%of the damheight and occurs in about two-thirds
of the dam height. Given that the downstream rock-fill of the
dam is relatively weak, the settlement of the dam displace-
ment is biased toward the dam downstream, and the location
of the maximum settlement of the dam was in the secondary
rock-fill zone. Consequently, the displacement of the dam
crest was slightly biased toward the dam downstream. The
dammainly bears dead weight during the completion period.
The area of the dam section decreased after optimization,
and the dead weight was reduced. Thus, the dam settlement
decreased slightly after the completion period comparedwith
that before optimization.

Compared with the completion period, the impound-
ment period bore water load and the dam settlement
increased slightly. In addition, the maximum settlement
during the impoundment period was 0.86m, which accounts
for about 0.86% of the dam height.Themaximum settlement
increased about 0.01% compared with that of the completion
period. The maximum settlement occurred in about two-
thirds of the dam height, which is biased toward the dam
downstream. Compared with the design before optimization,
the dam settlement decreased slightly during the impound-
ment period.

The horizontal displacements of the dam during the
completion and impoundment periods are shown in Figures
10 and 11, respectively.

During the completion period, the dam is mainly under
the action of dead weight load, the horizontal displacement
is not symmetrically distributed, and the upstream part
of the dam tends to be displaced upstream. In addition,
the maximum value of the displacement is 0.055m, which

0.025

0.05

0.10

0.075
0.1950.125

0.15

Y

X

Figure 11: Contour map of the horizontal displacement during the
impoundment period (unit: m).

occurred in one-third of the dam height near the upstream
face. The downstream part of the dam tends to be displaced
upstream. The maximum value of displacement is 0.15m,
which occurred in one-half of the dam height near the
downstream surface. The tendency of displacement during
the impoundment period is the same as that during the
completion period. However, under the combined actions of
water load and dead weight load, the distribution of dam hor-
izontal displacement significantly changed; the zone of the
horizontal displacement directing to the upstream side of the
dam was significantly reduced, and the maximum horizontal
displacement was reduced to 0.00m. Moreover, the horizon-
tal displacement directing to the downstream increased, and
the maximum horizontal displacement increased to 0.195m,
which is located in one-half of the dam height near the
downstream surface.

Compared with the design before optimization, the dis-
placement trends of the dam during the completion and
storage periods are the same, but the horizontal upstream
and downstream displacement significantly changed. During
the completion period, the horizontal upstreamdisplacement
of the dam increased to 1.68 cm, whereas the horizontal
downstream displacement of the dam increased to 7.8 cm.
During the impounding period, the horizontal upstream
displacement of the dam increased to 0.78 cm, whereas the
horizontal downstream displacement of the dam increased
to 7.98 cm. This result is mainly caused by the increase in
the proportion of downstream rock-fill in the section after
optimization.The relatively weak downstream rock-fill of the
dam also caused this increase in horizontal displacement.

(2) Results and Analysis of the Stress Calculation. The major
principal stress isoline, minor principal stress isoline, and
stress level isoline during the completion and impoundment
periods are shown in Figures 12–17.

During the completion period, themaximummajor prin-
cipal stress is 1.70MPa and the maximum minor principal
stress is 0.43MPa, in which both stresses are located in
the dam base and are near the dam axis. Both stresses
are compressive. The directions of the major and minor
principal stresses are close to that of gravity.The vertical stress
component is close to the dead weight stress of the overlying
rock-fill.The stress level of the entire dam is less than 1.0, and
the maximum value is 0.65.

During the impoundment period, the dam stress is
redistributed, the dam is under the combined action of
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Figure 12: Major principal stress isoline during the completion
period (unit: MPa).
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Figure 13: Minor principal stress isoline during the completion
period (unit: MPa).

the dead weight load and water load, the dam stress in the
upstream side of the dam axis is more than that in the
downstream side, and the dam stress level is less than that
of the completion period, in which the maximum value was
0.63. This result shows that impounding is favorable for the
stability of the concrete face rock-fill dam. The water load
near the cushion material is perpendicular to the panel and
close to the direction of the minor principal stress in the
dead weight stress field.The increment of theminor principal
stress is greater than that of the major principal stress. This
phenomenon results in directional changes of the principal
stress. During the impoundment period, the maximum
major principal stress is 1.82MPa and the maximum minor
principal stress is 0.51MPa. Both stresses are located in the
dambase and are near the damaxis.Thedam stress during the
impoundment period did not significantly change. The dam
stress is mainly caused by the dead weight of the rock-fills,
and the dam stress generated by the reservoir water pressure
is relatively small.The stress level of the entire dam is less than
1.0.

Compared with the initial design, the major and minor
principal stresses of the dam after the completion period
did not significantly change. The major principal stress
increased to 0.02MPa, whereas the minor principal stress
increased to 0.06MPa. After the impoundment period, the
major principal stress decreased to 0.03MPa, whereas the
minor principal stress increased to 0.09MPa. The stress level
increased to 0.02 in the completion period and increased to
0.05 in the impoundment period. The stress level in most
parts of the dam was low. Thus, the dam optimal design with
the GA is in good working condition.

(3) Calculation Results of the Panel Deflection and Analysis.
The deflection curves of the panel during the completion
and impoundment periods are shown in Figures 18 and 19,
respectively.
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Figure 14: Major principal stress isoline during the impoundment
period (unit: MPa).
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Figure 15: Minor principal stress isoline during the impoundment
period (unit: MPa).
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Figure 16: Stress level isoline during the completion period.
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Figure 17: Stress level isoline during the impoundment period.
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Figure 18: Deflection curves of a panel during the completion
period.
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Figure 19: Deflection curves of a panel during the impoundment
period.

The following can be seen fromTable 3 and Figures 18 and
19.

The maximum deflection of the panel during the com-
pletion period is 15.59 cm, which is located in the upper part
of the panel. In the impoundment period, the maximum
deflection of the panel increased to 26.71 cm under the effect
of the upstream water pressure. The entire panel deformed
downstream, and the maximum deflection was located in
the middle of the panel, which gradually decreases in the
upper and lower parts of the panel. Analysis results show that
the panel deflection of the Jishixia project is relatively small,
which could not trigger the peripheral joints to produce large
displacement and can meet the requirements of the design.

Compared with the initial design, the deflection of the
panel increased after optimization.Thedeflection of the panel
increased to 4.34 cm in the completion period and increased
to 4.48 cm in the impoundment period.

6. Conclusion

We conclude the following:

(1) We improvedGAwith the adaptive principle; by using
the improved GA optimization program to conduct
the optimal design of Jishixia CFRD, we have deter-
mined that the GA could not only solve the global
optimal solution problem of complex optimization
design, such as the high degree of nonlinearity and the
recessiveness of constraint conditions, but also make
up for deficiencies which exist in the basic genetic
algorithm, such as the weak local searching ability,
the nonhigh optimization accuracy, and premature
convergence. The GA consumes less time and has
high efficiency.

(2) The comparative analysis results between the initial
design and optimization show that, after optimiza-
tion, the dam slope became steeper, the downstream
rock-fill area increased, and the quantities of projects
and project costs were reduced.

(3) This paper conducts a finite element calculation of
stress deformation and dam slope stability on Jishixia
CFRD. Results show that, after optimization, both
the dam stability and stress deformation conform
with the general rule of CFRD, and the maximum

stresses meet the requirements.These results confirm
that the optimal result is safe, reliable, economic, and
reasonable.
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